Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (51)

Search Parameters:
Keywords = tiltrotor aircraft

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 3336 KB  
Article
Estimation Method for Basic Parameters of High-Speed Vertical Take-Off and Landing Aircraft
by Yu Wang, Qihang Li and Pan Li
Aerospace 2025, 12(11), 992; https://doi.org/10.3390/aerospace12110992 - 6 Nov 2025
Viewed by 355
Abstract
The research aims to propose a basic parameter estimation method for high-speed vertical take-off and landing (HSVTOL) aircraft, balancing rotor and fixed-wing mode requirements. Flight profiles and performance indicators are defined based on mission phases, and maximum take-off weight is estimated using the [...] Read more.
The research aims to propose a basic parameter estimation method for high-speed vertical take-off and landing (HSVTOL) aircraft, balancing rotor and fixed-wing mode requirements. Flight profiles and performance indicators are defined based on mission phases, and maximum take-off weight is estimated using the fuel fraction method. A pre-estimation model for a turboshaft–turbofan variable cycle engine (TSFVCE) was established, and the conversion between thrust and power was conducted. Constraints related to different performance requirements were analyzed, and the relationship between the rotor and the wing was established, resulting in the generation of constraint diagrams for the selection of basic parameters. This method allows for the rapid and effective estimation of basic parameters, including maximum take-off weight, rotor disk loading, and wing loading. Two tiltrotor aircraft were analyzed using this method. The estimated results closely matched actual values, with errors within a reasonable range. These findings demonstrate the method’s reliability and provide a reference for HSVTOL conceptual design and engine power matching. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

43 pages, 4153 KB  
Article
Initial Weight Modeling and Parameter Optimization for Collectible Rotor Hybrid Aircraft in Conceptual Design Stage
by Menglin Yang, Zhiqiang Wan, De Yan, Jingwei Chen and Ruihan Dong
Drones 2025, 9(10), 690; https://doi.org/10.3390/drones9100690 - 7 Oct 2025
Viewed by 978
Abstract
A collectible rotor hybrid aircraft (CRHA) represents a novel type of vertical takeoff and landing (VTOL) unmanned aircraft configuration, combining the typical rotor and transmission systems of helicopters with the wing and propulsion systems of fixed-wing aircraft. Its weight estimation and parameter design [...] Read more.
A collectible rotor hybrid aircraft (CRHA) represents a novel type of vertical takeoff and landing (VTOL) unmanned aircraft configuration, combining the typical rotor and transmission systems of helicopters with the wing and propulsion systems of fixed-wing aircraft. Its weight estimation and parameter design during the conceptual design stage cannot directly use existing rotorcraft or fixed-wing methods. This paper presents a rapid key design parameter sizing and maximum takeoff weight (MTOW) estimation approach tailored to CRHA, explicitly scoped to the 5–8-metric-ton (t) MTOW class. Component weight models are first formulated as explicit functions of key design parameters—including rotor disk loading, power loading, and wing loading. Segment-specific fuel weight fractions for VTOL and transition flight are then updated from power calculations, yielding a complete mission fuel model for this weight class. A hybrid optimization framework that minimizes MTOW is constructed by treating the key design parameters as design variables and combining a genetic algorithm (GA) with sequential quadratic programming (SQP). The empty-weight model, fuel-weight model, and optimization framework are validated against compound-helicopter, tilt-rotor, and twin-turboprop benchmarks, and parameter sensitivities are evaluated locally and globally. Results show prediction errors of roughly 10% for empty weight, fuel weight, and MTOW. Sensitivity analysis indicates that at the baseline design point, wing loading exerts the greatest influence on MTOW, followed by power loading and disk loading. Full article
Show Figures

Figure 1

20 pages, 3607 KB  
Article
Addressing Calibration Challenges for Large-Stroke Blade Pitch Control in Tiltrotor Aircraft via an Improved Cubic Polynomial Fitting Algorithm
by Hang Feng, Shangyu Li, Kaicheng Li and Junquan Chen
Aerospace 2025, 12(9), 843; https://doi.org/10.3390/aerospace12090843 - 18 Sep 2025
Viewed by 3197
Abstract
Tiltrotor aircraft, due to their vertical takeoff and landing capability and efficient high-speed cruise performance, are increasingly valuable in both modern military and civilian applications. However, traditional calibration methods for blade pitch control often lack the precision required for large actuator strokes, which [...] Read more.
Tiltrotor aircraft, due to their vertical takeoff and landing capability and efficient high-speed cruise performance, are increasingly valuable in both modern military and civilian applications. However, traditional calibration methods for blade pitch control often lack the precision required for large actuator strokes, which limits the control accuracy. This study aims to overcome these limitations by introducing an improved polynomial fitting algorithm to model the nonlinear relationship between the blade pitch control angles and actuator strokes. Using a specific rotor model, a coordinate system was established for the pitch control mechanism and spatial geometric relationships were derived. Experimental comparisons demonstrate that the proposed cubic polynomial fitting algorithm reduces the collective pitch error by approximately 57% and cyclic pitch error by 33%, markedly outperforming traditional linear fitting methods. These improvements significantly enhance the control precision and operational stability. The findings provide a reliable theoretical and practical basis for improving tiltrotor flight performance and safety. Full article
(This article belongs to the Special Issue Flight Dynamics, Control & Simulation (2nd Edition))
Show Figures

Figure 1

24 pages, 5764 KB  
Article
Multi-Fidelity Aerodynamic Optimization of the Wing Extension of a Tiltrotor Aircraft
by Alberto Savino
Appl. Sci. 2025, 15(17), 9491; https://doi.org/10.3390/app15179491 - 29 Aug 2025
Cited by 2 | Viewed by 688
Abstract
Given the fast-evolving context of electrical vertical takeoff and landing vehicles (eVTOL) based on the concept of tiltrotor aircraft, this work describes a framework aimed at the preliminary aerodynamic design and optimization of innovative lifting surfaces of such rotorcraft vehicles. In particular, a [...] Read more.
Given the fast-evolving context of electrical vertical takeoff and landing vehicles (eVTOL) based on the concept of tiltrotor aircraft, this work describes a framework aimed at the preliminary aerodynamic design and optimization of innovative lifting surfaces of such rotorcraft vehicles. In particular, a multiobjective optimization process was applied to the design of a wing extension representing an innovative feature recently investigated to improve the aerodynamic performance of a tiltrotor aircraft wing. The wing/proprotor configurations, selected using a Design Of Experiment (DOE) approach, were simulated by the mid-fidelity aerodynamic code DUST, which used a vortex-particle method (VPM) approach to model the wing/rotor wakes. A linear regression model accounting for nonlinear interactions was used by an evolutionary algorithm within a multiobjective optimization framework, which provided a set of Pareto-optimal solutions for the wing extension, maximizing both wing and rotor efficiency. Moreover, the present work highlighted how the use of a fast and reliable numerical modeling for aerodynamics, such as the VPM approach, enhanced the capabilities of an optimization framework aimed at achieving a more accurate preliminary design of innovative features for rotorcraft configurations while taking into account the effects of the aerodynamic interaction between wings and proprotors. Full article
Show Figures

Figure 1

8 pages, 1100 KB  
Proceeding Paper
Large Language Model-Integrated Teaching Practices in Courses on Python and Automatic Control Principles
by Fangji Zhang, Zhaowei Wang and Lei Fan
Eng. Proc. 2025, 98(1), 43; https://doi.org/10.3390/engproc2025098043 - 31 Jul 2025
Viewed by 467
Abstract
In the course of studying automatic control for students majoring in Mechatronics and Control Engineering, Python has become the dominant language in artificial intelligence and machine learning as an essential tool for the analysis and design of automatic control systems. In response to [...] Read more.
In the course of studying automatic control for students majoring in Mechatronics and Control Engineering, Python has become the dominant language in artificial intelligence and machine learning as an essential tool for the analysis and design of automatic control systems. In response to the widespread issues of an inadequate ability to apply automatic control principles, an unclear understanding of logical architecture, and a lack of coding abilities in programming for complex systems, we introduce the “Wenxinyiyan” large language models (LLMs) tool. For the height control of the V-22 Osprey tilt-rotor aircraft in helicopter mode, we guided students to develop a control system in a structured question-and-answer learning process and a model-driven approach. This assisted students in establishing a computer-aided design framework for complex systems and enhancing their understanding of control logic. The LLM assisted students in writing high-quality and clean code. Full article
Show Figures

Figure 1

29 pages, 3661 KB  
Article
Segmented Analysis for the Performance Optimization of a Tilt-Rotor RPAS: ProVANT-EMERGENTIa Project
by Álvaro Martínez-Blanco, Antonio Franco and Sergio Esteban
Aerospace 2025, 12(8), 666; https://doi.org/10.3390/aerospace12080666 - 26 Jul 2025
Viewed by 624
Abstract
This paper aims to analyze the performance of a tilt-rotor fixed-wing RPAS (Remotely Piloted Aircraft System) using a segmented approach, focusing on a nominal mission for SAR (Search and Rescue) applications. The study employs optimization techniques tailored to each segment to meet power [...] Read more.
This paper aims to analyze the performance of a tilt-rotor fixed-wing RPAS (Remotely Piloted Aircraft System) using a segmented approach, focusing on a nominal mission for SAR (Search and Rescue) applications. The study employs optimization techniques tailored to each segment to meet power consumption requirements, and the results highlight the accuracy of the physical characterization, which incorporates nonlinear propulsive and aerodynamic models derived from wind tunnel test campaigns. Critical segments for this nominal mission, such as the vertical take off or the transition from vertical to horizontal flight regimes, are addressed to fully understand the performance response of the aircraft. The proposed framework integrates experimental models into trajectory optimization procedures for each segment, enabling a realistic and modular analysis of energy use and aerodynamic performance. This approach provides valuable insights for both flight control design and future sizing iterations of convertible UAVs (Uncrewed Aerial Vehicles). Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

21 pages, 4228 KB  
Article
Real-Time TECS Gain Tuning Using Steepest Descent Method for Post-Transition Stability in Unmanned Tilt-Rotor eVTOLs
by Choonghyun Lee, Ngoc Phi Nguyen, Sangjun Bae and Sung Kyung Hong
Drones 2025, 9(6), 414; https://doi.org/10.3390/drones9060414 - 6 Jun 2025
Viewed by 2130
Abstract
Unmanned tilt-rotor electric Vertical Take-Off and Landing (eVTOL) aircraft face significant control challenges during the transition from hover to forward flight, particularly when using open-source autopilot systems that rely on open-loop tilt control and static control gains. After the transition, the Total Energy [...] Read more.
Unmanned tilt-rotor electric Vertical Take-Off and Landing (eVTOL) aircraft face significant control challenges during the transition from hover to forward flight, particularly when using open-source autopilot systems that rely on open-loop tilt control and static control gains. After the transition, the Total Energy Control System (TECS) becomes active in fixed-wing mode, but its default static gains often fail to correct energy imbalances, resulting in substantial altitude loss. This paper presents the Steepest Descent-based Total Energy Control System (SD-TECS), a real-time adaptive TECS framework that dynamically tunes gains using the steepest descent method to enhance post-transition altitude and airspeed regulation in unmanned tilt-rotor eVTOLs. The proposed method integrates gain adaptation directly into the TECS loop, optimizing control actions based on instantaneous flight states such as altitude and energy-rate errors. This enables improved responsiveness to nonlinear dynamics during the critical post-transition phase. Simulation results demonstrate that the SD-TECS approach significantly improves control performance compared to the default PX4 TECS, achieving a 35.5% reduction in the altitude settling time, a 57.3% improvement in the airspeed settling time, and a 66.1% decrease in the integrated altitude error. These improvements highlight the effectiveness of SD-TECS in enhancing the stability and reliability of unmanned tilt-rotor eVTOLs operating under autonomous control. Full article
Show Figures

Figure 1

18 pages, 4228 KB  
Article
Transition Process Control of Tiltrotor Aircraft Based on Fractional-Order Model Reference Adaptive Control
by Junkai Liang, Hui Ye, Yaohua Shen and Dawei Wu
Machines 2025, 13(6), 439; https://doi.org/10.3390/machines13060439 - 22 May 2025
Viewed by 1078
Abstract
To address the critical challenge of controlling tiltrotor aircraft during transition mode, this paper proposes a fractional-order model reference adaptive control (FO-MRAC) method based on the unique modeling of the tiltrotor aircraft. A nonlinear model capturing the dynamic characteristics of the tiltrotor aircraft [...] Read more.
To address the critical challenge of controlling tiltrotor aircraft during transition mode, this paper proposes a fractional-order model reference adaptive control (FO-MRAC) method based on the unique modeling of the tiltrotor aircraft. A nonlinear model capturing the dynamic characteristics of the tiltrotor aircraft during the transition mode is developed based on an accurate analysis of the forces and moments acting on key components. This model is subsequently linearized to obtain a stable flight envelope. Considering the complexity of transition, the FO-MRAC method is designed based on the shift of the equilibrium point for superior parameter tuning and disturbance rejection. Then, the stability of the closed-loop system is analyzed using the Lyapunov stability theory. Finally, an experimental platform is constructed to verify the validity of the aerodynamic modeling and the designed control method. Full article
(This article belongs to the Section Automation and Control Systems)
Show Figures

Figure 1

18 pages, 13241 KB  
Article
Experimental Investigation of Aerodynamic Interaction in Non-Parallel Tandem Dual-Rotor Systems for Tiltrotor UAV
by He Zhu, Yuhao Du, Hong Nie, Zhiyang Xin and Xi Geng
Drones 2025, 9(5), 374; https://doi.org/10.3390/drones9050374 - 15 May 2025
Cited by 1 | Viewed by 1316
Abstract
The distributed electric tilt-rotor Unmanned Aerial Vehicle (UAV) combines the vertical take-off and landing (VTOL) capability of helicopters with the high-speed cruise performance of fixed-wing aircraft, offering a transformative solution for Urban Air Mobility (UAM). However, aerodynamic interference between rotors is a new [...] Read more.
The distributed electric tilt-rotor Unmanned Aerial Vehicle (UAV) combines the vertical take-off and landing (VTOL) capability of helicopters with the high-speed cruise performance of fixed-wing aircraft, offering a transformative solution for Urban Air Mobility (UAM). However, aerodynamic interference between rotors is a new challenge to improving their flight efficiency, especially the dynamic interactions during the transition phase of non-parallel tandem dual-rotor systems, which require in-depth investigation. This study focuses on the aerodynamic performance evolution of the tilt-rotor system during asynchronous transition processes, with an emphasis on quantifying the influence of rotor tilt angles. A customized experimental platform was developed to investigate a counter-rotating dual-rotor model with fixed axial separation. Key performance metrics, including thrust, torque, and power, were systematically measured at various tilt angles (0–90°) and rotational speeds (1500–3500 RPM). The aerodynamic coupling mechanisms between the front and rear rotor disks were analyzed. The experimental results indicate that the relative tilt angle of the dual rotors significantly affects aerodynamic interference between the rotors. In the forward tilt mode, the thrust of the aft rotor recovers when the tilt angle reaches 45°, while in the aft tilt mode, it requires a tilt angle of 75°. By optimizing the tilt configuration, the aerodynamic performance loss of the aft rotor due to rotor-to-rotor aerodynamic interference can be effectively mitigated. This study provides important insights for the aerodynamic performance optimization and transition control strategies of the distributed electric tilt-rotor UAV. Full article
(This article belongs to the Special Issue Dynamics Modeling and Conceptual Design of UAVs)
Show Figures

Figure 1

10 pages, 7745 KB  
Proceeding Paper
Design and Implementation of a Novel Tilt-Rotor Tri-Copter UAV Configuration
by Zishi Shen and Fan Liu
Eng. Proc. 2024, 80(1), 39; https://doi.org/10.3390/engproc2024080039 - 4 Mar 2025
Viewed by 2274
Abstract
Hover-capable unmanned aerial vehicles (UAVs), including rotary-wing UAVs such as unmanned helicopters, multi-rotor drones, and tilt-rotor UAVs, are widely employed due to their hovering capabilities. In recent years, tilt-rotor aircraft, which offer both vertical takeoff and landing as well as rapid maneuverability, have [...] Read more.
Hover-capable unmanned aerial vehicles (UAVs), including rotary-wing UAVs such as unmanned helicopters, multi-rotor drones, and tilt-rotor UAVs, are widely employed due to their hovering capabilities. In recent years, tilt-rotor aircraft, which offer both vertical takeoff and landing as well as rapid maneuverability, have increasingly become a research focus. This paper first proposes a design concept for a flying-wing configuration tilt-rotor tri-rotor UAV, detailing the selection of airfoils and the calculation of aerodynamic parameters. To address the specific operational requirements and flight characteristics of this UAV, a specialized tilting mechanism was developed, and a flight control system was designed and implemented using classical PID control methods. Finally, a prototype of the tilt-rotor tri-rotor UAV was fabricated and subjected to flight tests. The results from both simulations and flight tests confirmed that the UAV met the design performance criteria and that the control method was effective. Full article
(This article belongs to the Proceedings of 2nd International Conference on Green Aviation (ICGA 2024))
Show Figures

Figure 1

27 pages, 10043 KB  
Article
An Over-Actuated Hexacopter Tilt-Rotor UAV Prototype for Agriculture of Precision: Modeling and Control
by Gabriel Oliveira Pimentel, Murillo Ferreira dos Santos, José Lima, Paolo Mercorelli and Fernanda Mara Fernandes
Sensors 2025, 25(2), 479; https://doi.org/10.3390/s25020479 - 15 Jan 2025
Cited by 3 | Viewed by 2638
Abstract
This paper focuses on the modeling, control, and simulation of an over-actuated hexacopter tilt-rotor (HTR). This configuration implies that two of the six actuators are independently tilted using servomotors, which provide high maneuverability and reliability. This approach is predicted to maintain zero pitch [...] Read more.
This paper focuses on the modeling, control, and simulation of an over-actuated hexacopter tilt-rotor (HTR). This configuration implies that two of the six actuators are independently tilted using servomotors, which provide high maneuverability and reliability. This approach is predicted to maintain zero pitch throughout the trajectory and is expected to improve the aircraft’s steering accuracy. This arrangement is particularly beneficial for precision agriculture (PA) applications where accurate monitoring and management of crops are critical. The enhanced maneuverability allows for precise navigation in complex vineyard environments, enabling the unmanned aerial vehicle (UAV) to perform tasks such as aerial imaging and crop health monitoring. The employed control architecture consists of cascaded proportional (P)-proportional, integral and derivative (PID) controllers using the successive loop closure (SLC) method on the five controlled degrees of freedom (DoFs). Simulated results using Gazebo demonstrate that the HTR achieves stability and maneuverability throughout the flight path, significantly improving precision agriculture practices. Furthermore, a comparison of the HTR with a traditional hexacopter validates the proposed approach. Full article
(This article belongs to the Special Issue Dynamics and Control System Design for Robot Manipulation)
Show Figures

Figure 1

34 pages, 3218 KB  
Article
Neural Network Design and Training for Longitudinal Flight Control of a Tilt-Rotor Hybrid Vertical Takeoff and Landing Unmanned Aerial Vehicle
by Guillaume Ducard and Gregorio Carughi
Drones 2024, 8(12), 727; https://doi.org/10.3390/drones8120727 - 2 Dec 2024
Cited by 6 | Viewed by 3040
Abstract
This paper considers a hybrid vertical take-off and landing (VTOL) unmanned aerial vehicle (UAV). By tilting its propellers, the aircraft can transition from rotary-wing (RW) multirotor mode to fixed-wing (FW) mode and vice versa. A novel architecture of a neural network-based controller (NNC) [...] Read more.
This paper considers a hybrid vertical take-off and landing (VTOL) unmanned aerial vehicle (UAV). By tilting its propellers, the aircraft can transition from rotary-wing (RW) multirotor mode to fixed-wing (FW) mode and vice versa. A novel architecture of a neural network-based controller (NNC) is presented. An “imitative learning” approach is employed to train the NNC to mimic the response of an expert but computationally expensive model predictive controller (MPC). The resulting NNC approximates the MPC’s solution while significantly decreasing the computational cost. The NNC is trained on the longitudinal axis. Successful simulations and real flight tests prove that the NNC is suitable for the longitudinal axis control of a complex nonlinear system such as the tilt-rotor VTOL UAV through a sequence of transitions between the RW mode to the FW mode, and vice versa, in a forward flight. Full article
Show Figures

Figure 1

18 pages, 9968 KB  
Article
Active Disturbance Rejection Flight Control and Simulation of Unmanned Quad Tilt Rotor eVTOL Based on Adaptive Neural Network
by Bohai Deng, Jinfa Xu, Xingyu Yuan and Shengxin Yu
Drones 2024, 8(10), 560; https://doi.org/10.3390/drones8100560 - 8 Oct 2024
Cited by 7 | Viewed by 2326
Abstract
The unmanned quad tilt-rotor eVTOL (QTRV) is a variable-configuration aircraft that combines the features of vertical takeoff and landing (VTOL), hovering, and high-speed cruising, making its control system design particularly challenging. The flight dynamics of the QTRV differ significantly between the VTOL and [...] Read more.
The unmanned quad tilt-rotor eVTOL (QTRV) is a variable-configuration aircraft that combines the features of vertical takeoff and landing (VTOL), hovering, and high-speed cruising, making its control system design particularly challenging. The flight dynamics of the QTRV differ significantly between the VTOL and cruise modes, and are further influenced by rotor tilt and external wind disturbances. Developing a unified, highly coupled nonlinear full-flight dynamics model facilitates flight control system design and simulation verification. To ensure stable tilt of the QTRV, a tilt corridor was established, along with the design of its tilt route and manipulation strategy. An adaptive neural network active disturbance rejection controller (ANN-ADRC) is proposed to ensure stable flight across all modes, reducing the control parameters and simplifying tuning while effectively estimating and compensating for unknown disturbances in real time. A hardware-in-the-loop (HIL) simulation system was designed for full-mode flight control simulation, and the results demonstrated the effectiveness of the proposed control method. Full article
(This article belongs to the Section Drone Design and Development)
Show Figures

Figure 1

30 pages, 23730 KB  
Article
Design and Performance of a Novel Tapered Wing Tiltrotor UAV for Hover and Cruise Missions
by Edgar Ulises Rojo-Rodriguez, Erik Gilberto Rojo-Rodriguez, Sergio A. Araujo-Estrada and Octavio Garcia-Salazar
Machines 2024, 12(9), 653; https://doi.org/10.3390/machines12090653 - 18 Sep 2024
Cited by 6 | Viewed by 3400
Abstract
This research focuses on a novel convertible unmanned aerial vehicle (CUAV) featuring four rotors with tilting capabilities combined with a tapered form. This paper studies the transition motion between multirotor and fixed-wing modes based on the mechanical and aerodynamics design as well as [...] Read more.
This research focuses on a novel convertible unmanned aerial vehicle (CUAV) featuring four rotors with tilting capabilities combined with a tapered form. This paper studies the transition motion between multirotor and fixed-wing modes based on the mechanical and aerodynamics design as well as the control strategy. The proposed CUAV involves information about design, manufacturing, operation, modeling, control strategy, and real-time experiments. The CUAV design considers a fixed-wing with tiltrotors and provides the maneuverability to perform take-off, hover flight, cruise flight, and landing, having the characteristics of a helicopter in hover flight and an aircraft in horizontal flight. The manufacturing is based on additive manufacturing, which facilitates the creation of a lattice structure within the wing. The modeling is obtained using the Newton–Euler equations, and the control strategy is a PID controller based on a geometric approach on SE(3). Finally, the real-time experiments validate the proposed design for the complete regime of flight, and the research meticulously evaluates the feasibility of the prototype and its potential to significantly enhance the mission versatility. Full article
(This article belongs to the Special Issue Advances and Applications in Unmanned Aerial Vehicles)
Show Figures

Figure 1

23 pages, 8991 KB  
Article
Investigations on Trimming Strategy and Unsteady Aerodynamic Characteristics of Tiltrotor in Conversion Procedure
by Guoqing Zhao, Zhuangzhuang Cui, Qijun Zhao, Xi Chen and Peng Li
Aerospace 2024, 11(8), 632; https://doi.org/10.3390/aerospace11080632 - 1 Aug 2024
Cited by 2 | Viewed by 2158
Abstract
Numerical simulations were conducted to analyze the unsteady aerodynamic characteristics of a tiltrotor aircraft with different conversion strategies. Firstly, the CFD method was established by taking the interaction between the rotor and wing into account, as well as the body-fitted grid of the [...] Read more.
Numerical simulations were conducted to analyze the unsteady aerodynamic characteristics of a tiltrotor aircraft with different conversion strategies. Firstly, the CFD method was established by taking the interaction between the rotor and wing into account, as well as the body-fitted grid of the tiltrotor. Then, the trimming approach of the rotor and wing was developed to ensure longitudinal balance of the aircraft, and the method for determining the conversion corridor of the tiltrotor aircraft was proposed by considering the limitations imposed by wing stall and the required power of the rotor. Finally, the aerodynamic characteristics of the rotor and wing during the continuous conversion process were investigated, considering various tilting angular velocities and horizontal accelerations of the tiltrotor. The numerical results indicated that a smaller acceleration can enhance the efficiency of the tiltrotor. However, this would increase the complexity of trimming the fuselage attitude angle. It was also found that excessive acceleration could exceed the required power limit of the tiltrotor, rendering the conversion strategy infeasible. Full article
Show Figures

Figure 1

Back to TopTop