Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = time-lapse ERT

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4359 KB  
Article
Identification of NAPL Contamination Occurrence States in Low-Permeability Sites Using UNet Segmentation and Electrical Resistivity Tomography
by Mengwen Gao, Yu Xiao and Xiaolei Zhang
Appl. Sci. 2025, 15(13), 7109; https://doi.org/10.3390/app15137109 - 24 Jun 2025
Viewed by 416
Abstract
To address the challenges in identifying NAPL contamination within low-permeability clay sites, this study innovatively integrates high-density electrical resistivity tomography (ERT) with a UNet deep learning model to establish an intelligent contamination detection system. Taking an industrial site in Shanghai as the research [...] Read more.
To address the challenges in identifying NAPL contamination within low-permeability clay sites, this study innovatively integrates high-density electrical resistivity tomography (ERT) with a UNet deep learning model to establish an intelligent contamination detection system. Taking an industrial site in Shanghai as the research object, we collected apparent resistivity data using the WGMD-9 system, obtained resistivity profiles through inversion imaging, and constructed training sets by generating contamination labels via K-means clustering. A semantic segmentation model with skip connections and multi-scale feature fusion was developed based on the UNet architecture to achieve automatic identification of contaminated areas. Experimental results demonstrate that the model achieves a mean Intersection over Union (mIoU) of 86.58%, an accuracy (Acc) of 99.42%, a precision (Pre) of 75.72%, a recall (Rec) of 76.80%, and an F1 score (f1) of 76.23%, effectively overcoming the noise interference in electrical anomaly interpretation through conventional geophysical methods in low-permeability clay, while outperforming DeepLabV3, DeepLabV3+, PSPNet, and LinkNet models. Time-lapse resistivity imaging verifies the feasibility of dynamic monitoring for contaminant migration, while the integration of the VGG-16 encoder and hyperparameter optimization (learning rate of 0.0001 and batch size of 8) significantly enhances model performance. Case visualization reveals high consistency between segmentation results and actual contamination distribution, enabling precise localization of spatial morphology for contamination plumes. This technological breakthrough overcomes the high-cost and low-efficiency limitations of traditional borehole sampling, providing a high-precision, non-destructive intelligent detection solution for contaminated site remediation. Full article
Show Figures

Figure 1

17 pages, 9255 KB  
Article
Forward Modeling Simulations to Validate Changes in Electrical Resistivity Tomography Monitoring Data for a Slope with Complex Geology
by Azadeh Hojat, Luigi Zanzi, Greta Tresoldi and Meng Heng Loke
Geosciences 2025, 15(1), 33; https://doi.org/10.3390/geosciences15010033 - 20 Jan 2025
Cited by 2 | Viewed by 1687
Abstract
The electrical resistivity tomography (ERT) method has been increasingly integrated with hydrogeological risk mitigation strategies to monitor the internal conditions and the stability of natural and artificial slopes. In this paper, we discuss a case study in which numerical simulations were essential to [...] Read more.
The electrical resistivity tomography (ERT) method has been increasingly integrated with hydrogeological risk mitigation strategies to monitor the internal conditions and the stability of natural and artificial slopes. In this paper, we discuss a case study in which numerical simulations were essential to validate the interpretation of the resistivity images obtained from an ERT monitoring system installed on a critical slope in Italy. An initial analysis of the monitoring data after rainfall events in the study site showed that the resistivity values were decreased only in the central zone along the ERT line, but they were increased in the two sides of the profile. Opposite behaviors were observed during the drying processes following the rainfall events. Core samples show complex geology at the study site, which might justify uneven responses of the different subsurface bodies to meteorological events. However, we decided to investigate the possible inversion artifacts resulting from the individual inversion of the tomographic sections. Forward modeling simulations on simplified time-lapse models of the study site were performed to explore this problem and to compare the individual and time-lapse inversions. Synthetic tests confirmed the nature of these unexpected behaviors and assessed the absolute necessity of a time-lapse approach for a correct inversion of monitoring data in the presence of a complex geological model such as the one of this case study. By applying the time-lapse inversion approach to the real data, the inversion artifact problem was substantially solved, arriving after the proper calibration of the inversion parameters, mainly the time-lapse damping factor and the spatial and temporal roughness constraints, to a reduction in the inversion artifacts to less than 5%. Full article
(This article belongs to the Section Geophysics)
Show Figures

Figure 1

29 pages, 33650 KB  
Article
Comparison of Time-Lapse Ground-Penetrating Radar and Electrical Resistivity Tomography Surveys for Detecting Pig (Sus spp.) Cadaver Graves in an Australian Environment
by Victoria Berezowski, Xanthé Mallett, Dilan Seckiner, Isabella Crebert, Justin Ellis, Gabriel C. Rau and Ian Moffat
Remote Sens. 2024, 16(18), 3498; https://doi.org/10.3390/rs16183498 - 20 Sep 2024
Cited by 1 | Viewed by 3358 | Correction
Abstract
Locating clandestine graves presents significant challenges to law enforcement agencies, necessitating the testing of grave detection techniques. This experimental study, conducted under Australian field conditions, assesses the effectiveness of time-lapse ground-penetrating radar (GPR) and electrical resistivity tomography (ERT) in detecting pig burials as [...] Read more.
Locating clandestine graves presents significant challenges to law enforcement agencies, necessitating the testing of grave detection techniques. This experimental study, conducted under Australian field conditions, assesses the effectiveness of time-lapse ground-penetrating radar (GPR) and electrical resistivity tomography (ERT) in detecting pig burials as simulated forensic cases. The research addresses two key questions: (1) observability of graves using GPR and ERT, and (2) changes in geophysical responses with reference to changing climatic conditions. The principal novelty of this research is its Australian focus—this is the first time-lapse GPR and ERT study used to locate clandestine graves in Australia. The results reveal that both GPR and ERT can detect graves; however, ERT demonstrates greater suitability in homogeneous soil and anomalously wet climate conditions, with the detectability affected by grave depth. This project also found that resistivity values are likely influenced by soil moisture and decomposition fluids; however, these parameters were not directly measured in this study. Contrastingly, although GPR successfully achieved 2 m penetration in each survey, the site’s undeveloped soil likely resulted in inconsistent detectability. The findings underscore the significance of site-specific factors when employing GPR and/or ERT for grave detection, including soil homogeneity, climate conditions, water percolation, and body decomposition state. These findings offer practical insights into each technique’s utility as a search tool for missing persons, aiding law enforcement agencies with homicide cases involving covert graves. Full article
(This article belongs to the Special Issue Remote Sensing: 15th Anniversary)
Show Figures

Figure 1

34 pages, 7926 KB  
Article
An Integrated Hydrogeophysical Approach for Unsaturated Zone Monitoring Using Time Domain Reflectometry, Electrical Resistivity Tomography and Ground Penetrating Radar
by Alexandros Papadopoulos, George Apostolopoulos and Andreas Kallioras
Water 2024, 16(18), 2559; https://doi.org/10.3390/w16182559 - 10 Sep 2024
Cited by 4 | Viewed by 1852
Abstract
Continuous measurements of soil moisture in the deeper parts of the unsaturated zone remain an important challenge. This study examines the development of an integrated system for the continuous and 3-D monitoring of the vadose zone processes in a cost- and energy-efficient way. [...] Read more.
Continuous measurements of soil moisture in the deeper parts of the unsaturated zone remain an important challenge. This study examines the development of an integrated system for the continuous and 3-D monitoring of the vadose zone processes in a cost- and energy-efficient way. This system comprises TDR, ERT and GPR geophysical techniques. Their capacities to adequately image subsurface moisture changes with continuous and time-lapse measurements are assessed during an artificial infiltration experiment conducted in a characteristic urban site with anthropogenic fills and much compaction. A 3-D array was designed for each method to expand the information of a single TDR probe and obtain a broader image of the subsurface. Custom spatial TDR probes installed in boreholes made with a percussion drilling instrument were used for soil moisture measurements. Moisture profiles along the probes were estimated with a numerical one-dimensional inversion model and a standard calibration equation. High conductivity water used during all infiltration tests led to the detection of the flow by all techniques. Preferential flow was present throughout the experiment and imaged sufficiently by all methods. Overall, the integrated approach conceals each method’s weaknesses and provides a reliable 3-D view of the subsurface. The results suggest that this approach can be used to monitor the unsaturated zone at even greater depths. Full article
Show Figures

Figure 1

20 pages, 5393 KB  
Review
Electrical Resistance Tomography (ERT) for Concrete Structure Applications: A Review
by Dongho Jeon and Seyoon Yoon
Buildings 2024, 14(9), 2654; https://doi.org/10.3390/buildings14092654 - 27 Aug 2024
Cited by 6 | Viewed by 3791
Abstract
Electrical resistance tomography (ERT) is gaining recognition as an effective, affordable, and nondestructive tool for monitoring and imaging concrete structures. This paper discusses ERT’s applications, including crack detection, moisture ingress monitoring, steel reinforcement assessment, and chloride level profiling within concrete. Recent advancements, such [...] Read more.
Electrical resistance tomography (ERT) is gaining recognition as an effective, affordable, and nondestructive tool for monitoring and imaging concrete structures. This paper discusses ERT’s applications, including crack detection, moisture ingress monitoring, steel reinforcement assessment, and chloride level profiling within concrete. Recent advancements, such as time-lapse ERT and artificial intelligence (AI) integration, have enhanced image resolution and provided detailed data for infrastructure monitoring. However, challenges remain regarding the need for better spatial resolution, concrete-compatible electrodes, and integration with other nondestructive testing techniques. Addressing these issues will expand the applicability and reliability of the current ERT, making it an invaluable tool for infrastructure maintenance and monitoring. Full article
(This article belongs to the Special Issue Advanced Sustainable Low-Carbon Building Materials)
Show Figures

Figure 1

19 pages, 9035 KB  
Article
Characterization of a Contaminated Site Using Hydro-Geophysical Methods: From Large-Scale ERT Surface Investigations to Detailed ERT and GPR Cross-Hole Monitoring
by Mirko Pavoni, Jacopo Boaga, Luca Peruzzo, Ilaria Barone, Benjamin Mary and Giorgio Cassiani
Water 2024, 16(9), 1280; https://doi.org/10.3390/w16091280 - 29 Apr 2024
Cited by 3 | Viewed by 2332
Abstract
This work presents the results of an advanced geophysical characterization of a contaminated site, where a correct understanding of the dynamics in the unsaturated zone is fundamental to evaluate the effective management of the remediation strategies. Large-scale surface electrical resistivity tomography (ERT) was [...] Read more.
This work presents the results of an advanced geophysical characterization of a contaminated site, where a correct understanding of the dynamics in the unsaturated zone is fundamental to evaluate the effective management of the remediation strategies. Large-scale surface electrical resistivity tomography (ERT) was used to perform a preliminary assessment of the structure in a thick unsaturated zone and to detect the presence of a thin layer of clay supporting an overlying thin perched aquifer. Discontinuities in this clay layer have an enormous impact on the infiltration processes of both water and solutes, including contaminants. In the case here presented, the technical strategy is to interrupt the continuity of the clay layer upstream of the investigated site in order to prevent most of the subsurface water flow from reaching the contaminated area. Therefore, a deep trench was dug upstream of the site and, in order to evaluate the effectiveness of this approach in facilitating water infiltration into the underlying aquifer, a forced infiltration experiment was carried out and monitored using ERT and ground-penetrating radar (GPR) measurements in a cross-hole time-lapse configuration. The results of the forced infiltration experiment are presented here, with a particular emphasis on the contribution of hydro-geophysical methods to the general understanding of the subsurface water dynamics at this complex site. Full article
(This article belongs to the Special Issue Application of Geophysical Methods for Hydrogeology)
Show Figures

Figure 1

15 pages, 6901 KB  
Article
Environmental Monitoring of Pig Slurry Ponds Using Geochemical and Geoelectrical Techniques
by Ximena Capa-Camacho, Pedro Martínez-Pagán, José A. Acosta, Marcos A. Martínez-Segura, Marco Vásconez-Maza and Ángel Faz
Water 2024, 16(7), 1016; https://doi.org/10.3390/w16071016 - 31 Mar 2024
Cited by 1 | Viewed by 2026
Abstract
The efficient management of slurry, which is a by-product rich in nutrients derived from feces, urine, cleaning water, and animal waste that stands out for its high concentration of nutrients such as nitrogen, phosphorus, and potassium, is of vital importance, highlighting the importance [...] Read more.
The efficient management of slurry, which is a by-product rich in nutrients derived from feces, urine, cleaning water, and animal waste that stands out for its high concentration of nutrients such as nitrogen, phosphorus, and potassium, is of vital importance, highlighting the importance of slurry management in storage ponds, which. The Murcia–Spain region has an important number of pig farms. Hence, infrastructures dedicated to managing by-products are necessary to prevent environmental pollution and eutrophication of groundwater. The aim of a recent study was to evaluate the relationship between electrical values and geochemical parameters of pig slurry stored in a pond using ERT and geochemical analysis. In addition, the study was designed to monitor the pond to determine the geochemical characteristics of the slurry and to assess the risk of lateral contamination. The study results indicate a noticeable decrease in electrical resistivity values at 0.4 and 1.6 m depth in surveys 1 and 2. The reduction ranges from 50 to 100 percent. This paper presents a new method for monitoring slurry ponds using electrical resistivity tomography. This non-invasive method provides detailed information on the distribution and characteristics of the fluids, as well as a clear picture of the electrical resistivity of the subsurface. Full article
(This article belongs to the Special Issue Application of Geophysical Methods for Hydrogeology)
Show Figures

Figure 1

42 pages, 16074 KB  
Article
Geoelectric Monitoring of the Electric Potential Field of the Lower Rio Grande before, during, and after Intermittent Streamflow, May–October, 2022
by Scott J. Ikard, Kenneth C. Carroll, Dale F. Rucker, Andrew P. Teeple, Chia-Hsing Tsai, Jason D. Payne, Erek H. Fuchs and Ahsan Jamil
Water 2023, 15(9), 1652; https://doi.org/10.3390/w15091652 - 23 Apr 2023
Cited by 4 | Viewed by 2930
Abstract
Understanding the intermittent hydraulic connectivity between ephemeral streams and alluvial aquifers is a key challenge for managing water resources in arid environments. The lower Rio Grande flows for short, discontinuous periods during the irrigation season through the Mesilla Basin in southeastern New Mexico [...] Read more.
Understanding the intermittent hydraulic connectivity between ephemeral streams and alluvial aquifers is a key challenge for managing water resources in arid environments. The lower Rio Grande flows for short, discontinuous periods during the irrigation season through the Mesilla Basin in southeastern New Mexico and southwestern Texas. Hydraulic connections between the Rio Grande and the Rio Grande alluvial aquifer in the Mesilla Basin vary spatially and temporally and are not well understood. Self-potential (SP) monitoring and time-lapse electric resistivity tomography (ERT) were therefore performed along linear cross-sections spanning the riverbed and flood plain for more than 4 months to monitor the transient hydraulic connection between the river and the alluvial aquifer by measuring time-lapse changes in the electric potential field in the riverbed and flood plain. The monitoring period began on 21 May 2022, when the riverbed was completely dry, continued through the irrigation season while streamflow was provided by reservoir releases from upstream dams, and ended on 4 October 2022, when the riverbed was again dry. SP monitoring data show (1) a background condition in the dry riverbed consisting of (a) a positive electric potential anomaly with a maximum amplitude of about +100 mV attributed predominantly to a subsurface vertical salt concentration gradient and (b) diurnal electric potential fluctuations with amplitudes of 40,000–90,000 mV attributed to near-surface heat conduction driven by weather variability, in addition to (2) a streaming potential anomaly during the irrigation season with a maximum amplitude of about −3500 mV whose transient behavior clearly exhibited a change from the background anomaly to depict exclusively losing streamflow conditions that persisted through the irrigation season. Time-lapse ERT monitoring results depict rapid infiltration of streamflow into the subsurface and imply the river and Rio Grande alluvial aquifer established a full hydraulic connection within a few hours after streamflow arrival at the monitoring site. SP monitoring data show an apparent transition from hydraulic connection to disconnection at the end of the irrigation season and indicate that the transitional phase between connection and disconnection may last substantially longer than the transition from disconnection to connection. The combination of SP and ERT monitoring demonstrated herein shows the potential for broader applications of time-lapse monitoring of hydraulic intermittency and near-surface heat fluxes in different rivers. Full article
(This article belongs to the Special Issue Groundwater–Surface Water Interactions)
Show Figures

Figure 1

13 pages, 2520 KB  
Article
Time-Lapse ERT, Moment Analysis, and Numerical Modeling for Estimating the Hydraulic Conductivity of Unsaturated Rock
by Lorenzo De Carlo, Mohammad Farzamian, Antonietta Celeste Turturro and Maria Clementina Caputo
Water 2023, 15(2), 332; https://doi.org/10.3390/w15020332 - 12 Jan 2023
Cited by 4 | Viewed by 3254
Abstract
In recent years, geophysical techniques have been increasingly used to monitor flow and transport processes in the Earth critical zone (ECZ). Among these, electrical resistivity tomography (ERT) is a powerful tool used to predict hydrological parameters and state variables that influence the mentioned [...] Read more.
In recent years, geophysical techniques have been increasingly used to monitor flow and transport processes in the Earth critical zone (ECZ). Among these, electrical resistivity tomography (ERT) is a powerful tool used to predict hydrological parameters and state variables that influence the mentioned processes in the vadose zone because of the strong correlation between electrical and hydrological properties of the filtering medium. There have been many field tests considering geophysical prospecting in soils, where point scale hydrological sensors measurements are typically collected through sensors for geophysical data validation; on the contrary, when the unsaturated zone is made of hard rocks, the installation of such sensors is not a trivial issue owing to the extreme difficulties to guarantee contact between sensors and the surrounding medium. In this context, the geophysical data combined with appropriate numerical analysis techniques can effectively overcome the lack of information of the unsaturated subsurface, which is otherwise unpredictable with traditional methods. In the proposed case study, hydrogeophysical data were collected to provide a quantitative estimation of the hydraulic conductivity of sandstone through an integrated approach based on the moment analysis technique and numerical modeling. Full article
Show Figures

Figure 1

16 pages, 18265 KB  
Article
Noninvasive Monitoring of Subsurface Soil Conditions to Evaluate the Efficacy of Mole Drain in Heavy Clay Soils
by Akram Aziz, Ronny Berndtsson, Tamer Attia, Yasser Hamed and Tarek Selim
Water 2023, 15(1), 110; https://doi.org/10.3390/w15010110 - 29 Dec 2022
Cited by 3 | Viewed by 3373
Abstract
Soil degradation and low productivity are among the major agricultural problems facing farmers of the newly reclaimed agricultural area in the Nile Delta region, Egypt. High content of clay and silt characterizes the soil texture of all farms in the area, while farmers [...] Read more.
Soil degradation and low productivity are among the major agricultural problems facing farmers of the newly reclaimed agricultural area in the Nile Delta region, Egypt. High content of clay and silt characterizes the soil texture of all farms in the area, while farmers still rely on the traditional mole drainage (MD) system to reduce the salinity of the farm soil. We present a comparison of innovative geo-resistivity methods to evaluate mole drains and the salinity affected clay soils. Geoelectrical surveys were conducted on three newly reclaimed farms to image the subsurface soil drainage conditions and to evaluate the efficiency of using the traditional MD systems in these heavy clay environments. The surveys included measuring the natural spontaneous potential (SP), apparent resistivity gradient (RG), and electrical resistivity tomography (ERT). Integrating the results of the three methods reduced the ambiguous interpretation of the inverted ERT models and allowed us to determine the subsurface soil structure. The inverted ERT models were suitable for locating the buried MDs and delineating the upper surface of the undisturbed clay beds. The proximity of these layers to the topsoil reduces the role played by MDs in draining the soil in the first farm and prevents the growth of deep-rooted plants in the second farm. Time-lapse ERT measurements on the third farm revealed a defect in its drainage network where the slope of the clay beds opposes the main direction of the MDs. That has completely obstructed the drainage system of the farm and caused waterlogging. The presented geo-resistivity methods show that integrated models can be used to improve the assessment of in situ sub-surface drainage in clay-rich soils. Full article
(This article belongs to the Special Issue Agricultural Practices to Improve Irrigation Sustainability)
Show Figures

Figure 1

19 pages, 4172 KB  
Article
Applying Electrical Resistivity Tomography and Biological Methods to Assess the Hyporheic Zone Water Exchanges in Two Mediterranean Stream Reaches
by Sanda Iepure, David Gomez-Ortiz, Javier Lillo, Rubén Rasines-Ladero and Tiziana Di Lorenzo
Water 2022, 14(21), 3396; https://doi.org/10.3390/w14213396 - 26 Oct 2022
Cited by 2 | Viewed by 3237
Abstract
The hyporheic zone (HZ) is a critical area of all river ecosystems. It is the area beneath the stream and adjacent to the stream, where the surface water and groundwater are mixed. The HZ extends both vertically and laterally depending on the sediment [...] Read more.
The hyporheic zone (HZ) is a critical area of all river ecosystems. It is the area beneath the stream and adjacent to the stream, where the surface water and groundwater are mixed. The HZ extends both vertically and laterally depending on the sediment configuration, namely their porosity and permeability. This influences the hyporheic communities’ structural pattern and their active dispersal among distinct rivers compartments and alluvial aquifers. It is still difficult to assess the spatial extent of the HZ and the distribution of the mixing zones. This study applies time-lapse images obtained using electrical resistivity tomography (ERT) of 20 m wide and 5 m deep alluvial streams, with regards to the structural pattern of hyporheic communities represented by cyclopoids and ostracods, in order to assess the extent of the HZ in the riverbed and the parafluvial sediment configurations. The ERT images obtained at the hyporheic Site 1 are characterized by alluvial deposits dominated by coarse and very coarse sands with resistivity values ranging from ~20 to 80 Ohm.m, indicating a permeable zone up to ~0.5 m thick and extending laterally for ca. 5 m from the channel and associated with the hyporheic zone. The sediment configurations, texture, and structure indicate an active surface–hyporheic water exchange and low water retention into the sediments. This is also indicated by the hyporheic copepods and ostracods communities’ structure formed by a mixture of non-stygobites (five species) and stygobites (two species). A low-resistivity (<70 Ohm.m) permeable zone located 2.3 m below the streambed and unconnected with the river channel was also detected and associated with the associated alluvial aquifer. In contrast, the resistivity image at Site 2 dominated by coarse, medium, and very fine sands, shows a low-permeability zone in the upper ~0.5 m of the profile, with a resistivity value ranging from ~45 to 80 Ohm.m, indicating a reduced HZ extension in both vertical and lateral dimensions. Here the sediment configurations indicate that the water retention and interaction with the sediment is higher, reflected by more diverse hyporheic communities and with highly abundant stygobite species. The two examples show that non-invasive ERT images and biological assessments provide complementary and valuable information about the characterization of the sub-channel architecture and its potential hydraulic connection to the floodplain aquifer. Full article
(This article belongs to the Special Issue Research on Karst Eco-Hydrology and Sediment)
Show Figures

Figure 1

20 pages, 2825 KB  
Article
Optimization of Aquifer Monitoring through Time-Lapse Electrical Resistivity Tomography Integrated with Machine-Learning and Predictive Algorithms
by Valeria Giampaolo, Paolo Dell’Aversana, Luigi Capozzoli, Gregory De Martino and Enzo Rizzo
Appl. Sci. 2022, 12(18), 9121; https://doi.org/10.3390/app12189121 - 11 Sep 2022
Cited by 1 | Viewed by 2761
Abstract
In this paper, an integrated workflow aimed at optimizing aquifer monitoring and management through time-lapse Electric Resistivity Tomography (TL-ERT) combined with a suite of predictive algorithms is discussed. First, the theoretical background of this approach is described. Then, the proposed approach is applied [...] Read more.
In this paper, an integrated workflow aimed at optimizing aquifer monitoring and management through time-lapse Electric Resistivity Tomography (TL-ERT) combined with a suite of predictive algorithms is discussed. First, the theoretical background of this approach is described. Then, the proposed approach is applied to real geoelectric datasets recorded through experiments at different spatial and temporal scales. These include a sequence of cross-hole resistivity surveys aimed at monitoring a tracer diffusion in a real aquifer as well as in a laboratory experimental set. Multiple predictive methods were applied to both datasets, including Vector Autoregressive (VAR) and Recurrent Neural Network (RNN) algorithms, over the entire sequence of ERT monitor surveys. In both field and lab experiments, the goal was to retrieve a determined number of “predicted” pseudo sections of apparent resistivity values. By inverting both real and predicted datasets, it is possible to define a dynamic model of time-space evolution of the water plume contaminated by a tracer injected into the aquifer system(s). This approach allowed for describing the complex fluid displacement over time conditioned by the hydraulic properties of the aquifer itself. Full article
(This article belongs to the Special Issue Deep Learning Technology in Earth Environment)
Show Figures

Figure 1

16 pages, 6030 KB  
Review
Time-Lapse Electrical Resistivity Tomography (TL-ERT) for Landslide Monitoring: Recent Advances and Future Directions
by Vincenzo Lapenna and Angela Perrone
Appl. Sci. 2022, 12(3), 1425; https://doi.org/10.3390/app12031425 - 28 Jan 2022
Cited by 40 | Viewed by 9530
Abstract
To date, there is a growing interest for challenging applications of time-lapse electrical resistivity tomography (TL-ERT) in Earth sciences. Tomographic algorithms for resistivity data inversion and innovative technologies for sensor networks have rapidly transformed the TL-ERT method in a powerful tool for the [...] Read more.
To date, there is a growing interest for challenging applications of time-lapse electrical resistivity tomography (TL-ERT) in Earth sciences. Tomographic algorithms for resistivity data inversion and innovative technologies for sensor networks have rapidly transformed the TL-ERT method in a powerful tool for the geophysical time-lapse imaging. In this paper, we focus our attention on the application of this method in landslide monitoring. Firstly, an overview of recent methodological advances in TL-ERT data processing and inversion is presented. In a second step, a critical analysis of the main results obtained in different field experiments and lab-scale simulations are discussed. The TL-ERT appears to be a robust and cost-effective method for mapping the water-saturated zones, and for the identification of the groundwater preferential pathways in landslide bodies. Furthermore, it can make a valuable contribution to following time-dependent changes in top-soil moisture, and the spatio-temporal dynamics of wetting fronts during extreme rainfall events. The critical review emphasizes the limits and the advantages of this geophysical method and discloses a way to identify future research activities to improve the use of the TL-ERT method in landslide monitoring. Full article
(This article belongs to the Special Issue Advances in Applied Geophysics)
Show Figures

Figure 1

15 pages, 4453 KB  
Article
Evidence of Preferential Flow Activation in the Vadose Zone via Geophysical Monitoring
by Lorenzo De Carlo, Kimberlie Perkins and Maria Clementina Caputo
Sensors 2021, 21(4), 1358; https://doi.org/10.3390/s21041358 - 14 Feb 2021
Cited by 14 | Viewed by 3517
Abstract
Preferential pathways allow rapid and non-uniform water movement in the subsurface due to strong heterogeneity of texture, composition, and hydraulic properties. Understanding the importance of preferential pathways is crucial, because they have strong impact on flow and transport hydrodynamics in the unsaturated zone. [...] Read more.
Preferential pathways allow rapid and non-uniform water movement in the subsurface due to strong heterogeneity of texture, composition, and hydraulic properties. Understanding the importance of preferential pathways is crucial, because they have strong impact on flow and transport hydrodynamics in the unsaturated zone. Particularly, improving knowledge of the water dynamics is essential for estimating travel time through soil to quantify hazards for groundwater, assess aquifer recharge rates, improve agricultural water management, and prevent surface stormflow and flooding hazards. Small scale field heterogeneities cannot be always captured by the limited number of point scale measurements collected. In order to overcome these limitations, noninvasive geophysical techniques have been widely used in the last decade to predict hydrodynamic processes, due to their capability to spatialize hydrogeophysical properties with high resolution. In the test site located in Bari, Southern Italy, the geophysical approach, based on electrical resistivity tomography (ERT) monitoring, has been implemented to detect preferential pathways triggered by an artificial rainfall event. ERT-derived soil moisture estimations were obtained in order to quantitatively predict the water storage (m3m−3), water velocity (ms−1), and spread (m2) through preferential pathways by using spatial moments analysis. Full article
(This article belongs to the Special Issue Sensors and Sensor Systems for Hydrodynamics)
Show Figures

Figure 1

15 pages, 6866 KB  
Article
Laboratory Studies Using Electrical Resistivity Tomography and Fiber Optic Techniques to Detect Seepage Zones in River Embankments
by Azadeh Hojat, Maddalena Ferrario, Diego Arosio, Marco Brunero, Vladislav Ivov Ivanov, Laura Longoni, Andrea Madaschi, Monica Papini, Greta Tresoldi and Luigi Zanzi
Geosciences 2021, 11(2), 69; https://doi.org/10.3390/geosciences11020069 - 7 Feb 2021
Cited by 27 | Viewed by 4287
Abstract
We present the results of laboratory experiments on a down-scaled river levee constructed with clayey material collected from a river embankment where a permanent resistivity instrument has operated since 2015. To create potential seepages through the levee, two zones (5 × 4 cm [...] Read more.
We present the results of laboratory experiments on a down-scaled river levee constructed with clayey material collected from a river embankment where a permanent resistivity instrument has operated since 2015. To create potential seepages through the levee, two zones (5 × 4 cm and 10 × 2 cm) were filled with sand during the levee construction. Electrical resistivity tomography (ERT) technique and Fiber Bragg Grating (FBG) technology were used to study time-lapse variations due to seepage. The ERT profile was spread on the levee crest and the Wenner array with unit electrode spacing a = 3 cm was used. Six organic modified ceramics (ORMOCER) coated 250 μm-diameter fibers were deployed in different parts of the levee. Time-lapse measurements were performed for both techniques from the beginning of each experiment when water was added to the river side until the water was continuously exiting from the seepage zones. The results showed that ERT images could detect seepages from the early stages. Although with a short delay compared to ERT, fiber optic sensors also showed their ability to detect water infiltrations by measuring temperature changes. Both technologies being successful, a discussion about respective peculiarities and pros and cons is proposed to suggest some criteria in choosing the proper technique according to the specific needs. Full article
(This article belongs to the Special Issue Safety Assessment of Tailing Dams)
Show Figures

Figure 1

Back to TopTop