Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (158)

Search Parameters:
Keywords = tooth deformation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 8273 KB  
Article
The Influence of Thermal Stresses on the Load Distribution and Stress–Strain State of Cycloidal Reducers
by Milan Vasić, Mirko Blagojević, Samir Dizdar and Smajo Tuka
Appl. Sci. 2025, 15(17), 9607; https://doi.org/10.3390/app15179607 (registering DOI) - 31 Aug 2025
Abstract
The design of cycloidal reducers requires a detailed knowledge of the intensity and character of load, as well as the maximum von Mises stresses on critical components. In the available literature, the load distribution and the stress–strain state of the cycloidal reducer elements [...] Read more.
The design of cycloidal reducers requires a detailed knowledge of the intensity and character of load, as well as the maximum von Mises stresses on critical components. In the available literature, the load distribution and the stress–strain state of the cycloidal reducer elements are typically determined based on factors such as cycloidal disc tooth profile modifications, contact deformations, and internal clearances, whereas the influence of thermal stresses is most often neglected. To address this research gap, an innovative numerical–analytical methodology has been developed, which, for the first time, enables the prediction of the distribution of temperature fields and the quantification of the influence of temperature on the contact forces and the stress–strain state of key elements of the cycloidal reducer. Furthermore, the proposed methodology can be adapted for application within a broader context of mechanical engineering. From a practical perspective, it is expected to be beneficial to companies engaged in the design of power transmission gearboxes, as valuable practical guidelines for engineering applications are provided. This study also provides new insights into the dominant sources of heat generation and offers a clearer understanding of how thermal energy is transferred from internal heat sources to the outer surface of the housing. Full article
Show Figures

Figure 1

31 pages, 3067 KB  
Article
Theoretical and Experimental Investigation on Motion Error and Force-Induced Error of Machine Tools in the Gear Rolling Process
by Ziyong Ma, Yungao Zhu, Zilong Wang, Qingyuan Hu and Wei Yang
Appl. Sci. 2025, 15(17), 9524; https://doi.org/10.3390/app15179524 (registering DOI) - 29 Aug 2025
Viewed by 81
Abstract
Cylindrical gears are used extensively due to their significant advantages including high efficiency, high load-bearing capacity, and long lifespan. However, the machining accuracy of cylindrical gears is significantly affected by motion errors and force-induced errors of machine tools. In this study, a motion [...] Read more.
Cylindrical gears are used extensively due to their significant advantages including high efficiency, high load-bearing capacity, and long lifespan. However, the machining accuracy of cylindrical gears is significantly affected by motion errors and force-induced errors of machine tools. In this study, a motion error model of the machine tools was established based on multi-body system theory and homogeneous coordinate transformation method, quantifying the contributions and variation patterns of 12 key errors in the A and B-axes to workpiece geometric errors. Then, by using the stiffness analytical model and the spatial meshing theory, the influence of the force-induced elastic deformation of the shaft of rolling wheel and the springback of the workpiece tooth flank on the geometric error was revealed. Finally, taking the through rolling of a spur cylindrical gear with a module of 1.75 mm, a pressure angle of 20°, and 46 teeth as an example, the force-induced elastic deformation model of the shaft was verified by the rolling tests. Results show that for 40CrNiMo steel, the total profile deviation, total helix deviation, and single pitch deviation in the X-direction caused by rolling forces are 32.48 µm, 32.13 µm and 32.13 µm, respectively, with a maximum contact rebound is δc = 28.27. The relative error between theoretical and measured X-direction spindle deformation is 8.26%. This study provides theoretical foundation and experimental support for improving the precision of rolling process. Full article
34 pages, 11215 KB  
Article
New Approach to High-Speed Multi-Coordinate Milling Based on Kinematic Cutting Parameters and Acoustic Signals
by Petr M. Pivkin, Mikhail P. Kozochkin, Artem A. Ershov, Ludmila A. Uvarova, Alexey B. Nadykto and Sergey N. Grigoriev
J. Manuf. Mater. Process. 2025, 9(8), 277; https://doi.org/10.3390/jmmp9080277 - 13 Aug 2025
Viewed by 334
Abstract
In this work, a new approach to high-speed multi-coordinate milling was developed. The new approach is based on a new model of trochoidal machining; this is, in turn, based on the theoretical thickness of a chip and its ratio to the cutting edge’s [...] Read more.
In this work, a new approach to high-speed multi-coordinate milling was developed. The new approach is based on a new model of trochoidal machining; this is, in turn, based on the theoretical thickness of a chip and its ratio to the cutting edge’s radius, allowing us to establish the vibroacoustic indicators of cutting efficiency. The new model can be used for the real-time assessment of prevailing cutting mechanisms and chip formation. A set of new indicators and parameters for trochoidal high-speed milling (HSM), which can be used to calculate tool paths during technological preparation of slotting, was determined and verified. The size effect in the multi-coordinate HSM of slots on cast iron was identified based on the dependency of vibroacoustic signals on the cutting tooth’s geometry, HSM’a operational machining modes, theoretical chip thicknesses, the sizes of the cut chips, and the quality/roughness of the surface being machined. Based on the analysis of vibroacoustic signals, a set of the most important indicators for monitoring HSM and determining cutting and crack-formation mechanisms during chip deformation was derived. Based on the new model, recommendations for monitoring HSM and for assigning the tool path relative to the workpiece during production preparation were developed and validated. Full article
Show Figures

Figure 1

22 pages, 4262 KB  
Article
Tribo-Dynamics of Dual-Star Planetary Gear Systems: Modeling, Analysis, and Experiments
by Jiayu Zheng, Yonggang Xiang, Changzhao Liu, Yixin Wang and Zonghai Mou
Sensors 2025, 25(15), 4709; https://doi.org/10.3390/s25154709 - 30 Jul 2025
Viewed by 372
Abstract
To address the unclear coupling mechanism between thermal elastohydrodynamic lubrication (TEHL) and dynamic behaviors in planetary gear systems, a novel tribo-dynamic model for dual-star planetary gears considering TEHL effects is proposed. In this model, a TEHL surrogate model is first established to determine [...] Read more.
To address the unclear coupling mechanism between thermal elastohydrodynamic lubrication (TEHL) and dynamic behaviors in planetary gear systems, a novel tribo-dynamic model for dual-star planetary gears considering TEHL effects is proposed. In this model, a TEHL surrogate model is first established to determine the oil film thickness and sliding friction force along the tooth meshing line. Subsequently, the dynamic model of the dual-star planetary gear transmission system is developed through coordinate transformations of the dual-star gear train. Finally, by integrating lubrication effects into both time-varying mesh stiffness and time-varying backlash, a tribo-dynamic model for the dual-star planetary gear transmission system is established. The study reveals that the lubricant film thickness is positively correlated with relative sliding velocity but negatively correlated with unit line load. Under high-speed conditions, a thickened oil film induces premature meshing contact, leading to meshing impacts. In contrast, under high-torque conditions, tooth deformation dominates meshing force fluctuations while lubrication influence diminishes. By establishing a test bench for the planetary gear transmission system, the obtained simulation conclusions are verified. This research provides theoretical and experimental support for the design of high-reliability planetary gear systems. Full article
(This article belongs to the Special Issue Feature Papers in Physical Sensors 2025)
Show Figures

Figure 1

13 pages, 1323 KB  
Article
Genotypic and Phenotypic Characterization of Axonal Charcot–Marie–Tooth Disease in Childhood: Identification of One Novel and Four Known Mutations
by Rojan İpek, Büşra Eser Çavdartepe, Sevcan Tuğ Bozdoğan, Erman Altunışık, Akçahan Akalın, Mahmut Yaman, Alper Akın and Sefer Kumandaş
Genes 2025, 16(8), 917; https://doi.org/10.3390/genes16080917 - 30 Jul 2025
Viewed by 531
Abstract
Background: Charcot–Marie–Tooth disease (CMT) is a genetically and phenotypically heterogeneous hereditary neuropathy. Axonal CMT type 2 (CMT2) subtypes often exhibit overlapping clinical features, which makes molecular genetic analysis essential for accurate diagnosis and subtype differentiation. Methods: This retrospective study included five pediatric patients [...] Read more.
Background: Charcot–Marie–Tooth disease (CMT) is a genetically and phenotypically heterogeneous hereditary neuropathy. Axonal CMT type 2 (CMT2) subtypes often exhibit overlapping clinical features, which makes molecular genetic analysis essential for accurate diagnosis and subtype differentiation. Methods: This retrospective study included five pediatric patients who presented with gait disturbance, muscle weakness, and foot deformities and were subsequently diagnosed with axonal forms of CMT. Clinical data, electrophysiological studies, neuroimaging, and genetic analyses were evaluated. Whole exome sequencing (WES) was performed in three sporadic cases, while targeted CMT gene panel testing was used for two siblings. Variants were interpreted using ACMG guidelines, supported by public databases (ClinVar, HGMD, and VarSome), and confirmed by Sanger sequencing when available. Results: All had absent deep tendon reflexes and distal muscle weakness; three had intellectual disability. One patient was found to carry a novel homozygous frameshift variant (c.2568_2569del) in the IGHMBP2 gene, consistent with CMT2S. Other variants were identified in the NEFH (CMT2CC), DYNC1H1 (CMT2O), and MPV17 (CMT2EE) genes. Notably, a previously unreported co-occurrence of MPV17 mutation and congenital heart disease was observed in one case. Conclusions: This study expands the clinical and genetic spectrum of pediatric axonal CMT and highlights the role of early physical examination and molecular diagnostics in detecting rare variants. Identification of a novel IGHMBP2 variant and unique phenotypic associations provides new insights for future genotype–phenotype correlation studies. Full article
(This article belongs to the Special Issue Genetics of Neuromuscular and Metabolic Diseases)
Show Figures

Figure 1

13 pages, 2438 KB  
Article
The Integration of Micro-CT Imaging and Finite Element Simulations for Modelling Tooth-Inlay Systems for Mechanical Stress Analysis: A Preliminary Study
by Nikoleta Nikolova, Miryana Raykovska, Nikolay Petkov, Martin Tsvetkov, Ivan Georgiev, Eugeni Koytchev, Roumen Iankov, Mariana Dimova-Gabrovska and Angela Gusiyska
J. Funct. Biomater. 2025, 16(7), 267; https://doi.org/10.3390/jfb16070267 - 21 Jul 2025
Viewed by 1612
Abstract
This study presents a methodology for developing and validating digital models of tooth-inlay systems, aiming to trace the complete workflow from clinical procedures to simulation by involving dental professionals—dentists for manual cavity preparation and dental technicians for restoration modelling—while integrating micro-computed tomography (micro-CT) [...] Read more.
This study presents a methodology for developing and validating digital models of tooth-inlay systems, aiming to trace the complete workflow from clinical procedures to simulation by involving dental professionals—dentists for manual cavity preparation and dental technicians for restoration modelling—while integrating micro-computed tomography (micro-CT) imaging with finite element analysis (FEA). The proposed workflow includes (1) the acquisition of high-resolution 3D micro-CT scans of a non-restored tooth, (2) image segmentation and reconstruction to create anatomically accurate digital twins and mesh generation, (3) the selection of proper resin and the 3D printing of four typodonts, (4) the manual preparation of cavities on the typodonts, (5) the acquisition of high-resolution 3D micro-CT scans of the typodonts, (6) mesh generation, digital inlay and onlay modelling and material property assignment, and (7) nonlinear FEA simulations under representative masticatory loading. The approach enables the visualisation of stress and deformation patterns, with preliminary results indicating stress concentrations at the tooth-restoration interface integrating different cavity alternatives and restorations on the same tooth. Quantitative outputs include von Mises stress, strain energy density, and displacement distribution. This study demonstrates the feasibility of using image-based, tooth-specific digital twins for biomechanical modelling in dentistry. The developed framework lays the groundwork for future investigations into the optimisation of restoration design and material selection in clinical applications. Full article
(This article belongs to the Section Dental Biomaterials)
Show Figures

Figure 1

16 pages, 2224 KB  
Article
Electromagnetic Noise and Vibration Analyses in PMSMs: Considering Stator Tooth Modulation and Magnetic Force
by Yeon-Su Kim, Hoon-Ki Lee, Jun-Won Yang, Woo-Sung Jung, Yeon-Tae Choi, Jun-Ho Jang, Yong-Joo Kim, Kyung-Hun Shin and Jang-Young Choi
Electronics 2025, 14(14), 2882; https://doi.org/10.3390/electronics14142882 - 18 Jul 2025
Viewed by 426
Abstract
This study presents an analysis of the electromagnetic noise and vibration in a surface-mounted permanent magnet synchronous machine (SPMSM), focusing on their excitation sources. To investigate this, the excitation sources were identified through an analytical approach, and their effects on electromagnetic noise and [...] Read more.
This study presents an analysis of the electromagnetic noise and vibration in a surface-mounted permanent magnet synchronous machine (SPMSM), focusing on their excitation sources. To investigate this, the excitation sources were identified through an analytical approach, and their effects on electromagnetic noise and vibration were evaluated using a finite element method (FEM)-based analysis approach. Additionally, an equivalent curved-beam model based on three-dimensional shell theory was applied to determine the deflection forces on the stator yoke, accounting for the tooth-modulation effect. The stator’s natural frequencies were derived through the characteristic equation in free vibration analysis. Modal analysis was performed to validate the analytically derived natural frequencies and to investigate stator deformation under the tooth-modulation effect across various vibration modes. Furthermore, noise, vibration, and harshness (NVH) analysis via FEM reveals that major harmonic components align closely with the natural frequencies, identifying them as primary sources of elevated vibrations. A comparative study between 8-pole–9-slot and 8-pole–12-slot SPMSMs highlights the impact of force variations on the stator teeth in relation to vibration and noise characteristics, with FEM verification. The proposed method provides a valuable tool for early-stage motor design, enabling the rapid identification of resonance operating points that may induce severe vibrations. This facilitates proactive mitigation strategies to enhance motor performance and reliability. Full article
Show Figures

Figure 1

16 pages, 3244 KB  
Article
Finite Element Analysis of Dental Diamond Burs: Stress Distribution in Dental Structures During Cavity Preparation
by Chethan K N, Abhilash H N, Afiya Eram, Saniya Juneja, Divya Shetty and Laxmikant G. Keni
Prosthesis 2025, 7(4), 84; https://doi.org/10.3390/prosthesis7040084 - 16 Jul 2025
Viewed by 490
Abstract
Background/Objectives: Dental cavity preparation is a critical procedure in restorative dentistry that involves the removal of decayed tissue while preserving a healthy tooth structure. Excessive stress during tooth preparation leads to enamel cracking, dentin damage, and long term compressive pulp health. This [...] Read more.
Background/Objectives: Dental cavity preparation is a critical procedure in restorative dentistry that involves the removal of decayed tissue while preserving a healthy tooth structure. Excessive stress during tooth preparation leads to enamel cracking, dentin damage, and long term compressive pulp health. This study employed finite element analysis (FEA) to investigate the stress distribution in dental structures during cavity preparation using round diamond burs of varying diameters and depths of cut (DOC). Methods: A three-dimensional human maxillary first molar was generated from computed tomography (CT) scan data using 3D Slicer, Fusion 360, and ANSYS Space Claim 2024 R-2. Finite element analysis (FEA) was conducted using ANSYS Workbench 2024. Round diamond burs with diameters of 1, 2, and 3 mm were modeled. Cutting simulations were performed for DOC of 1 mm and 2 mm. The burs were treated as rigid bodies, whereas the dental structures were modeled as deformable bodies using the Cowper–Symonds model. Results: The simulations revealed that larger bur diameters and deeper cuts led to higher stress magnitudes, particularly in the enamel and dentin. The maximum von Mises stress was reached at 136.98 MPa, and dentin 140.33 MPa. Smaller burs (≤2 mm) and lower depths of cut (≤1 mm) produced lower stress values and were optimal for minimizing dental structural damage. Pulpal stress remained low but showed an increasing trend with increased DOC and bur size. Conclusions: This study provides clinically relevant guidance for reducing mechanical damage during cavity preparation by recommending the use of smaller burs and controlled cutting depths. The originality of this study lies in its integration of CT-based anatomy with dynamic FEA modeling, enabling a realistic simulation of tool–tissue interaction in dentistry. These insights can inform bur selection, cutting protocols, and future experimental validations. Full article
(This article belongs to the Collection Oral Implantology: Current Aspects and Future Perspectives)
Show Figures

Figure 1

12 pages, 851 KB  
Systematic Review
Plantar Pressure Distribution in Charcot–Marie–Tooth Disease: A Systematic Review
by Alberto Arceri, Antonio Mazzotti, Federico Sgubbi, Simone Ottavio Zielli, Laura Langone, GianMarco Di Paola, Lorenzo Brognara and Cesare Faldini
Sensors 2025, 25(14), 4312; https://doi.org/10.3390/s25144312 - 10 Jul 2025
Viewed by 602
Abstract
Background: Charcot-Marie-Tooth (CMT) disease is a hereditary motor and sensory neuropathy that affects foot morphology and gait patterns, potentially leading to abnormal plantar pressure distribution. This systematic review synthesizes the existing literature examining plantar pressure characteristics in CMT patients. Methods: A [...] Read more.
Background: Charcot-Marie-Tooth (CMT) disease is a hereditary motor and sensory neuropathy that affects foot morphology and gait patterns, potentially leading to abnormal plantar pressure distribution. This systematic review synthesizes the existing literature examining plantar pressure characteristics in CMT patients. Methods: A comprehensive search was conducted across PubMed, Scopus, and Web of Science databases. Risk of bias was assessed using the Newcastle–Ottawa Scale. Results: Six studies comprising 146 patients were included. Four studies employed dynamic baropodometry, and two used in-shoe pressure sensors to evaluate the main plantar pressure parameters. The findings were consistent across different populations and devices, with a characteristic plantar-pressure profile of marked midfoot off-loading with peripheral overload at the forefoot and rearfoot, often accompanied by a lateralized center-of-pressure path and a prolonged pressure–time exposure. These alterations reflect both structural deformities and impaired neuromuscular control. Interventional studies demonstrated a load redistribution of pressure after corrective surgery, though residual lateral overload often persists. Conclusions: Plantar pressure mapping seems to be a valuable tool to identify high-pressure zones of the foot in order to personalize orthotic treatment planning, to objectively monitor disease progression, and to evaluate therapeutic efficacy. Further longitudinal studies with standardized protocols are needed to confirm these results. Full article
Show Figures

Figure 1

27 pages, 5964 KB  
Article
Investigation of Improved Labyrinth Seal Stability Accounting for Radial Deformation
by Guozhe Ren, Hongyuan Tang, Dan Sun, Wenfeng Xu and Yu Li
Aerospace 2025, 12(7), 621; https://doi.org/10.3390/aerospace12070621 - 10 Jul 2025
Viewed by 351
Abstract
This study examines the labyrinth seal disc of an aero-engine, specifically analysing the radial deformation caused by centrifugal force and heat stress during operation. This distortion may lead to discrepancies in the performance attributes of the labyrinth seal and could potentially result in [...] Read more.
This study examines the labyrinth seal disc of an aero-engine, specifically analysing the radial deformation caused by centrifugal force and heat stress during operation. This distortion may lead to discrepancies in the performance attributes of the labyrinth seal and could potentially result in contact between the labyrinth seal tip and neighbouring components. A numerical analytical model incorporating the rotor and stator cavities, along with the labyrinth seal disc structure, has been established. The sealing integrity of a standard labyrinth seal disc’s flow channel is evaluated and studied at different clearances utilising the fluid–solid-thermal coupling method. The findings demonstrate that, after considering radial deformation, a cold gap of 0.5 mm in the conventional labyrinth structure leads to stabilisation of the final hot gap and flow rate, with no occurrence of tooth tip rubbing; however, both the gap value and flow rate show considerable variation relative to the cold state. When the cold gap is 0.3 mm, the labyrinth plate makes contact with the stator wall. To resolve the problem of tooth tip abrasion in the conventional design with a 0.3 mm cold gap, two improved configurations are proposed, and a stability study for each configuration is performed independently. The leakage and temperature rise attributes of the two upgraded configurations are markedly inferior to those of the classic configuration at a cold gap of 0.5 mm. At a cold gap of 0.3 mm, the two improved designs demonstrate no instances of tooth tip rubbing. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

8 pages, 1683 KB  
Proceeding Paper
Investigation of Technological System Stability During Side Milling
by Iliya Chetrokov, Sabi Sabev and Plamen Kasabov
Eng. Proc. 2025, 100(1), 24; https://doi.org/10.3390/engproc2025100024 - 9 Jul 2025
Viewed by 212
Abstract
This study analyzes technological system stability during side milling by evaluating the influence of two critical parameters: the radial depth of cut (Ae) and feed per tooth (fz). The experiment was conducted on prismatic samples with stepped geometries to [...] Read more.
This study analyzes technological system stability during side milling by evaluating the influence of two critical parameters: the radial depth of cut (Ae) and feed per tooth (fz). The experiment was conducted on prismatic samples with stepped geometries to measure deformation at various levels of Ae and f. Regression analysis showed a significant influence of both factors on deformation, with Ae having a stronger effect. The model explains a high level of the variance, confirming the reliability of the experimental data. The results provide guidance for optimizing parameters to improve stability and reduce dimensional deviations. Full article
Show Figures

Figure 1

15 pages, 3677 KB  
Article
Iterative Finite Element Analysis of Buccolingual Width on Canine Distal Movement in Clear Aligner Treatment
by Hyungchul Lee, Kiyean Kim, Youn-Kyung Choi, Sung-Hun Kim, Yong-Il Kim and Seong-Sik Kim
Appl. Sci. 2025, 15(12), 6946; https://doi.org/10.3390/app15126946 - 19 Jun 2025
Viewed by 443
Abstract
This study investigated the biomechanical effects of varying buccolingual beam widths in maxillary first premolar extraction spaces on canine distal bodily movement during clear aligner treatment. Using finite element analysis, four distinct models were constructed, incorporating beam designs with widths of 0 (edentulous), [...] Read more.
This study investigated the biomechanical effects of varying buccolingual beam widths in maxillary first premolar extraction spaces on canine distal bodily movement during clear aligner treatment. Using finite element analysis, four distinct models were constructed, incorporating beam designs with widths of 0 (edentulous), 1, 2, and 3 mm within the extraction space. Each model underwent a comprehensive 50-stage iterative simulation to evaluate canine displacement patterns, tipping, rotational movements, aligner deformation characteristics, and magnitudes of forces and moments applied to the canines throughout long-term tooth movement. Group 0 (no beam, 0 mm beam width) exhibited the greatest crown displacement and tipping angle. In contrast, Group 2 (2 mm beam width) most effectively reduced the final angulation of the canine, whereas Group 3 (3 mm beam width) was most effective in controlling unwanted rotation and minimizing deformation of the clear aligner. Furthermore, an increase in the beam width was associated with a trend of higher initial force and lower initial moment. Notably, relatively high levels of both force and moment were maintained during the later stages of the simulation, which is advantageous for sustained control of tooth movement. In conclusion, incorporating a beam of 2–3 mm width into the maxillary first premolar extraction space appears to be optimal for managing canine tipping and rotation while promoting bodily movement of the tooth. Full article
(This article belongs to the Section Applied Dentistry and Oral Sciences)
Show Figures

Figure 1

15 pages, 1281 KB  
Article
Anterior Tooth Inclination Between Skeletal Class II and III Malocclusions After Surgical Orthodontic Treatment
by Hiromi Tomaru, Chie Tachiki, Yu Nakamura, Dai Ariizumi, Satoru Matsunaga, Keisuke Sugahara, Akira Watanabe, Akira Katakura and Yasushi Nishii
Diagnostics 2025, 15(12), 1553; https://doi.org/10.3390/diagnostics15121553 - 18 Jun 2025
Viewed by 479
Abstract
Background/Objectives: Anterior tooth inclination plays a critical role in treatment planning for surgical orthodontic cases. However, post-treatment outcomes in patients with jaw deformities often deviate from cephalometric values. This study aimed to compare anterior tooth inclination and skeletal morphology among patients with Class [...] Read more.
Background/Objectives: Anterior tooth inclination plays a critical role in treatment planning for surgical orthodontic cases. However, post-treatment outcomes in patients with jaw deformities often deviate from cephalometric values. This study aimed to compare anterior tooth inclination and skeletal morphology among patients with Class II and Class III malocclusions and to establish reference values for individualized treatment plans. Methods: A total of 122 patients (Class II: n = 40; Class III: n = 41; Class I: n = 41 as a control) were retrospectively analyzed. Cephalometric parameters, including U1 to FH and L1 to MP, were measured pre- and post-treatment. Group differences were analyzed using one-way ANOVA and Tukey’s multiple comparison test. Multiple regression analysis was used to establish prediction models for anterior tooth inclination. The threshold for statistical significance was set at p < 0.05. Results: Post-treatment, upper anterior teeth were more lingually inclined in Class II patients and more labially inclined in Class III patients compared to Class I controls (U1 to FH: Class II, 106.8°; Class III, 120.4°; Class I, 111.1°; p < 0.01). Lower anterior teeth were more lingually inclined in Class III patients compared to Class I patients (L1 to MP: 84.9°; p < 0.01). Regression models demonstrated good predictive value (R2 > 0.5) in non-extraction cases. Conclusions: Regression equations developed in this study, alongside the cephalometric averages of Class I individuals, may offer reliable reference values tailored to individual craniofacial morphology, contributing to optimized treatment planning in surgical orthodontic cases. Full article
(This article belongs to the Section Clinical Diagnosis and Prognosis)
Show Figures

Figure 1

19 pages, 6302 KB  
Article
Effect of Pulsating Motion Conditions on Relubrication Behavior and Dimensions of Laterally Extruded Internal Gears
by Alireza Soleymanipoor and Tomoyoshi Maeno
J. Manuf. Mater. Process. 2025, 9(6), 190; https://doi.org/10.3390/jmmp9060190 - 10 Jun 2025
Cited by 1 | Viewed by 593
Abstract
An environmentally friendly alternative to phosphate-based lubrication was studied through the lateral cold extrusion forging of internal gears using pulsating motion. A die set with a removable punch enabled a detailed observation of relubrication, forming load, material flow, and gear geometry. Pulsating motion [...] Read more.
An environmentally friendly alternative to phosphate-based lubrication was studied through the lateral cold extrusion forging of internal gears using pulsating motion. A die set with a removable punch enabled a detailed observation of relubrication, forming load, material flow, and gear geometry. Pulsating motion with liquid lubricant significantly reduced the forming load during punch penetration, while no such effect was observed under dry conditions. Even when the number of pulses (n) was set to 1, relubrication occurred, and a comparable load reduction to that of n = 3 was achieved, shortening the forming time. When n = 3, pulsating motion contributed to increased gear height and reduced separated burr formation; however, it also caused slightly incomplete tooth filling, which may be undesirable for precision applications. Varying the pulse start position from 5.50 mm to 13.30 mm influenced forming load and material flow, further affecting gear geometry. During punch extraction, the presence of liquid lubricant reduced the load and suppressed material displacement, while dry conditions led to higher extraction loads and more deformation. Full article
Show Figures

Figure 1

24 pages, 4367 KB  
Article
Thermoplastic Labyrinth Seals Under Rub Impact: Deformation Leakage Mechanisms and High Efficiency Optimization
by Fei Ma, Zhengze Yang, Yue Liu, Shuangfu Suo and Peng Su
Lubricants 2025, 13(6), 250; https://doi.org/10.3390/lubricants13060250 - 4 Jun 2025
Viewed by 717
Abstract
Labyrinth seals, extensively used in aerospace and turbomachinery as non-contact sealing devices, undergo accelerated wear and enhanced leakage due to repeated rub-impact between rotating shafts and sealing rings. To address the problem of increased leakage under rub-impact conditions, this research integrates experimental and [...] Read more.
Labyrinth seals, extensively used in aerospace and turbomachinery as non-contact sealing devices, undergo accelerated wear and enhanced leakage due to repeated rub-impact between rotating shafts and sealing rings. To address the problem of increased leakage under rub-impact conditions, this research integrates experimental and numerical methods to investigate the deformation mechanisms and leakage characteristics of thermoplastic labyrinth seals. A custom designed rub-impact test rig was constructed to measure dynamic forces and validate finite element analysis (FEA) models with an error of 5.1% in predicting tooth height under mild interference (0.25 mm). Computational fluid dynamics (CFD) simulations further demonstrated that thermoplastic materials, such as PAI and PEEK, displayed superior resilience (with rebound ratios of 57% and 70.3%, respectively). Their post-impact clearances were 4.8–18.3% smaller than those of PTFE and F500. Leakage rates were predominantly correlated with interference, causing a substantial increase compared to the original state; at 0.25 mm interference (reverse flow), increases ranged from 151% (PAI) to 217% (PTFE), highlighting material-dependent performance degradation. Meanwhile, tooth orientation modulated leakage by 0.5–3% through the vena contracta effect. Based on these insights, two optimized inclined-tooth geometries were designed, reducing leakage by 28.2% (Opt1) and 28.1% (Opt2) under rub-impact. These findings contribute to the development of high-performance labyrinth seals suitable for extreme operational environments. Full article
(This article belongs to the Special Issue Recent Advances in Sealing Technologies)
Show Figures

Figure 1

Back to TopTop