Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (113)

Search Parameters:
Keywords = topotecan

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 1380 KB  
Review
Redefining the Fight Against SCLC: Standards, Innovations, and New Horizons
by Marcel Kemper, Lea Elisabeth Reitnauer, Georg Lenz, Georg Evers and Annalen Bleckmann
Cancers 2025, 17(13), 2256; https://doi.org/10.3390/cancers17132256 - 7 Jul 2025
Viewed by 1124
Abstract
Background: Small cell lung cancer (SCLC) remains a highly aggressive malignancy with a poor prognosis. Despite multimodal standard therapies, most patients relapse within months, and second-line treatment options such as topotecan offer only limited benefit. Novel therapeutic strategies are therefore urgently needed. Methods: [...] Read more.
Background: Small cell lung cancer (SCLC) remains a highly aggressive malignancy with a poor prognosis. Despite multimodal standard therapies, most patients relapse within months, and second-line treatment options such as topotecan offer only limited benefit. Novel therapeutic strategies are therefore urgently needed. Methods: This narrative review is based on a selective literature search conducted via PubMed and ClinicalTrials.gov (last updated June 2025). Results: Emerging treatment strategies include bispecific T-cell engagers (e.g., tarlatamab), antibody-drug conjugates (ADCs) such as sacituzumab govitecan, DS-7300, and ZL-1310, as well as targeted therapies. Among these, tarlatamab has demonstrated improved survival outcomes with an acceptable safety profile and is poised to become the new second-line standard. In contrast, ADCs and targeted agents have shown only modest efficacy and have yet to deliver meaningful survival benefits, often accompanied by increased toxicity. Additionally, the identification of molecular subtypes of SCLC has revealed subtype-specific differences in treatment response. However, clinical translation is challenged by intratumoral heterogeneity, plasticity, and the lack of standardized diagnostic assays. Conclusions: While tarlatamab represents a major therapeutic advancement, other agents remain in early clinical development and require validation in large, randomized trials. The clinical implementation of molecular subtyping remains limited, though it holds promise for future personalized treatment approaches. Despite recent progress, SCLC continues to pose substantial therapeutic challenges, emphasizing the need for improved treatment strategies and validated predictive biomarkers. Full article
(This article belongs to the Special Issue Advances in Targeted Therapies in Cancer (2nd Edition))
Show Figures

Figure 1

29 pages, 5545 KB  
Article
Elacridar Inhibits BCRP Protein Activity in 2D and 3D Cell Culture Models of Ovarian Cancer and Re-Sensitizes Cells to Cytotoxic Drugs
by Piotr Stasiak, Justyna Sopel, Artur Płóciennik, Oliwia Musielak, Julia Maria Lipowicz, Agnieszka Anna Rawłuszko-Wieczorek, Karolina Sterzyńska, Jan Korbecki and Radosław Januchowski
Int. J. Mol. Sci. 2025, 26(12), 5800; https://doi.org/10.3390/ijms26125800 - 17 Jun 2025
Viewed by 3048
Abstract
Chemotherapy resistance is a major obstacle in the treatment of ovarian cancer, often resulting in disease recurrence and poor prognosis for patients. A key contributor to this resistance is the overexpression of ATP-binding cassette (ABC) transporters, including breast cancer resistance protein (BCRP/ABCG2), which [...] Read more.
Chemotherapy resistance is a major obstacle in the treatment of ovarian cancer, often resulting in disease recurrence and poor prognosis for patients. A key contributor to this resistance is the overexpression of ATP-binding cassette (ABC) transporters, including breast cancer resistance protein (BCRP/ABCG2), which actively effluxes chemotherapeutic agents such as topotecan (TOP) or mitoxantrone (MIT), limiting their intracellular accumulation and efficacy. This study investigated the potential of elacridar (GG918), a potent dual P-gp and BCRP inhibitor, to overcome drug resistance in ovarian cancer cell lines. Both TOP-sensitive and TOP-resistant ovarian cancer cells were grown in two-dimensional (2D) monolayers and three-dimensional (3D) spheroid models to better mimic the tumor microenvironment. The expression of the ABCG2 gene was quantified via qPCR and BCRP protein levels were assessed by western blotting and immunofluorescence. Drug response was evaluated using MTT viability assays, while BCRP transporter activity was examined using flow cytometry and microscopic assessment of the intracellular retention of BCRP fluorescent substrates (Hoechst 33342 and MIT). In both 2D and 3D cultures, elacridar effectively inhibited BCRP function and significantly enhanced sensitivity to TOP. These findings suggest that elacridar can inhibit BCRP-mediated drug resistance in ovarian cancer cell models. Full article
(This article belongs to the Special Issue New Insights into Chemotherapeutic Agents in Cancer Treatment)
Show Figures

Figure 1

18 pages, 3049 KB  
Review
Camptothein-Based Anti-Cancer Therapies and Strategies to Improve Their Therapeutic Index
by Jue Gong, Wenqiu Zhang and Joseph P. Balthasar
Cancers 2025, 17(6), 1032; https://doi.org/10.3390/cancers17061032 - 20 Mar 2025
Cited by 1 | Viewed by 2014
Abstract
Camptothecin and its derivatives (CPTs) are potent antineoplastic agents that exert their effects by inhibiting DNA topoisomerase I, leading to apoptosis during cell proliferation. Since their discovery in the 1960s, CPTs have faced challenges such as low water solubility, pH-dependent lactone ring instability, [...] Read more.
Camptothecin and its derivatives (CPTs) are potent antineoplastic agents that exert their effects by inhibiting DNA topoisomerase I, leading to apoptosis during cell proliferation. Since their discovery in the 1960s, CPTs have faced challenges such as low water solubility, pH-dependent lactone ring instability, and severe off-target toxicities. Despite extensive research, only two CPTs, irinotecan and topotecan, have received health authority approval. Ongoing clinical trials continue to explore the use of CPTs in combination with targeted therapies and immunotherapies to expand their clinical use. Drug delivery systems, including liposomes and antibody–drug conjugates (ADCs), have significantly enhanced the therapeutic index of CPTs. Liposomal irinotecan (Onivyde®, Ipsen, Paris, France) and two ADCs delivering CPT payloads, trastuzumab deruxtecan (Enhertu®, Daiichi Sankyo, Tokyo, Japan) and sacituzumab govitecan (Trodelvy®, Gilead Sciences, Inc., Foster City, CA, USA), have demonstrated substantial efficacy and safety. There is promise that novel strategies such as inverse targeting and co-dosing with anti-idiotypic distribution enhancers may expand the utility of CPT ADCs. This review highlights CPT therapies in clinical use and discusses approaches to further enhance their therapeutic selectivity. Full article
(This article belongs to the Special Issue Advances in Drug Delivery for Cancer Therapy)
Show Figures

Figure 1

13 pages, 1626 KB  
Article
Optimization of Intra-Arterial Administration of Chemotherapeutic Agents for Glioblastoma in the F98-Fischer Glioma-Bearing Rat Model
by Juliette Latulippe, Laurent-Olivier Roy, Fernand Gobeil and David Fortin
Biomolecules 2025, 15(3), 421; https://doi.org/10.3390/biom15030421 - 16 Mar 2025
Viewed by 1633
Abstract
Glioblastoma (GBM) is a difficult disease to treat for different reasons, with the blood–brain barrier (BBB) preventing therapeutic drugs from reaching the tumor being one major hurdle. The median overall survival is only 14.6 months after the standard first line of treatment. At [...] Read more.
Glioblastoma (GBM) is a difficult disease to treat for different reasons, with the blood–brain barrier (BBB) preventing therapeutic drugs from reaching the tumor being one major hurdle. The median overall survival is only 14.6 months after the standard first line of treatment. At relapse, there is no recognized standard second-line treatment. Our team uses intra-arterial (IA) chemotherapy as a means to bypass the BBB, hence achieving an overall median survival of 25 months. However, most patients eventually fail the treatment and progress. This is why we wish to expand our portfolio of options in terms of chemotherapy agents available for IA administration. In this study, we tested topotecan, cytarabine, and new formulations of carboplatin and paclitaxel by IA administration in the F98-Fischer glioma-bearing rat model as a screening tool for identifying potential candidate drugs. The topotecan IA group showed increased survival compared to the intravenous (IV) group (29.0 vs. 23.5), whereas the IV cytarabine group survived longer than the IA group (26.5 vs. 22.5). The new formulation of carboplatin showed a significant increase in survival compared to two previous studies with the conventional form (37.5 vs. 26.0 and 30.0). As for paclitaxel, it was too neurotoxic for IA administration. Topotecan and the new formulation of carboplatin demonstrated significant results, warranting their transition for consideration in clinical trials. Full article
Show Figures

Figure 1

12 pages, 992 KB  
Article
Efficacy and Safety of the Topotecan–Cyclophosphamide Regimen in Adult Metastatic Ewing Sarcoma: A Large, Multicenter, Real-World Study
by Salih Tunbekici, Haydar Cagatay Yuksel, Caner Acar, Gokhan Sahin, Oguzcan Kınıkoglu, Nargiz Majidova, Mustafa Alperen Tunç, Mürsel Sali, Adem Deligonul, Berkan Karadurmus, Ibrahim Tunbekici, Pınar Gursoy, Ulus Ali Sanli and Erdem Goker
Cancers 2025, 17(3), 550; https://doi.org/10.3390/cancers17030550 - 6 Feb 2025
Cited by 1 | Viewed by 1307
Abstract
Background/Objectives: There is an unmet need to improve outcomes in patients with metastatic Ewing sarcoma (ES). This retrospective, multicenter study aimed to evaluate the efficacy and safety of the topotecan–cyclophosphamide (TC) regimen in adult patients with metastatic ES who had previously been treated [...] Read more.
Background/Objectives: There is an unmet need to improve outcomes in patients with metastatic Ewing sarcoma (ES). This retrospective, multicenter study aimed to evaluate the efficacy and safety of the topotecan–cyclophosphamide (TC) regimen in adult patients with metastatic ES who had previously been treated with chemotherapy. Methods: This study enrolled 75 patients who were treated at five oncology centers in Turkey between 2011 and 2020. Patients were treated with the TC regimen, consisting of topotecan at 0.75 mg/m2/day and cyclophosphamide at 250 mg/m2/day, given daily for 5 days and repeated every 21 days. Results: The median progression-free survival was 3.06 months (95% CI, 2.91–3.22), and the median overall survival was 6.16 months (95% CI, 5.14–7.18). Patients who received the TC regimen in the second line demonstrated longer OS (7.55 months 95% CI, 5.37–14.17) compared to those who received it in the third line or later (5.70 months 95% CI, 4.07–6.60) (p = 0.005). When the TC regimen was used in the second line, the disease control rate was 50%, whereas in the third line or later, the DCR was 10.8%. In the entire group, the DCR was 30.7%. The most common toxicity was transient cytopenia. Conclusions: This study showed that the use of the TC regimen in the second line resulted in better efficacy and overall survival outcomes compared to its use in the third line or later. However, in the entire population, the TC regimen demonstrated only a modest effect on metastatic ES. TC can be considered one of the palliative treatment options for metastatic ES. Full article
Show Figures

Figure 1

13 pages, 700 KB  
Article
Comparison of Hepatic Function and Chemotherapy-Induced Side Effects Between Pegylated Liposomal Doxorubicin (PLD), Topotecan (TOPO), and Gemcitabine in Platinum-Resistant Ovarian Cancer (PROC)
by Radu-Dumitru Dragomir, Marina Adriana Mercioni, Șerban Negru, Dorel Popovici, Sorin Săftescu, Andiana Roxana Blidari and Ioan Sas
J. Pers. Med. 2025, 15(1), 39; https://doi.org/10.3390/jpm15010039 - 19 Jan 2025
Viewed by 1403
Abstract
Background/Objectives: Platinum-resistant ovarian cancer (PROC) is a major therapeutic challenge, as it responds poorly to standard platinum-based treatment, has limited treatment options, and offers a generally unfavorable prognosis. Chemotherapeutic agents like pegylated liposomal doxorubicin (PLD), topotecan (TOPO), and gemcitabine (GEM) are used [...] Read more.
Background/Objectives: Platinum-resistant ovarian cancer (PROC) is a major therapeutic challenge, as it responds poorly to standard platinum-based treatment, has limited treatment options, and offers a generally unfavorable prognosis. Chemotherapeutic agents like pegylated liposomal doxorubicin (PLD), topotecan (TOPO), and gemcitabine (GEM) are used for this setting, but with varying efficacy and toxicity profiles, leading to an increasing need to understand the optimal balance between treatment effectiveness and tolerability for improving patient outcomes. This study evaluates the efficacy and side effects of PLD, TOPO, and GEM, focusing on progression-free survival (PFS), overall survival (OS), and safety profiles. Methods: We conducted a retrospective observational study that included 856 PROC patients treated with PLD (n = 383), TOPO (n = 352), or GEM (n = 121) at the OncoHelp Oncology Center from January 2018 to December 2023. Inclusion criteria encompass diagnosis, prior platinum therapy, and Eastern Cooperative Oncology Group (ECOG) status (0–2). Treatment protocols followed standard dosing, with adjustments for toxicity. Primary endpoints included PFS and OS, with safety assessed by incidence of grade 3 and 4 toxicities per CTCAE v5.0. Kaplan–Meier analysis and Cox regression were used to compare survival, and statistical significance was set at p < 0.05. Results: TOPO showed higher toxicity than PLD and GEM, including liver damage, hematological and non-hematological side effects, while PLD induced more skin toxicity. In terms of survival, minor differences were seen between the three chemotherapeutic agents, with a slight advantage for PLD for better disease control. Conclusions: Given the comparable results in OS across the regimens, treatment decisions should be based on other factors such as patient tolerance and quality of life. Full article
(This article belongs to the Special Issue Personalized Medicine in Gynecology and Obstetrics)
Show Figures

Graphical abstract

15 pages, 3920 KB  
Article
Ferroptosis Inducers Erastin and RSL3 Enhance Adriamycin and Topotecan Sensitivity in ABCB1/ABCG2-Expressing Tumor Cells
by Lalith Perera, Shalyn M. Brown, Brian B. Silver, Erik J. Tokar and Birandra K. Sinha
Int. J. Mol. Sci. 2025, 26(2), 635; https://doi.org/10.3390/ijms26020635 - 14 Jan 2025
Cited by 2 | Viewed by 2215
Abstract
Acquired resistance to chemotherapeutic drugs is the primary cause of treatment failure in the clinic. While multiple factors contribute to this resistance, increased expression of ABC transporters—such as P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), and multidrug resistance proteins—play significant roles in the [...] Read more.
Acquired resistance to chemotherapeutic drugs is the primary cause of treatment failure in the clinic. While multiple factors contribute to this resistance, increased expression of ABC transporters—such as P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), and multidrug resistance proteins—play significant roles in the development of resistance to various chemotherapeutics. We found that Erastin, a ferroptosis inducer, was significantly cytotoxic to NCI/ADR-RES, a P-gp-expressing human ovarian cancer cell line. Here, we examined the effects of both Erastin and RSL3 (Ras-Selected Ligand 3) on reversing Adriamycin resistance in these cell lines. Our results show that Erastin significantly enhanced Adriamycin uptake in NCI/ADR-RES cells without affecting sensitive cells. Furthermore, we observed that Erastin enhanced Adriamycin cytotoxicity in a time-dependent manner. The selective iNOS inhibitor, 1400W, reduced both uptake and cytotoxicity of Adriamycin in P-gp-expressing NCI/ADR-RES cells only. These findings were also confirmed in a BCRP-expressing human breast cancer cell line (MCF-7/MXR), which was selected for resistance to Mitoxantrone. Both Erastin and RSL3 were found to be cytotoxic to MCF-7/MXR cells. Erastin significantly enhanced the uptake of Hoechst dye, a well-characterized BCRP substrate, sensitizing MCF-7/MXR cells to Topotecan. The effect of Erastin was inhibited by 1400W, indicating that iNOS is involved in Erastin-mediated enhancement of Topotecan cytotoxicity. RSL3 also significantly increased Topotecan cytotoxicity. Our findings—demonstrating increased cytotoxicity of Adriamycin and Topotecan in P-gp- and BCRP-expressing cells—suggest that ferroptosis inducers may be highly valuable in combination with other chemotherapeutics to manage patients’ cancer burden in the clinical setting. Full article
Show Figures

Figure 1

18 pages, 5053 KB  
Article
Enhanced Cytotoxic Effects of Cold Plasma Deposition of Topotecan: A Novel Approach for Local Cancer Drug Delivery to Glioblastoma Cells
by Beatriz Pinheiro Lopes, Liam O’Neill, Paula Bourke and Daniela Boehm
Cancers 2025, 17(2), 201; https://doi.org/10.3390/cancers17020201 - 9 Jan 2025
Cited by 1 | Viewed by 1412
Abstract
Background/Objectives: Despite the numerous advances in glioblastoma multiforme (GBM) treatment, GBM remains as the most malignant and aggressive form of brain cancer, characterized by a very poor outcome, highlighting the ongoing need for the development of new therapeutic strategies. A novel intervention using [...] Read more.
Background/Objectives: Despite the numerous advances in glioblastoma multiforme (GBM) treatment, GBM remains as the most malignant and aggressive form of brain cancer, characterized by a very poor outcome, highlighting the ongoing need for the development of new therapeutic strategies. A novel intervention using plasma-assisted local delivery of oncology drugs was developed to mediate the drug delivery, which might improve drug uptake and/or chemotherapeutic action. Topotecan (TPT), a water-soluble topoisomerase I inhibitor with major cytotoxic effects during the S-phase of the cell cycle, was selected as the candidate drug because despite its potent antitumor activity, the systemic administration to the brain is limited due to low crossing of the blood-brain barrier. For these reasons, TPT may be repurposed for local combined therapies. Methods: We aimed to explore options for the local treatment of GBM where systematic delivery is challenging, using a combination between plasma-based technologies and TPT on a human brain cancer cell line (U-251mg). Results: The evaluation of direct TPT plasma deposition using a helium plasma jet (J-Plasma, Apyx Medical) with a nebulizer onto U-251mg cells grown in 2D or 3D culture showed a reduction in the metabolic activity and cell mass and decreased long-term survival, indicating synergistic effects between the drug and the plasma treatment. The plasma-assisted approach was confirmed using temozolomide (TMZ) as a standard drug for glioblastoma treatment, as well as with two skin cancer cell lines. Conclusions: These results revealed a pathway for new combinations and approaches to local drug application for a range of cancers. Full article
(This article belongs to the Section Methods and Technologies Development)
Show Figures

Graphical abstract

22 pages, 7063 KB  
Article
Sulfide, Sulfoxide, and Sulfone Derivatives of Usnic Acid as Inhibitors of Human TDP1 and TDP2 Enzymes
by Aleksandr S. Filimonov, Marina A. Mikhailova, Nadezhda S. Dyrkheeva, Irina A. Chernyshova, Tatyana E. Kornienko, Konstantin A. Naumenko, Rashid O. Anarbaev, Andrey A. Nefedov, Chigozie Achara, Anthony D. M. Curtis, Olga A. Luzina, Konstantin P. Volcho, Nariman F. Salakhutdinov, Olga I. Lavrik and Jóhannes Reynisson
Chemistry 2024, 6(6), 1658-1679; https://doi.org/10.3390/chemistry6060101 - 17 Dec 2024
Viewed by 1292
Abstract
Tyrosyl-DNA phosphodiesterases 1 and 2 (TDP1 and TDP2) are important DNA repair enzymes that remove various adducts from the 3′- and 5′-ends of DNA, respectively. The suppression of the activity of these enzymes is considered as a promising adjuvant therapy for oncological diseases [...] Read more.
Tyrosyl-DNA phosphodiesterases 1 and 2 (TDP1 and TDP2) are important DNA repair enzymes that remove various adducts from the 3′- and 5′-ends of DNA, respectively. The suppression of the activity of these enzymes is considered as a promising adjuvant therapy for oncological diseases in combination with topoisomerase inhibitors. The simultaneous inhibition of TDP1 and TDP2 may result in greater antitumor effects, as these enzymes can mimic each other’s functions. We have previously shown that usnic acid-based sulfides can act as dual inhibitors, with TDP1 activity in the low micromolar range and their TDP2 at 1 mM. The oxidation of their sulfide moieties to sulfoxides led to an order of magnitude decrease in their cytotoxicity potential, while their TDP1 and TDP2 activity was preserved. In this work, we synthesized new series of usnic acid-based sulfides and their oxidized analogues, i.e., sulfoxides and sulfones, to systematically study these irregularities. The new compounds inhibit TDP1 with IC50 values (the concentration of inhibitor required to reduce enzyme activity by half) in the 0.33–25 μM range. Most sulfides and some sulfoxides and sulfones inhibit TDP2 with an IC50 = 138−421 μM. In addition, the most active compounds synergized (×4) with topotecan on the HeLa cell line as well as causing dose-dependent DNA damage, as confirmed by Comet assay. Sulfides with the 6-methylbenzoimidazol-2-yl substituent (8f, IC50 = 0.33/138 μM, TDP1/2) and sulfones containing a pyridine-2-yl fragment (12k, IC50 = 2/228 μM, TDP1/2) are the most potent derivatives and, therefore, are promising for further development. Full article
(This article belongs to the Topic Enzymes and Enzyme Inhibitors in Drug Research)
Show Figures

Graphical abstract

17 pages, 1540 KB  
Systematic Review
Camptothecin and Its Derivatives from Traditional Chinese Medicine in Combination with Anticancer Therapy Regimens: A Systematic Review and Meta-Analysis
by Paul O. Odeniran, Paradise Madlala, Nompumelelo P. Mkhwanazi and Mahmoud E. S. Soliman
Cancers 2024, 16(22), 3802; https://doi.org/10.3390/cancers16223802 - 12 Nov 2024
Cited by 3 | Viewed by 2202
Abstract
Background/Objectives: Camptothecin (CPT) and its derivatives, irinotecan and topotecan, are integral components of cancer chemotherapy, often used in combination therapies. This meta-analysis evaluates the efficacy of CPT-based combination treatments in cancer patients. Methods: We systematically searched the literature database using the [...] Read more.
Background/Objectives: Camptothecin (CPT) and its derivatives, irinotecan and topotecan, are integral components of cancer chemotherapy, often used in combination therapies. This meta-analysis evaluates the efficacy of CPT-based combination treatments in cancer patients. Methods: We systematically searched the literature database using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses checklist for articles published between 2000 and 2022. Published studies were retrieved through an electronic search on the Web of Science, PubMed, and Google Scholar databases. A total of 138 studies were downloaded and examined, and 71 eligible studies were selected for meta-analysis after excluding studies that did not meet the inclusion criteria. Results: Ultimately, a total of 71 studies were included in the analysis, comprising non-small cell lung cancer (NSCLC), colorectal cancer (COLRC), oesophageal/gastric cancer (O/GC), and small cell lung cancer (SCLC). For NSCLC, the objective response rate (RR) was 31.8% (95% CI: 27.3–37.1%, p = 0.025), with irinotecan plus cisplatin showing significantly higher efficacy compared to other irinotecan-based combinations. In COLRC, irinotecan and 5-fluorouracil/leucovorin plus bevacizumab demonstrated superior efficacy with a RR of 44% (95% CI: 34–58, p < 0.001) and minimal haematological toxicity. In O/GC, irinotecan-based combinations showed an average RR of 43% (95% CI: 27–70, p < 0.001) and average overall survival (OS) and progression-free survival (PFS) rates of 10.2 and 5.5 months, respectively. For SCLC, irinotecan-based combinations had a higher control response than topotecan-based ones, while the latter exhibited higher rates of stable and progressive disease. The overall RR for SCLC was 45% (95% CI: 34.3–60.2, p < 0.001). Conclusions: The existing evidence underscored the potential of CPT-based combination therapy in various cancers. Among the various combinations discussed in this analysis, irinotecan plus cisplatin demonstrated the highest objective RR in 12 trials focused on NSCLC. This study provides valuable insights into potential treatment strategies for various types of cancer, emphasising the importance of personalised and tailored approaches to maximise efficacy and minimise adverse effects. Full article
Show Figures

Graphical abstract

11 pages, 1544 KB  
Article
Topotecan in a Real-World Small-Cell Lung Cancer Cohort: Prognostic Biomarkers Improve Selection of Patients for Second-Line Treatment
by Laura Lambrecht, Paola Arnold, Jürgen Behr, Pontus Mertsch, Amanda Tufman and Diego Kauffmann-Guerrero
Diagnostics 2024, 14(14), 1572; https://doi.org/10.3390/diagnostics14141572 - 19 Jul 2024
Cited by 2 | Viewed by 2779
Abstract
Background: Small-cell lung cancer (SCLC) is a highly aggressive tumor, and overall survival (OS) remains poor despite intensive efforts to develop new treatment strategies. In second line, topotecan is the only approved drug, with a median OS of 5.9 months. However, real-world SCLC [...] Read more.
Background: Small-cell lung cancer (SCLC) is a highly aggressive tumor, and overall survival (OS) remains poor despite intensive efforts to develop new treatment strategies. In second line, topotecan is the only approved drug, with a median OS of 5.9 months. However, real-world SCLC patients are often in worse condition and harbor more comorbidities than study populations. Therefore, the real-world performance of topotecan may differ from that seen in studies. Here, we analyzed outcomes of SCLC patients receiving topotecan and identified predictive and prognostic markers. Patients and Methods: We retrospectively analyzed 44 consecutive SCLC patients receiving topotecan between 2015 and 2022. We analyzed baseline characteristics (age, ECOG-PS, topotecan cycles, and dosage) and pre-treatment blood values (LDH, CRP, sodium) as well as prognostic scores (neutrophil/lymphocyte ratio (NLR), thrombocyte/lymphocyte ratio (TLR), Glasgow Prognostic Score, prognostic nutritional score, systemic inflammation index (SII), and the prognostic index) extracted from electronic patients’ charts to identify predictive and prognostic markers. Results: In our cohort, mPFS and mOS were only 1.9 and 5.6 months, respectively. Gender, ECOG-PS, active brain metastases, NLR, GPS, PNI, and SII significantly influenced PFS and OS in univariate analysis. ECOG-PS (p > 0.001), active brain metastases (p = 0.001), and SII (p = 0.008) were significant independent prognostic variables in a multivariate COX regression model. Selecting patients by these three markers achieved an mPFS of 5.7 months and thus increased the mPFS three-fold. Patients not meeting all criteria had an mPFS of 1.8 months (p = 0.006). Patients identified by prognostic markers had an mOS of 9.1 months (p = 0.002). Conclusions: The efficacy of topotecan in SCLC real-world patients is poor, indicating that many patients were treated without any benefit. Easy-to-obtain markers can predict response and treatment efficacy and should therefore be validated in larger cohorts to identify patients who are more likely to benefit from topotecan. Full article
(This article belongs to the Special Issue Diagnosis, Classification, and Monitoring of Pulmonary Diseases)
Show Figures

Figure 1

12 pages, 1228 KB  
Article
The Polyamine Analogue Ivospemin Increases Chemotherapeutic Efficacy in Murine Ovarian Cancer
by Cassandra E. Holbert, Jackson R. Foley, Robert A. Casero and Tracy Murray Stewart
Biomedicines 2024, 12(6), 1157; https://doi.org/10.3390/biomedicines12061157 - 23 May 2024
Cited by 2 | Viewed by 1940
Abstract
Polyamines are small polycationic alkylamines that are absolutely required for the continual growth and proliferation of cancer cells. The polyamine analogue ivospemin, also known as SBP-101, has shown efficacy in slowing pancreatic and ovarian tumor progression in vitro and in vivo and has [...] Read more.
Polyamines are small polycationic alkylamines that are absolutely required for the continual growth and proliferation of cancer cells. The polyamine analogue ivospemin, also known as SBP-101, has shown efficacy in slowing pancreatic and ovarian tumor progression in vitro and in vivo and has demonstrated encouraging results in early pancreatic cancer clinical trials. We sought to determine if ivospemin was a viable treatment option for the under-served platinum-resistant ovarian cancer patient population by testing its efficacy in combination with commonly used chemotherapeutics. We treated four ovarian adenocarcinoma cell lines in vitro and found that each was sensitive to ivospemin regardless of cisplatin sensitivity. Next, we treated patients with ivospemin in combination with four commonly used chemotherapeutics and found that ivospemin increased the toxicity of each; however, only gemcitabine and topotecan combination treatments were more effective than ivospemin alone. Using the VDID8+ murine ovarian cancer model, we found that the addition of ivospemin to either topotecan or gemcitabine increased median survival over untreated animals alone, delayed tumor progression, and decreased the overall tumor burden. Our results indicate that the combination of ivospemin and chemotherapy is a worthwhile treatment option to further explore clinically in ovarian cancer. Full article
(This article belongs to the Special Issue Advances in Therapeutic Strategies in Gynecological Malignant Tumors)
Show Figures

Figure 1

16 pages, 3363 KB  
Article
Topotecan and Ginkgolic Acid Inhibit the Expression and Transport Activity of Human Organic Anion Transporter 3 by Suppressing SUMOylation of the Transporter
by Zhou Yu and Guofeng You
Pharmaceutics 2024, 16(5), 638; https://doi.org/10.3390/pharmaceutics16050638 - 9 May 2024
Cited by 1 | Viewed by 1929
Abstract
Organic anion transporter 3 (OAT3), expressed at the basolateral membrane of kidney proximal tubule cells, facilitates the elimination of numerous metabolites, environmental toxins, and clinically important drugs. An earlier investigation from our laboratory revealed that OAT3 expression and transport activity can be upregulated [...] Read more.
Organic anion transporter 3 (OAT3), expressed at the basolateral membrane of kidney proximal tubule cells, facilitates the elimination of numerous metabolites, environmental toxins, and clinically important drugs. An earlier investigation from our laboratory revealed that OAT3 expression and transport activity can be upregulated by SUMOylation, a post-translational modification that covalently conjugates SUMO molecules to substrate proteins. Topotecan is a semi-synthetic derivative of the herbal extract camptothecin, approved by the FDA to treat several types of cancer. Ginkgolic acid (GA) is one of the major components in the extract of Ginkgo biloba leaves that has long been used in food supplements for preventing dementia, high blood pressure, and supporting stroke recovery. Both topotecan and GA have been shown to affect protein SUMOylation. In the current study, we tested our hypothesis that topotecan and GA may regulate OAT3 SUMOylation, expression, and transport function. Our data show that the treatment of OAT3-expressing cells with topotecan or GA significantly decreases the SUMOylation of OAT3 by 50% and 75%, respectively. The same treatment also led to substantial reductions in OAT3 expression and the OAT3-mediated transport of estrone sulfate, a prototypical substrate. Such reductions in cell surface expression of OAT3 correlated well with an increased rate of OAT3 degradation. Mechanistically, we discovered that topotecan enhanced the association between OAT3 and the SUMO-specific protease SENP2, a deSUMOylation enzyme, which contributed to the significant decrease in OAT3 SUMOylation. In conclusion, this study unveiled a novel role of topotecan and GA in inhibiting OAT3 expression and transport activity and accelerating OAT3 degradation by suppressing OAT3 SUMOylation. During comorbidity therapies, the use of topotecan or Ginkgo biloba extract could potentially decrease the transport activity of OAT3 in the kidneys, which will in turn affect the therapeutic efficacy and toxicity of many other drugs that are substrates for the transporter. Full article
(This article belongs to the Special Issue New Insights into Transporters in Drug Development)
Show Figures

Figure 1

16 pages, 2017 KB  
Article
Electrochemical Nanosensor for the Simultaneous Determination of Anticancer Drugs Epirubicin and Topotecan Using UiO-66-NH2/GO Nanocomposite Modified Electrode
by Somayeh Tajik, Parisa Shams, Hadi Beitollahi and Fariba Garkani Nejad
Biosensors 2024, 14(5), 229; https://doi.org/10.3390/bios14050229 - 4 May 2024
Cited by 20 | Viewed by 2683
Abstract
In this work, UiO-66-NH2/GO nanocomposite was prepared using a simple solvothermal technique, and its structure and morphology were characterized using field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD). An enhanced electrochemical sensor for the detection [...] Read more.
In this work, UiO-66-NH2/GO nanocomposite was prepared using a simple solvothermal technique, and its structure and morphology were characterized using field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD). An enhanced electrochemical sensor for the detection of epirubicin (EP) was proposed, which utilized a UiO-66-NH2/GO nanocomposite-modified screen-printed graphite electrode (UiO-66-NH2/GO/SPGE). The prepared UiO-66-NH2/GO nanocomposite improved the electrochemical performance of the SPGE towards the redox reaction of EP. Under optimized experimental conditions, this sensor demonstrates a remarkable limit of detection (LOD) of 0.003 µM and a linear dynamic range from 0.008 to 200.0 µM, providing a highly capable platform for sensing EP. Furthermore, the simultaneous electro-catalytic oxidation of EP and topotecan (TP) was investigated at the UiO-66-NH2/GO/SPGE surface utilizing differential pulse voltammetry (DPV). DPV measurements revealed the presence of two distinct oxidation peaks of EP and TP, with a peak potential separation of 200 mV. Finally, the UiO-66-NH2/GO/SPGE sensor was successfully utilized for the quantitative analysis of EP and TP in pharmaceutical injection, yielding highly satisfactory results. Full article
(This article belongs to the Special Issue Biosensors for the Analysis and Detection of Drug, Food or Disease)
Show Figures

Figure 1

32 pages, 2957 KB  
Review
Understanding Cancer’s Defense against Topoisomerase-Active Drugs: A Comprehensive Review
by Nilesh Kumar Sharma, Anjali Bahot, Gopinath Sekar, Mahima Bansode, Kratika Khunteta, Priyanka Vijay Sonar, Ameya Hebale, Vaishnavi Salokhe and Birandra Kumar Sinha
Cancers 2024, 16(4), 680; https://doi.org/10.3390/cancers16040680 - 6 Feb 2024
Cited by 21 | Viewed by 7367
Abstract
In recent years, the emergence of cancer drug resistance has been one of the crucial tumor hallmarks that are supported by the level of genetic heterogeneity and complexities at cellular levels. Oxidative stress, immune evasion, metabolic reprogramming, overexpression of ABC transporters, and stemness [...] Read more.
In recent years, the emergence of cancer drug resistance has been one of the crucial tumor hallmarks that are supported by the level of genetic heterogeneity and complexities at cellular levels. Oxidative stress, immune evasion, metabolic reprogramming, overexpression of ABC transporters, and stemness are among the several key contributing molecular and cellular response mechanisms. Topo-active drugs, e.g., doxorubicin and topotecan, are clinically active and are utilized extensively against a wide variety of human tumors and often result in the development of resistance and failure to therapy. Thus, there is an urgent need for an incremental and comprehensive understanding of mechanisms of cancer drug resistance specifically in the context of topo-active drugs. This review delves into the intricate mechanistic aspects of these intracellular and extracellular topo-active drug resistance mechanisms and explores the use of potential combinatorial approaches by utilizing various topo-active drugs and inhibitors of pathways involved in drug resistance. We believe that this review will help guide basic scientists, pre-clinicians, clinicians, and policymakers toward holistic and interdisciplinary strategies that transcend resistance, renewing optimism in the ongoing battle against cancer. Full article
(This article belongs to the Special Issue Mechanisms of Therapy Resistance in Cancers)
Show Figures

Figure 1

Back to TopTop