Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,302)

Search Parameters:
Keywords = total compensation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 689 KB  
Article
Sex Differences in Foot Arch Structure Affect Postural Control and Energy Flow During Dynamic Tasks
by Xuan Liu, Shu Zhou, Yan Pan, Lei Li and Ye Liu
Life 2025, 15(10), 1550; https://doi.org/10.3390/life15101550 - 3 Oct 2025
Abstract
Background: This study investigated sex differences in foot arch structure and function, and their impact on postural control and energy flow during dynamic tasks. Findings aim to inform sex-specific training, movement assessment, and injury prevention strategies. Methods: A total of 108 participants (53 [...] Read more.
Background: This study investigated sex differences in foot arch structure and function, and their impact on postural control and energy flow during dynamic tasks. Findings aim to inform sex-specific training, movement assessment, and injury prevention strategies. Methods: A total of 108 participants (53 males and 55 females) underwent foot arch morphological assessments and performed a sit-to-stand (STS). Motion data were collected using an infrared motion capture system, three-dimensional force plates, and wireless surface electromyography. A rigid body model was constructed in Visual3D, and joint forces, segmental angular and linear velocities, center of pressure (COP), and center of mass (COM) were calculated using MATLAB. Segmental net energy was integrated to determine energy flow across different phases of the STS. Results: Arch stiffness was significantly higher in males. In terms of postural control, males exhibited significantly lower mediolateral COP frequency and anteroposterior COM peak velocity during the pre-seat-off phase, and lower COM displacement, peak velocity, and sample entropy during the post-seat-off phase compared to females. Conversely, males showed higher anteroposterior COM velocity before seat-off, and greater anteroposterior and vertical momentum after seat-off (p < 0.05). Regarding energy flow, males exhibited higher thigh muscle power, segmental net power during both phases, and greater shank joint power before seat-off. In contrast, females showed higher thigh joint power before seat-off and greater shank joint power after seat-off (p < 0.05). Conclusions: Significant sex differences in foot arch function influence postural control and energy transfer during STS. Compared to males, females rely on more frequent postural adjustments to compensate for lower arch stiffness, which may increase mechanical loading on the knee and ankle and elevate injury risk. Full article
(This article belongs to the Special Issue Focus on Exercise Physiology and Sports Performance: 2nd Edition)
Show Figures

Figure 1

28 pages, 2852 KB  
Article
Total Fuel Cost, Power Loss, and Voltage Deviation Reduction for Power Systems with Optimal Placement and Operation of FACTS and Renewable Power Sources
by Tuan Anh Nguyen, Le Chi Kien, Minh Quan Duong, Tan Minh Phan and Thang Trung Nguyen
Appl. Sci. 2025, 15(19), 10596; https://doi.org/10.3390/app151910596 - 30 Sep 2025
Abstract
The paper finds optimal power flows and optimal placement of wind power plants (WPPs), static var compensators (SVCs), and thyristor-controlled series capacitors (TCSCs) in the IEEE 30-bus transmission power network by applying three high-performance algorithms, such as the equilibrium optimizer (EO), the Coot [...] Read more.
The paper finds optimal power flows and optimal placement of wind power plants (WPPs), static var compensators (SVCs), and thyristor-controlled series capacitors (TCSCs) in the IEEE 30-bus transmission power network by applying three high-performance algorithms, such as the equilibrium optimizer (EO), the Coot optimization algorithm (COOT), and the marine predators algorithm (MPSA). The three algorithms are run for the system without any added electric components and with three single objectives, including active power losses, total fuel cost, and total voltage deviation, for comparison with other previous algorithms. The three algorithms can reach better results than many algorithms and suffer worse results than a few algorithms. EO is more effective than MPSA and COOT in all cases. For simulation cases with SVCs, TCSCs, and WPPs, the losses are significantly reduced compared to the base case. The power loss of the base case is 3.066 MW, and the best loss is 2.869 MW for two cases with two SVCs and one TCSC. When applying the obtained solution and optimizing the placement of one, two, and three WPPs, the power loss is, respectively, 2.053, 1.512, and 1.112 MW. By optimizing two SVCs, one TCSC, and WPPs simultaneously, the power loss is, respectively, 2.041, 1.508, and 1.093 MW for one, two, and three WPPs. So, the optimal placement of TCSCs, SVCs, and WPPs can result in high benefits for power systems. Full article
(This article belongs to the Section Green Sustainable Science and Technology)
21 pages, 2749 KB  
Article
Performance Analysis of an Optical System for FSO Communications Utilizing Combined Stochastic Gradient Descent Optimization Algorithm
by Ilya Galaktionov and Vladimir Toporovsky
Appl. Syst. Innov. 2025, 8(5), 143; https://doi.org/10.3390/asi8050143 - 30 Sep 2025
Abstract
Wavefront aberrations caused by thermal flows or arising from the quality of optical components can significantly impair wireless communication links. Such aberrations may result in an increased error rate in the received signal, leading to data loss in laser communication applications. In this [...] Read more.
Wavefront aberrations caused by thermal flows or arising from the quality of optical components can significantly impair wireless communication links. Such aberrations may result in an increased error rate in the received signal, leading to data loss in laser communication applications. In this study, we explored a newly developed combined stochastic gradient descent optimization algorithm aimed at compensating for optical distortions. The algorithm we developed exhibits linear time and space complexity and demonstrates low sensitivity to variations in input parameters. Furthermore, its implementation is relatively straightforward and does not necessitate an in-depth understanding of the underlying system, in contrast to the Stochastic Parallel Gradient Descent (SPGD) method. In addition, a developed switch-mode approach allows us to use a stochastic component of the algorithm as a rapid, rough-tuning mechanism, while the gradient descent component is used as a slower, more precise fine-tuning method. This dual-mode operation proves particularly advantageous in scenarios where there are no rapid dynamic wavefront distortions. The results demonstrated that the proposed algorithm significantly enhanced the total collected power of the beam passing through the 10 μm diaphragm that simulated a 10 μm fiber core, increasing it from 0.33 mW to 2.3 mW. Furthermore, the residual root mean square (RMS) aberration was reduced from 0.63 μm to 0.12 μm, which suggests a potential improvement in coupling efficiency from 0.1 to 0.6. Full article
(This article belongs to the Section Information Systems)
Show Figures

Figure 1

23 pages, 4197 KB  
Article
Position and Attitude Control of Multi-Modal Underwater Robots Using an Improved LADRC Based on Sliding Mode Control
by Luze Wang, Yu Lu, Lei Zhang, Bowei Cui, Fengluo Chen, Bingchen Liang, Liwei Yu and Shimin Yu
Sensors 2025, 25(19), 6010; https://doi.org/10.3390/s25196010 - 30 Sep 2025
Abstract
This paper focuses on the control problems of a multi-modal underwater robot, which is designed mainly for the task of detecting the working environment in deep-sea mining. To tackle model uncertainty and external disturbances, an improved linear active disturbance rejection control scheme based [...] Read more.
This paper focuses on the control problems of a multi-modal underwater robot, which is designed mainly for the task of detecting the working environment in deep-sea mining. To tackle model uncertainty and external disturbances, an improved linear active disturbance rejection control scheme based on sliding mode control is proposed (SM-ADRC). Firstly, to reduce overshoot, a piecewise fhan function is introduced into the tracking differentiator (TD). This design retains the system’s fast nonlinear tracking characteristics outside the boundary layer while leveraging linear damping within it to achieve effective overshoot suppression. Secondly, two key enhancements are made to the SMC: an integral sliding surface is designed to improve steady-state accuracy, and a saturation function replaces the sign function to suppress high-frequency chattering. Furthermore, the SMC integrates the total disturbance estimate from the linear extended state observer (LESO) for feedforward compensation. Finally, the simulation experiment verification is completed. The simulation results show that the SM-ADRC scheme significantly improves the dynamic response and disturbance suppression ability of the system and simultaneously suppresses the chattering problem of SMC. Full article
(This article belongs to the Special Issue Smart Sensing and Control for Autonomous Intelligent Unmanned Systems)
Show Figures

Figure 1

22 pages, 6708 KB  
Article
Enhanced Model Predictive Speed Control of PMSMs Based on Duty Ratio Optimization with Integrated Load Torque Disturbance Compensation
by Tarek Yahia, Abdelsalam A. Ahmed, M. M. Ahmed, Amr El Zawawi, Z. M. S. Elbarbary, M. S. Arafath and Mosaad M. Ali
Machines 2025, 13(10), 891; https://doi.org/10.3390/machines13100891 - 30 Sep 2025
Abstract
This paper proposes an enhanced Model Predictive Direct Speed Control (MPDSC) framework for Permanent Magnet Synchronous Motor (PMSM) drives, integrating duty ratio optimization and load torque disturbance compensation to significantly improve both transient and steady-state performance. Traditional finite-control-set MPC strategies, which apply a [...] Read more.
This paper proposes an enhanced Model Predictive Direct Speed Control (MPDSC) framework for Permanent Magnet Synchronous Motor (PMSM) drives, integrating duty ratio optimization and load torque disturbance compensation to significantly improve both transient and steady-state performance. Traditional finite-control-set MPC strategies, which apply a single voltage vector per sampling interval, often suffer from steady-state ripples, elevated total harmonic distortion (THD), and high computational complexity due to exhaustive switching evaluations. The proposed approach addresses these limitations through a novel dual-stage cost function structure: the first cost function optimizes dynamic response via predictive control of speed error, while the second adaptively minimizes torque ripple and harmonic distortion by adjusting the active–zero voltage vector duty ratio without the need for manual weight tuning. Robustness against time-varying disturbances is further enhanced by integrating a real-time load torque observer into the control loop. The scheme is validated through both MATLAB/Simulink R2020a simulations and real-time experimental testing on a dSPACE 1202 rapid control prototyping platform across small- and large-scale PMSM configurations. Experimental results confirm that the proposed controller achieves a transient speed deviation of just 0.004%, a steady-state ripple of 0.01 rpm, and torque ripple as low as 0.0124 Nm, with THD reduced to approximately 5.5%. The duty ratio-based predictive modulation ensures faster settling time, improved current quality, and greater immunity to load torque disturbances compared to recent duty-ratio MPC implementations. These findings highlight the proposed DR-MPDSC as a computationally efficient and experimentally validated solution for next-generation PMSM drive systems in automotive and industrial domains. Full article
(This article belongs to the Section Electrical Machines and Drives)
Show Figures

Figure 1

31 pages, 5070 KB  
Article
Crowd-Shipping: Optimized Mixed Fleet Routing for Cold Chain Distribution
by Fuqiang Lu, Yue Xi, Zhiyuan Gao, Hualing Bi and Shamim Mahreen
Symmetry 2025, 17(10), 1609; https://doi.org/10.3390/sym17101609 - 28 Sep 2025
Abstract
In fresh produce cold chain last-mile delivery, the highly dispersed customer base leads to exorbitant delivery costs, posing the greatest challenge for cold chain enterprises. Achieving a symmetrical balance between cost-efficiency, environmental sustainability, and service quality is a fundamental pursuit in logistics system [...] Read more.
In fresh produce cold chain last-mile delivery, the highly dispersed customer base leads to exorbitant delivery costs, posing the greatest challenge for cold chain enterprises. Achieving a symmetrical balance between cost-efficiency, environmental sustainability, and service quality is a fundamental pursuit in logistics system optimization. This paper proposes integrating the crowd-shipping logistics model—characterized by internet platform sharing and flexibility—into the delivery service. It incorporates and extends features such as cold chain delivery, mixed fleets using gasoline and diesel vehicles (GDVs), electric vehicles (EVs), partial charging strategies for EVs, and time-of-use electricity pricing into the crowd-shipping model. A joint delivery mode combining traditional professional delivery (using GDVs and EVs) with crowd-shipping is proposed, creating a symmetrical collaboration between centralized fleet management and distributed social resources. The challenges associated with utilizing occasional drivers (ODs) are analyzed, along with the corresponding compensation decisions and allocation-related constraints. A route optimization model is constructed with the objective of minimizing total cost. To solve this model, an Improved Whale Optimization Algorithm (IWOA) is proposed. To further enhance the algorithm’s performance, an adaptive variable neighborhood search is embedded within the proposed algorithm, and four local search operators are applied. Using a case study of 100 customer nodes, the joint delivery mode with OD participation reduces total delivery costs by an average of 24.94% compared to the traditional professional vehicle delivery mode, demonstrating a more symmetrical allocation of logistical resources. The experiments fully demonstrate the effectiveness of the joint delivery model and the proposed algorithm. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

24 pages, 2044 KB  
Article
Evaluation of the Synergistic Control Efficiency of Multi-Dimensional Best Management Practices Based on the HYPE Model for Nitrogen and Phosphorus Pollution in Rural Small Watersheds
by Yi Wang, Yule Liu, Huawu Wu, Junwei Ding, Qian Xiao and Wen Chen
Agriculture 2025, 15(19), 2030; https://doi.org/10.3390/agriculture15192030 - 27 Sep 2025
Abstract
Non-point source pollution (NPS) from agriculture is a primary driver of water eutrophication, necessitating effective control for regional water ecological security and sustainable agricultural development. This study focuses on the Chenzhuang village watershed, a typical green agricultural demonstration area in Jiangsu Province, using [...] Read more.
Non-point source pollution (NPS) from agriculture is a primary driver of water eutrophication, necessitating effective control for regional water ecological security and sustainable agricultural development. This study focuses on the Chenzhuang village watershed, a typical green agricultural demonstration area in Jiangsu Province, using the HYPE model to analyze hydrological processes and Total Nitrogen (TN) and Total Phosphorus (TP) migration patterns. The model achieved robust performance, with Nash–Sutcliffe Efficiency (NSE) values exceeding 0.7 for daily runoff and 0.35 for monthly TN and TP simulations, ensuring reliable predictions. A multi-scenario simulation framework evaluated the synergistic control effectiveness of Best Management Practices (BMPs), including agricultural production management, nutrient management, and landscape configuration, on TN and TP pollution. The results showed that crop rotation reduced annual average TN and TP concentrations by 11.8% and 13.6%, respectively, by shortening the fallow period. Substituting 50% of chemical fertilizers with organic fertilizers decreased TN by 50.5% (from 1.92 mg/L to 0.95 mg/L) and TP by 68.2% (from 0.22 mg/L to 0.07 mg/L). Converting 3% of farmland to forest enhanced pollutant interception, reducing TN by 4.14% and TP by 2.78%. The integrated BMP scenario (S13), combining these measures, achieved TN and TP concentrations of 0.63 mg/L and 0.046 mg/L, respectively, meeting Class II surface water standards since 2020. Economic analysis revealed an annual net income increase of approximately 15,000 CNY for a 50-acre plot. This was achieved through cost savings, increased crop value, and policy compensation. These findings validate a “source reduction–process interception” approach, providing a scalable management solution for NPS control in small rural watersheds while balancing environmental and economic benefits. Full article
(This article belongs to the Special Issue Detection and Management of Agricultural Non-Point Source Pollution)
Show Figures

Figure 1

24 pages, 3316 KB  
Article
Sustainable Expansive Agent from FGD Gypsum and CAC Used to Mitigate Shrinkage in Alkali-Activated Mortars and Promoter the Valorization of Industrial By-Products
by Thais Marques da Silva Moura and Janaíde Cavalcante Rocha
Sustainability 2025, 17(19), 8617; https://doi.org/10.3390/su17198617 - 25 Sep 2025
Abstract
Mineral expansive from FDG—flue-gas desulfurization—blended with calcium aluminate cement CAC was analyzed as mitigation shrinkage of alkali-activated residual mortars AAM. The AAM mortars were composed of red mud (RM) and bottom ash (BA), as precursors of a metakaolin MK-based system. MK replacement (0, [...] Read more.
Mineral expansive from FDG—flue-gas desulfurization—blended with calcium aluminate cement CAC was analyzed as mitigation shrinkage of alkali-activated residual mortars AAM. The AAM mortars were composed of red mud (RM) and bottom ash (BA), as precursors of a metakaolin MK-based system. MK replacement (0, 50, 70%) in alkaline solution (10M) and ratio 1:2 (binder/sand) was studied. Engineering properties were performed, and included mechanical strength, setting times, and dry shrinkage (HR 60%), as well as the microstructure formed at 7 d and 28 days. A total of 10% CAC-FGD dosage was the most efficient, reducing drying shrinkage by 23% and autogenous shrinkage by up to 30%. The findings showed that this addition also improved mechanical strength by approximately 16% at 28 days. Under the addition of CAC-FGD, the results suggest the presence of aluminosilicate gels of the (Na,C)-(A)-S-H type and the formation of ettringite, which are possibly responsible for ensuring good performance and a controlled expansion that, in turn, compensates for the shrinkage of the activated mortars. Full article
(This article belongs to the Special Issue Resource Sustainability: Sustainable Materials and Green Engineering)
Show Figures

Figure 1

16 pages, 689 KB  
Article
Investigation of Polarization Division Multiplexed CVQKD Based on Coherent Optical Transmission Structure
by Wenpeng Gao, Jianjun Tang, Tianqi Dou, Peizhe Han, Yuanchen Hao and Weiwen Kong
Photonics 2025, 12(10), 954; https://doi.org/10.3390/photonics12100954 - 25 Sep 2025
Abstract
Employing commercial off-the-shelf coherent optical transmission components and methods to design a continuous variable quantum key distribution (CVQKD) system is a promising trend of achieving QKD with high security key rate (SKR) and cost-effectiveness. In this paper, we explore a CVQKD system based [...] Read more.
Employing commercial off-the-shelf coherent optical transmission components and methods to design a continuous variable quantum key distribution (CVQKD) system is a promising trend of achieving QKD with high security key rate (SKR) and cost-effectiveness. In this paper, we explore a CVQKD system based on the widely used polarization division multiplexed (PDM) coherent optical transmission structure and pilot-aided digital signal processing methods. A simplified pilot-aided phase noise compensation scheme based on frequency division multiplexing (FDM) is proposed, which introduces less total excess noise than classical pilot-aided schemes based on time division multiplexing (TDM). In addition, the two schemes of training symbol (TS)-aided equalization are compared to find the optimal strategy for TS insertion, where the scheme based on block insertion strategy can provide the SKR gain of around 29%, 22%, and 15% compared with the scheme based on fine-grained insertion strategy at the transmission distance of 5 km, 25 km, and 50 km, respectively. The joint optimization of pilot-aided and TS-aided methods in this work can provide a reference for achieving a CVQKD system with a high SKR and low complexity in metropolitan-scale applications. Full article
Show Figures

Figure 1

17 pages, 2326 KB  
Article
Flow-Compensated vs. Monopolar Diffusion Encodings: Differences in Lesion Detectability Regarding Size and Position in Liver Diffusion-Weighted MRI
by Alessandra Moldenhauer, Frederik B. Laun, Hannes Seuss, Sebastian Bickelhaupt, Bianca Reithmeier, Thomas Benkert, Michael Uder, Marc Saake and Tobit Führes
Tomography 2025, 11(10), 106; https://doi.org/10.3390/tomography11100106 - 23 Sep 2025
Viewed by 103
Abstract
Background/Objectives: Diffusion-weighted imaging (DWI) of the liver is prone to cardiac motion-induced signal dropout, which can be reduced using flow-compensated (FloCo) instead of monopolar (MP) diffusion encodings. This study examined differences in lesion detection capabilities between FloCo and MP DWI and whether [...] Read more.
Background/Objectives: Diffusion-weighted imaging (DWI) of the liver is prone to cardiac motion-induced signal dropout, which can be reduced using flow-compensated (FloCo) instead of monopolar (MP) diffusion encodings. This study examined differences in lesion detection capabilities between FloCo and MP DWI and whether visibility depends on lesion size and position. Methods: Forty patients with at least one known or suspected focal liver lesion (FLL) underwent FloCo and MP DWI. For both sequences, b = 800 s/mm2 images were used to manually segment FLLs, which were then sorted by size and location (liver segment). The number of detected lesions, the sensitivity, and the contrast-to-noise ratio (CNR) were calculated and compared across sequences, sizes, and locations. Results: Significantly more lesions were detected using FloCo DWI compared to MP DWI (1211 vs. 1154; p < 0.001). In total, 1258 unique lesions were detected, 104 of which were identified only by FloCo DWI, and 47 of which only by MP DWI. The sensitivities of FloCo DWI and MP DWI were 96.3% (95% CI: 95.1–97.2%) and 91.7% (95% CI: 90.1–93.2%), respectively. The largest additional lesion found with only one of the two sequences measured 10.9 mm in FloCo DWI and 8.2 mm in MP DWI. In relative numbers, more additional FloCo lesions were found in the left liver lobe than in the right liver lobe (6.4% vs. 3.5%). The lesion CNR was significantly higher for FloCo DWI than for MP DWI (p < 0.05) for all evaluated size intervals and liver segments. Conclusions: FloCo DWI appears to enhance the detectability of FLLs compared to MP DWI, particularly for small liver lesions and lesions in the left liver lobe. Full article
(This article belongs to the Section Abdominal Imaging)
Show Figures

Figure 1

22 pages, 518 KB  
Article
The Nexus of Digitalization, Talent, and High-Quality Development: How Clusters Foster Sustainable Economic Growth
by Ruihua Mi, Shumin Liu, Cunjing Liu, Ze Li and Shuai Li
Sustainability 2025, 17(18), 8503; https://doi.org/10.3390/su17188503 - 22 Sep 2025
Viewed by 191
Abstract
In the context of the digital economy reshaping the global competitive landscape, digital industry clusters have become the key driving force to overcome the diminishing returns of traditional inputs and realize sustainable economic development in the digital era. However, the internal mechanisms and [...] Read more.
In the context of the digital economy reshaping the global competitive landscape, digital industry clusters have become the key driving force to overcome the diminishing returns of traditional inputs and realize sustainable economic development in the digital era. However, the internal mechanisms and spatial effects through which digital industrial clusters drive high-quality development and thereby foster sustainable regional economic growth remain unclear. Based on China’s provincial panel data from 2012 to 2023, this study constructs time-fixed spatial Durbin model and mediation effect model to systematically examine the impact mechanism of digital industry clusters on high-quality economic development, and to analyze their direct effects, spatial spillover effects and mediation transmission effects. The following effects have been found: (1) digital industry clusters can directly promote the high-quality development of the region’s economy (0.070), and can also significantly promote the high-quality development of the region’s economy through the mediating effect of innovative talent agglomeration (0.021); (2) the spatial spillover effect of digital industry clusters consists of the negative siphoning effect of innovative talent and positive technology diffusion and driving effect, which makes the total effect of digital industry clusters on neighboring regions uncertain; (3) Technology-intensive areas, as well as the eastern and northeastern regions, have effectively transformed the advantages of digital industry clusters into momentum for high-quality economic development, whereas central and western regions have not yet fully unleashed the driving effect of digital industry on the high-quality development of the economy, due to the constraints of the industrial structure, innovation factors and infrastructure. Based on the empirical results, the article suggests accelerating the construction of digital industry innovation hubs, establishing cross-regional technology sharing platforms, constructing a negative externality compensation mechanism for talent loss areas, and implementing differentiated regional development strategies. The study addresses a gap in existing research by analyzing the spatial mediation effects of digital industrial agglomeration on high-quality economic development. It extends theoretical insights into industrial clustering within the digital economy and offers actionable policy pathways for developing countries to promote sustainable economic growth through digital industrial clusters. Full article
Show Figures

Figure 1

25 pages, 9674 KB  
Article
Dual-Redundancy Electric Propulsion System for Electric Helicopters Based on Extended State Observer and Master–Slave Fault-Tolerant Control
by Shuli Wang, Zhenyu Du and Qingxin Zhang
Aerospace 2025, 12(9), 847; https://doi.org/10.3390/aerospace12090847 - 19 Sep 2025
Viewed by 231
Abstract
To improve the reliability and fault tolerance of electric helicopter propulsion systems, this paper presents a master–slave fault-tolerant control method based on an extended state observer (ESO) for dual-redundant electric propulsion systems that addresses dynamic coupling disturbances. First, the control architecture puts the [...] Read more.
To improve the reliability and fault tolerance of electric helicopter propulsion systems, this paper presents a master–slave fault-tolerant control method based on an extended state observer (ESO) for dual-redundant electric propulsion systems that addresses dynamic coupling disturbances. First, the control architecture puts the master motor in speed loop mode and puts the slave motor in torque loop mode with an ESO to estimate disturbances and compensate for mechanical coupling torque through feedforward control based on Lyapunov stability theory. Second, a least squares parameter identification method establishes a current-torque mapping model to ensure consistent dual-motor output. Then, fault-tolerant switching is implemented, transitioning from normal torque mode coordination to independent speed mode with adaptive PI adjustment during faults. Experimental validation shows that the total torque stabilizes at 240 N·m, and the synchronization error remains within ±0.5 N·m during normal operation. Under single-motor fault scenarios, the ESO detects disturbances within 15 ms with >95% accuracy. The system speed decreases to a minimum of 2280 rpm (5% deviation) and recovers within 3.5 s. Compared to traditional PI control, this method improves torque synchronization by 65.4%, speed stability by 62.6%, and dynamic response by 51.2%. Finally, the results validate that the method effectively suppresses coupling interference and meets aviation safety standards, providing reliable, fault-tolerant solutions for electric helicopter propulsion. Full article
(This article belongs to the Special Issue Advanced Aircraft Technology (2nd Edition))
Show Figures

Figure 1

18 pages, 2746 KB  
Article
First-Principles Investigation of Structural, Electronic, and Optical Transitions in FexZr1−xO2 Solid Solutions
by Djelloul Nouar, Ahmed Hamdi, Ali Benghia and Mohammed ElSaid Sarhani
Appl. Sci. 2025, 15(18), 10224; https://doi.org/10.3390/app151810224 - 19 Sep 2025
Viewed by 271
Abstract
First-principles density-functional theory (PBE, Quantum ESPRESSO) was employed to quantify how Fe substitution modulates the structural, elastic, electronic, and optical behaviour of cubic fluorite FexZr1−xO2 (x = 0.00–1.00). The fluorite FeO2 end member was treated as a [...] Read more.
First-principles density-functional theory (PBE, Quantum ESPRESSO) was employed to quantify how Fe substitution modulates the structural, elastic, electronic, and optical behaviour of cubic fluorite FexZr1−xO2 (x = 0.00–1.00). The fluorite FeO2 end member was treated as a hypothetical ambient-pressure limit to trace trends across the solid solution (experimental FeO2 being stabilized in the high-pressure pyrite phase). Mechanical stability was verified via the cubic Born criteria, and composition-dependent stiffness and anisotropy were assessed through Voigt–Reuss–Hill moduli, Pugh ratio, and elastic indices. A strong band-gap narrowing was found—from 3.41 eV (x = 0) to ≈0.02 eV (x = 0.50)—which was accompanied by a visible–NIR red-shift, large absorption (α ≈ 105 cm−1 at higher x), and enhanced refractive index and permittivity; metallic-like response was indicated at high Fe content. Spin-polarized calculations converged to zero total and absolute magnetization, indicating a non-magnetic ground state at 0 K within PBE. The effect of oxygen vacancies (V0)—expected under Fe3+ charge compensation—was explicitly considered: V0 is anticipated to influence lattice metrics, elastic moduli (B, G, G/B), and sub-gap optical activity, potentially modifying stability and optical figures of merit. Stoichiometric (formal Fe4+) predictions were distinguished from V0-rich scenarios. Absolute band gaps may be underestimated at the PBE level. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

18 pages, 11615 KB  
Article
Spatiotemporal Variations and Driving Forces of Ecosystem Service Value: A Case Study of the Yellow River Basin
by Wensheng Yu, Lijie Wei, Zhenxing Jin, Yuzhen Lin and Chengxin Wang
Land 2025, 14(9), 1907; https://doi.org/10.3390/land14091907 - 18 Sep 2025
Viewed by 285
Abstract
Accurate assessment of ecosystem service value (ESV) is crucial for sustainable environmental management, especially in regions with high ecological sensitivity and significant socioeconomic importance. This study focuses on the Yellow River Basin and integrates the land-use transition matrix, equivalent factor method, ecosystem service [...] Read more.
Accurate assessment of ecosystem service value (ESV) is crucial for sustainable environmental management, especially in regions with high ecological sensitivity and significant socioeconomic importance. This study focuses on the Yellow River Basin and integrates the land-use transition matrix, equivalent factor method, ecosystem service trade-off and synergy analysis, and the optimized parameters geographical detector to analyze the spatiotemporal evolution and driving mechanisms of ESV from 2000 to 2023. The results show that (1) cropland and grassland are the main land-use types in the Yellow River Basin, and during rapid urbanization, the expansion of construction land mainly comes at the expense of cropland and grassland. (2) the total ESV in the basin has steadily increased, with grassland as the primary contributor among land types; regulating services, particularly hydrological regulation, are the core ecosystem services in terms of supply, regulation, support, and cultural functions. (3) High-ESV areas in the eastern and central parts of the basin have expanded over time, exhibiting a spatial pattern of higher values in the west and lower in the east, distributed mainly along the river, with clustering effects gradually weakening. (4) Ecosystem services demonstrated predominantly synergistic relationships, suggesting potential for integrated ecosystem management. (5) Population density, DEM, mean annual temperature, and slope are the dominant factors influencing spatial variation in ESV, with the combined effects of topography and climate significantly enhancing the explanation of ESV heterogeneity. This study deepens the understanding of the evolutionary mechanisms of ecosystem services in the Yellow River Basin and provides scientific support and decision-making references for regional ecological compensation mechanisms, optimized land resource allocation, and watershed ecosystem management. Full article
Show Figures

Figure 1

16 pages, 2961 KB  
Article
Adaptive Fuzzy Sliding-Mode Control for Ship Path Tracking Based on a Fixed-Time Disturbance Observer
by Yibu Li, Changchun Bao and Rui Guo
J. Mar. Sci. Eng. 2025, 13(9), 1788; https://doi.org/10.3390/jmse13091788 - 16 Sep 2025
Viewed by 194
Abstract
We propose a control method that integrates adaptive fuzzy sliding-mode control (AF-SMC) with a fixed-time disturbance observer (FTDO) to address modeling errors, external disturbances, and input saturation in ship path tracking. The designed adaptive fuzzy system dynamically adjusts the SMC gain to enhance [...] Read more.
We propose a control method that integrates adaptive fuzzy sliding-mode control (AF-SMC) with a fixed-time disturbance observer (FTDO) to address modeling errors, external disturbances, and input saturation in ship path tracking. The designed adaptive fuzzy system dynamically adjusts the SMC gain to enhance adaptability to parameter variations and modeling errors. Furthermore, the proposed method enables rapid estimation of the total uncertainty term by incorporating an FTDO, ensuring fixed-time estimation and feedforward compensation of the total matched uncertainty without requiring prior knowledge of the disturbance bound. Lyapunov stability analysis was employed to verify the bounded stability of the closed-loop system. Simulation results indicate that the proposed method provides high control accuracy and robustness. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

Back to TopTop