Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = tower mill

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1871 KB  
Article
Prediction of Circulation Load of Side-Flanged High-Pressure Grinding Rolls Closed-Circuit Crushing
by Nan Li, Lixia Li, Jiaqi Wang, Zhe Liu, Quan Feng, Qiang Zhang, Hui Liu, Bern Klein and Bing Li
Minerals 2025, 15(6), 603; https://doi.org/10.3390/min15060603 - 4 Jun 2025
Viewed by 462
Abstract
To enhance the performance of the combined high-pressure grinding roller (HPGR) and tower mill (TM) process for −1 mm particle size, this study addresses the key technical challenges of insufficient material quantity (<100 kg) and complex experimental procedures in HPGR closed-circuit crushing tests [...] Read more.
To enhance the performance of the combined high-pressure grinding roller (HPGR) and tower mill (TM) process for −1 mm particle size, this study addresses the key technical challenges of insufficient material quantity (<100 kg) and complex experimental procedures in HPGR closed-circuit crushing tests by proposing a novel circulating load prediction method based on the principle of mass balance and first-order crushing kinetics. Using a side-flanged HPGR WGM 6020 installation, systematic −1 mm HPGR closed-circuit crushing tests were conducted on seven different ore samples under three specific pressing forces, with detailed characterization of the dynamic variations in product size distribution, specific energy consumption, and circulating load during each cycle. The results demonstrate that within the specific pressing force range of 3.5 N/mm2 to 4.5 N/mm2 when the crushing process reaches equilibrium, the circulating load stabilizes between 100% and 200%, while the specific energy consumption is maintained within 1–2.5 kWh/t. Notably, at the specific pressing force of 4.5 N/mm2, both the circulating load and specific energy consumption rapidly achieve stable states, with ore characteristics showing no significant influence on the number of cycles. To validate the model accuracy, additional samples were tested for comparative analysis, revealing that the deviations between the model-predicted −1 mm product content and circulating load and the experimental results were less than ±5%, confirming the reliability of the proposed method. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

31 pages, 11615 KB  
Article
Acoustic Tomography as a Supporting Tool in the Sustainable Management of Historic Greenery: Example of the Church Garden in Horostyta (Poland)
by Margot Dudkiewicz and Wojciech Durlak
Sustainability 2023, 15(11), 8654; https://doi.org/10.3390/su15118654 - 26 May 2023
Cited by 2 | Viewed by 2047
Abstract
Senile trees in historic church gardens have natural, aesthetic, historical, and cultural value. Cutting them down too hastily annihilates the achievements of entire generations. We should try to preserve the greenery surrounding historic churches and integrate it into a clear compositional arrangement with [...] Read more.
Senile trees in historic church gardens have natural, aesthetic, historical, and cultural value. Cutting them down too hastily annihilates the achievements of entire generations. We should try to preserve the greenery surrounding historic churches and integrate it into a clear compositional arrangement with the sacral architecture. The primary purpose of the paper was to describe the process of inventorying 200-year-old trees and to present the revalorization project for the garden around the historic Orthodox church in Horostyta, located in the Lublin Voivodeship, in southeastern Poland. The church complex consists of a wooden 18th-century building, bell tower, garden, and cemetery. Within the church garden’s boundaries, there are 15 trees, with two predominant species: Acer pseudoplatanus L. and Tilia cordata Mill. These trees are of varying ages and health conditions. We used acoustic tomography to perform tree health diagnostics. Three trees, for which the initial visual assessment was disturbing, were examined thanks to detailed tomography tests. Then, through a project adapting the church garden to the health conditions of the ancient trees, they were separated from users by flowerbeds and no small architectural objects were placed around them. The presented development concept forms a compromise between tradition and the modern user’s needs. In 2007, a general renovation of the temple building was completed. Currently, the presented project for the church garden is being implemented. Full article
(This article belongs to the Topic Sustainability in Heritage and Urban Planning)
Show Figures

Figure 1

16 pages, 4774 KB  
Article
Performance Comparison of the Vertical and Horizontal Oriented Stirred Mill: Pilot Scale IsaMill vs. Full-Scale HIGMill
by Metin Can and Okay Altun
Minerals 2023, 13(3), 315; https://doi.org/10.3390/min13030315 - 23 Feb 2023
Cited by 8 | Viewed by 4745
Abstract
Varied types/geometries of stirred mills have been produced by different manufacturers, and the comparison task has been accomplished for some of the technologies, i.e., Tower mill vs IsaMill. However, the main drawbacks of these comparisons were the uncommon characteristics of the milling environment, [...] Read more.
Varied types/geometries of stirred mills have been produced by different manufacturers, and the comparison task has been accomplished for some of the technologies, i.e., Tower mill vs IsaMill. However, the main drawbacks of these comparisons were the uncommon characteristics of the milling environment, such as media size. In this study, HIGMill and IsaMill, which were vertically and horizontally chamber oriented, respectively, were compared for a regrinding process of copper ores with similar characterization and almost the same milling environment. Detailed characterization studies of the two ore types, such as work index, ore breakage and chemical composition, were performed. Modeling of the two mills was also performed to show the variation in the rate of breakage parameters. The entire assessments were based on comparing the signature plots, energy and shape of the product size distribution as well as the stress analyses. The results showed that HIGMill and IsaMill technologies behaved in a different manner for coarse and fine tail of comminution. IsaMill with horizontal orientation was found to be more energy-efficient, particularly at the fine grind size, and produced finer product when it was operated at the same stress level of HIGMill. Full article
(This article belongs to the Special Issue Comminution and Comminution Circuits Optimisation, Volume II)
Show Figures

Figure 1

13 pages, 2926 KB  
Article
A Kinetic Model for Size Reduction in a Pilot Scale Tower Mill: Model Verification
by Leonard G. Austin and Claudio L. Schneider
Minerals 2022, 12(6), 679; https://doi.org/10.3390/min12060679 - 27 May 2022
Cited by 6 | Viewed by 2648
Abstract
Mark Duffy produced a complete set of grinding data on a pilot-scale tower mill. Here these data are analyzed in terms of grinding kinetics. The results show that the data can be fitted with a simple first-order breakage model, which is not normally [...] Read more.
Mark Duffy produced a complete set of grinding data on a pilot-scale tower mill. Here these data are analyzed in terms of grinding kinetics. The results show that the data can be fitted with a simple first-order breakage model, which is not normally observed in any grinding system, including other types of grinding machines such as tumbling ball mills and rod mills. The model has only two parameters, making it possible to determine the parameters using simple search methods. The results show that larger particles break faster than smaller particles, as is usually observed in all mills. Statistical analysis of the data showed that one of the parameters could be fixed for seven of the nine tests. Full article
(This article belongs to the Special Issue Comminution and Comminution Circuits Optimisation)
Show Figures

Figure 1

19 pages, 6990 KB  
Article
Comparative Multi-Modal, Multi-Scale Residual Stress Evaluation in SLM 3D-Printed Al-Si-Mg Alloy (RS-300) Parts
by Eugene S. Statnik, Fatih Uzun, Svetlana A. Lipovskikh, Yuliya V. Kan, Sviatoslav I. Eleonsky, Vladimir S. Pisarev, Pavel A. Somov, Alexey I. Salimon, Yuliya V. Malakhova, Aleksandr G. Seferyan, Dmitry K. Ryabov and Alexander M. Korsunsky
Metals 2021, 11(12), 2064; https://doi.org/10.3390/met11122064 - 20 Dec 2021
Cited by 15 | Viewed by 4384
Abstract
SLM additive manufacturing has demonstrated great potential for aerospace applications when structural elements of individual design and/or complex shape need to be promptly supplied. 3D-printable AlSi10Mg (RS-300) alloy is widely used for the fabrication of different structures in the aerospace industry. The importance [...] Read more.
SLM additive manufacturing has demonstrated great potential for aerospace applications when structural elements of individual design and/or complex shape need to be promptly supplied. 3D-printable AlSi10Mg (RS-300) alloy is widely used for the fabrication of different structures in the aerospace industry. The importance of the evaluation of residual stresses that arise as a result of the 3D-printing process’ complex thermal history is widely discussed in literature, but systematic assessment remains lacking for their magnitude, spatial distribution, and comparative analysis of different evaluation techniques. In this study, we report the results of a systematic study of residual stresses in 3D-printed double tower shaped samples using several approaches: the contour method, blind hole drilling laser speckle interferometry, X-ray diffraction, and Xe pFIB-DIC micro-ring-core milling analysis. We show that a high level of tensile and compressive residual stresses is inherited from SLM 3D-printing and retained for longer than 6 months. The stresses vary (from −80 to +180 MPa) over a significant proportion of the material yield stress (from −⅓ to ¾). All residual stress evaluation techniques considered returned comparable values of residual stresses, regardless of dramatically different dimensional scales, which ranged from millimeters for the contour method, laser speckle interferometry, and XRD down to small fractions of a mm (70 μm) for Xe pFIB-DIC ring-core drilling. The use of residual stress evaluation is discussed in the context of optimizing printing strategies to enhance mechanical performance and long-term durability. Full article
Show Figures

Figure 1

20 pages, 8068 KB  
Article
Industrial Vertical Stirred Mills Screw Liner Wear Profile Compared to Discrete Element Method Simulations
by Priscila M. Esteves, Douglas B. Mazzinghy, Roberto Galéry and Luís C. R. Machado
Minerals 2021, 11(4), 397; https://doi.org/10.3390/min11040397 - 10 Apr 2021
Cited by 22 | Viewed by 8090
Abstract
Vertical stirred mills have been widely applied in the minerals industry, due to its greater efficiency in comparison with conventional tumbling mills. In this context, the agitator liner wear plays an important role in maintenance planning and operational costs. In this paper, we [...] Read more.
Vertical stirred mills have been widely applied in the minerals industry, due to its greater efficiency in comparison with conventional tumbling mills. In this context, the agitator liner wear plays an important role in maintenance planning and operational costs. In this paper, we use the discrete element method (DEM) wear simulation to evaluate the screw liner wear. Three different mill rotational velocities are evaluated in the simulation, according to different scale-up procedures. The wear profile, wear measurement, power consumption, and particle contact information are used for obtaining a better understanding of the wear behavior and its effects on grinding mechanisms. Data from a vertical stirred mill screw liner wear measurement obtained in a full-scale mill are used to correlate with simulation results. The results indicate a relative agreement with industrial measurement in most of the liner lifecycle, when using a proper mill velocity scale-up. Full article
(This article belongs to the Special Issue Comminution in the Minerals Industry)
Show Figures

Figure 1

Back to TopTop