Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (567)

Search Parameters:
Keywords = toxic equivalents

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5170 KB  
Article
Dual-Action Grouper Bone and Wakame Hydrolysates Supplement Enhances Exercise Performance and Modulates Gut Microbiota in Mice
by Huey-Jine Chai, Tsung-Kai Yi, Yi-Feng Kao, Te-Hua Liu, Tsung-Yu Tsai and Yi-Ming Chen
Nutrients 2025, 17(18), 2933; https://doi.org/10.3390/nu17182933 - 11 Sep 2025
Viewed by 468
Abstract
Background: Sustainable, dual-action ergogenic strategies are underexplored; most products target a single pathway and rarely upcycle seafood sidestreams. We therefore tested an upcycled formulation combining grouper bone hydrolysate and Undaria pinnatifida extract (GU) for ergogenic and microbiota effects in mice. We tested [...] Read more.
Background: Sustainable, dual-action ergogenic strategies are underexplored; most products target a single pathway and rarely upcycle seafood sidestreams. We therefore tested an upcycled formulation combining grouper bone hydrolysate and Undaria pinnatifida extract (GU) for ergogenic and microbiota effects in mice. We tested the ergogenic and microbiota modulating effects of GU in mice versus a vehicle and a BCAA control. Methods: GU was prepared via enzymatic hydrolysis of marine by-products and administered to male ICR mice for 4 weeks. Mice were divided into five groups (n = 7/group), receiving a vehicle control, a branched-chain amino acid (BCAA) supplement, or GU at three dose levels (1X, 2X, 3X) based on human-equivalent conversion. Exercise performance was assessed via grip strength and treadmill tests. Biochemical markers of fatigue, body composition, and safety indicators were also analyzed. Gut microbiota was evaluated using 16S rRNA sequencing and constrained principal coordinates analysis (CPCoA). Results: Four weeks of GU supplementation significantly enhanced exercise performance [(treadmill time ↑ Δ = 10.2–11.7 min versus vehicle (q ≤ 0.0002), grip strength ↑ Δ = 40.4–48.5 g (q ≤ 0.05)] and lean body mass [FFM ↑ at GU-1X (Δ = +0.80%, q = 0.0123)], surpassing the commercial BCAA control. Biochemical analyses indicated reduced exercise-induced lactate accumulation [(post-exercise lactate ↓ Δ = −2.71/−2.18 mmol·L−1, q = 0.0006)]. Gut microbiota profiling revealed distinct shifts in community composition in GU-treated groups, notably with an increased abundance of beneficial taxa such as Lactobacillus and Muribaculum. These alterations reflect the prebiotic activity of seaweed-derived polysaccharides, promoting a healthier gut microbial profile. Notably, GU improved metabolic markers (aspartate aminotransferase, [AST]; lactate dehydrogenase, [LDH]) without inducing toxicity. Conclusions: These findings indicate that GU functions as a dual-action supplement, coupling amino acid-mediated muscle anabolism with microbiome modulation to enhance physical performance and metabolic health. As an upcycled marine product, it presents a sustainable and effective strategy for exercise support. Future studies should include 90-day safety, mechanistic assays, and a preregistered human pilot. Full article
(This article belongs to the Topic News and Updates on Probiotics)
Show Figures

Figure 1

19 pages, 1042 KB  
Article
Efficient Separation of Isoamyl Alcohol from Fusel Oil Using Non-Polar Solvent and Hybrid Decanter–Distillation Process
by Mihaela Neagu, Diana-Luciana Cursaru, Alexey Missyurin and Octavian Goian
Appl. Sci. 2025, 15(18), 9954; https://doi.org/10.3390/app15189954 - 11 Sep 2025
Viewed by 530
Abstract
Fusel oil is a fermentation by-product composed of a complex mixture of alcohols (ethanol, isoamyl, propanol, and butanol isomers) and water. The primary challenges lie in water separation and the recovery of the valuable component, isoamyl alcohol. In this work, we demonstrate an [...] Read more.
Fusel oil is a fermentation by-product composed of a complex mixture of alcohols (ethanol, isoamyl, propanol, and butanol isomers) and water. The primary challenges lie in water separation and the recovery of the valuable component, isoamyl alcohol. In this work, we demonstrate an efficient separation process using a non-polar, non-toxic, water-immiscible solvent, namely hexane, to reduce the water content of fusel oil from an initial 14 wt.% to 1.46 wt.% at a solvent to fusel oil ratio of 1:1 and to 0.55 wt.% at a 4:1 ratio. The proposed separation process was designed with a 1:1 ratio to minimize equipment size. In the first step, a decanter vessel enabled phase separation, followed by two distillation columns. The bottom product from the second column achieved a purity of 99.29 wt.% isoamyl alcohol (97.91 wt.% isomers and 1.38 wt.% hexanol) with a recovery rate of 97.33%. The distillate flows were directed to the second decanter vessel, recovering 99.665% of hexane. This study confirms the effectiveness of the proposed process in separation of highly valuable isoamyl alcohol from fusel oil via a hybrid decanter–distillation scheme. The proposed process attains a specific energy consumption in the reboilers of 0.65 kWh per kilogram of product (equivalent to 1.21 kg of steam per kilogram of product). This represents a notable improvement compared to the configuration reported by other authors for the separation of isoamyl alcohol using divided-wall columns (DWC), which requires 2785 kJ per kilogram of product (i.e., 0.774 kWh per kilogram of product). An economic analysis was performed to compare the process of separating isoamyl alcohol from fusel oil using the minimum hexane ratio (1:1) and the maximum ratio (4:1). All cost values increased significantly with higher solvent ratio. Remaining challenges include the purification of waste aqueous streams and future valorization of the hexane–alcoholic mixture. Full article
(This article belongs to the Section Applied Industrial Technologies)
Show Figures

Figure 1

15 pages, 1124 KB  
Article
Benzene Metabolism Is Dominated by a High-Affinity Pathway at Ambient Exposures with Implications for Cancer Risks
by Reuben Thomas, Sungkyoon Kim, Qing Lan, Roel Vermeulen, Luoping Zhang, Nathaniel Rothman, Martyn T. Smith and Stephen M. Rappaport
Int. J. Mol. Sci. 2025, 26(17), 8550; https://doi.org/10.3390/ijms26178550 - 3 Sep 2025
Viewed by 654
Abstract
Benzene is a ubiquitous environmental pollutant that induces blood cancers via its complex metabolism. Since cancer risks to the general public involve toxic benzene metabolites derived from the inhalation of benzene at ppb air concentrations, questions remain regarding low-dose metabolism. Using previously published [...] Read more.
Benzene is a ubiquitous environmental pollutant that induces blood cancers via its complex metabolism. Since cancer risks to the general public involve toxic benzene metabolites derived from the inhalation of benzene at ppb air concentrations, questions remain regarding low-dose metabolism. Using previously published data from 389 Chinese workers, we fit Michaelis–Menten-like models to predict urinary concentrations of E,E-muconic acid (the most discriminating urinary metabolite) as functions of urinary benzene levels between 0.0001 μM and 54 μM, equivalent to benzene air concentrations between 0.1 ppb and more than 100 ppm. When we compared models having either one or two metabolic pathways, weights of evidence favoring two pathways were essentially 100 percent for nonsmoking males and females and 58 percent for smoking males. At ppb exposure levels, metabolic rates for the high-affinity pathway were 43-fold greater than those for the low-affinity pathway in nonsmoking males, 6.5-fold greater in nonsmoking females, and 4.9-fold greater in smoking males. Thus, the high-affinity pathway is most efficient in nonsmoking males and is inhibited by smoking. The characteristics of the two-pathway model implicate lung metabolism of benzene via CYP2A13 and/or CYP2F1 at ppb air levels and liver metabolism by CYP2E1 above one ppm. Since ambient benzene concentrations are typically less than 10 ppb, blood-cancer risks predicted from workers exposed to above 1 ppm likely underestimate risks to the general public by many fold, and these risks may be modulated by smoking. Also, since the lung is the site of initial metabolism upon inhalation, the respiratory bioactivation of benzene could contribute to lung-cancer incidence, including that for lung adenomas in never smokers. Full article
(This article belongs to the Section Molecular Toxicology)
Show Figures

Figure 1

21 pages, 3027 KB  
Article
Residues of Priority Organic Micropollutants in Eruca vesicaria (Rocket) Irrigated by Reclaimed Wastewater: Optimization of a QuEChERS SPME-GC/MS Protocol and Risk Assessment
by Luca Rivoira, Simona Di Bonito, Veronica Libonati, Massimo Del Bubba, Mihail Simion Beldean-Galea and Maria Concetta Bruzzoniti
Foods 2025, 14(17), 2963; https://doi.org/10.3390/foods14172963 - 25 Aug 2025
Viewed by 532
Abstract
The increasing use of reclaimed wastewater in agriculture raises growing concerns about the accumulation of priority organic micropollutants in edible crops. In this study, we developed and validated a novel QuEChERS–SPME–GC/MS method for the simultaneous determination of 15 polycyclic aromatic hydrocarbons (PAHs), 3 [...] Read more.
The increasing use of reclaimed wastewater in agriculture raises growing concerns about the accumulation of priority organic micropollutants in edible crops. In this study, we developed and validated a novel QuEChERS–SPME–GC/MS method for the simultaneous determination of 15 polycyclic aromatic hydrocarbons (PAHs), 3 nitro-PAHs, and 14 polychlorinated biphenyls congeners in Eruca vesicaria (rocket) leaves. The method was optimized to address the matrix complexity of leafy vegetables and included a two-step dispersive solid-phase extraction (d-SPE) cleanup and aqueous dilution prior to SPME. Validation showed excellent performance, with MDLs between 0.1 and 6.7 µg/kg, recoveries generally between 70 and 120%, and precision (RSD%) below 20%. The greenness of the protocol was assessed using the AGREE metric, yielding a score of 0.60. Application to rocket samples irrigated with treated wastewater revealed no significant accumulation of target pollutants compared to commercial samples. All PCB and N-PAH congeners were below detection limits, and PAH concentrations were low and mostly limited to lighter compounds. Human health risk assessment based on toxic equivalent concentrations confirmed that estimated cancer risk (CR) values 10−9–10−8 were well below accepted safety thresholds. These findings support the safe use of reclaimed water for leafy crop irrigation under proper treatment conditions and highlight the suitability of the method for trace-level food safety monitoring. Full article
Show Figures

Figure 1

13 pages, 585 KB  
Article
Effects of Dioxin Exposure on Brain Regional Volumes of Fathers from Birth Cohorts in Herbicide-Sprayed and Unsprayed Areas in Vietnam
by Hai Minh Nguyen, Hoa Thi Vu, Thao Ngoc Pham, Tai Pham-The, Takashi Yokawa, Ryo Matsuda, Masafumi Nakamura, Muneko Nishijo, Yutaro Takahashi, Yoshikazu Nishino, Nghi Tran Ngoc and Hisao Nishijo
Toxics 2025, 13(9), 710; https://doi.org/10.3390/toxics13090710 - 23 Aug 2025
Viewed by 515
Abstract
We previously reported that the fathers of the Bien Hoa birth cohort in Vietnam showed altered brain regional gray matter volumes, as measured by magnetic resonance imaging, and social anxiety traits associated with perinatal dioxin exposure. In the present study, we aimed to [...] Read more.
We previously reported that the fathers of the Bien Hoa birth cohort in Vietnam showed altered brain regional gray matter volumes, as measured by magnetic resonance imaging, and social anxiety traits associated with perinatal dioxin exposure. In the present study, we aimed to compare gray matter volumes and social anxiety scale scores between dioxin-exposed fathers in Bien Hoa and unexposed controls in an unsprayed area. Fat-based bioassay-toxic equivalency levels in serum were used to indicate dioxin exposure in adulthood. Results indicated that the longer Bien Hoa residency group (≥30 years) exposed to dioxins during the perinatal period and early childhood showed higher gray matter volumes in the right and left temporal lobes than controls. However, no significant differences in temporal lobe gray matter volumes were found between the shorter Bien Hoa residency group (<30 years) and controls. Furthermore, the longer, but not shorter, Bien Hoa residency group showed higher social–emotional subscale scores than controls. Additionally, fat-based bioassay-toxic equivalency levels were inversely correlated with gray matter volumes in several right temporal gyri. These findings suggest biphasic life stage-dependent adverse effects of dioxin exposure: perinatal dioxin exposure increases gray matter volumes, especially in the temporal lobe, which leads to neurodevelopmental disorders with socio-emotional disturbances, whereas dioxin exposure after brain development decreases cortical gray matter volumes, possibly leading to cognitive dysfunction. Full article
(This article belongs to the Section Human Toxicology and Epidemiology)
Show Figures

Graphical abstract

15 pages, 1876 KB  
Article
Coupled In Silico Toxicology Models Reveal Equivalent Ecological Risks from BPA and Its Alternatives in Chinese Surface Waters
by Jiawei Zhang, Jingzi Xiao, Huanyu Tao, Mengtao Zhang, Lu Lu and Changbo Qin
Toxics 2025, 13(8), 671; https://doi.org/10.3390/toxics13080671 - 9 Aug 2025
Viewed by 505
Abstract
As bisphenol A (BPA) has gradually become restricted in production scenarios, the ecological risk level of its main replacement chemicals, i.e., bisphenol S (BPS) and bisphenol F (BPF), should be noted. To overcome the limitations of toxicity data, two kinds of in silico [...] Read more.
As bisphenol A (BPA) has gradually become restricted in production scenarios, the ecological risk level of its main replacement chemicals, i.e., bisphenol S (BPS) and bisphenol F (BPF), should be noted. To overcome the limitations of toxicity data, two kinds of in silico toxicology models (quantitative structure–activity relationship (QSAR) and interspecies correlation estimation (ICE) models) were used to predict enough toxicity data for multiple species. The accuracy of the coupled in silico toxicology models was verified by comparing experimental and predicted data results. Reliable predicted no-effect concentrations (PNECs) of 8.04, 35.2, and 34.2 μg/L were derived for BPA, BPS, and BPF, respectively, using species sensitivity distribution (SSD). Accordingly, the ecological risk quotient (RQ) values of BPA, BPS, and BPF for aquatic organisms were assessed in 32 major Chinese surface waters; they ranged from nearly 0 to 1.86, but were <0.1 in most cases, which indicated that the overall ecological risk level of BPA and its alternatives was low. However, in some cases, the ecological risks posed by BPA alternatives have reached equivalent levels to those posed by BPA (e.g., Liuxi River, Taihu Lake, and Pearl River), which requires further attention. This study provides evidence that the application of coupled in silico toxicology models can effectively predict toxicity data for new chemicals, avoiding time-consuming and laborious animal experiments. The main findings of this study can support environmental risk assessment and management for new chemicals that lack toxicity data. Full article
(This article belongs to the Section Emerging Contaminants)
Show Figures

Graphical abstract

26 pages, 3951 KB  
Article
Exploring the Bioactive Potential and Chemical Profile of Schinus molle Essential Oil: An Integrated In Silico and In Vitro Evaluation
by Rómulo Oses, Matías Ferrando, Flavia Bruna, Patricio Retamales, Myriam Navarro, Katia Fernández, Waleska Vera, María José Larrazábal, Iván Neira, Adrián Paredes, Manuel Osorio, Osvaldo Yáñez, Martina Jacobs and Jessica Bravo
Plants 2025, 14(15), 2449; https://doi.org/10.3390/plants14152449 - 7 Aug 2025
Viewed by 1170
Abstract
Chilean Schinus molle has been used in traditional medicine for effects such as antibacterial, antifungal, anti-inflammatory, analgesic, antiviral, antitumoral, antioxidant, antispasmodic, astringent, antipyretic, cicatrizant, cytotoxic, diuretic, among others. In this study, we evaluated the pharmacological potential of Schinus molle seed essential oil extract [...] Read more.
Chilean Schinus molle has been used in traditional medicine for effects such as antibacterial, antifungal, anti-inflammatory, analgesic, antiviral, antitumoral, antioxidant, antispasmodic, astringent, antipyretic, cicatrizant, cytotoxic, diuretic, among others. In this study, we evaluated the pharmacological potential of Schinus molle seed essential oil extract (SM_EO) through in vitro and in silico approaches. In vitro, the antioxidant potential was analyzed, and antitumor activity was evaluated in non-tumor and human epithelial tumor cell lines. Caenorhabditis elegans was used as a model for evaluating toxicity, and the chemical composition of the SM_EO was analyzed using gas chromatography–mass spectrometry. The oil contained four major monoterpenes: α-phellandrene (34%), β-myrcene (23%), limonene (13%), and β-phellandrene (7%). Based on quantum mechanical calculations, the reactivity of the molecules present in the SM_EO was estimated. The results indicated that α- phellandrene, β-phellandrene, and β-myrcene showed the highest nucleophilic activity. In addition, the compounds following these as candidates for antioxidant and antiproliferative activities were α-phellandrene, β-phellandrene, ρ-cymene, sabinene, caryophyllene, l-limonene, and α-pinene, highlighting β-myrcene. Based on ADME-Tox properties, it is feasible to use these compounds as new drug candidates. Moreover, the antibacterial activity MIC value obtained for B. cereus was equivalent to 2 μg/mL, and for Y. enterocolitica, S. enteritidis, and S. typhimurium, the MIC value was 32.5 μg/μL. SM_EO could selectively inhibit the proliferation of human epithelial mammary tumor MCF7 cells treated with SM_EOs at 64 and 16 ug/mL—a significant increase in BCL-2 in a dose-dependent manner—and showed low toxicity against Caenorhabditis elegans (from 10 to 0.078 mg·mL−1). These findings suggest that SM_EO may be a potential source of bioactive compounds, encouraging further investigation for applications in veterinary medicine, cosmetics, and sanitation. Full article
Show Figures

Graphical abstract

19 pages, 2642 KB  
Article
Lipid Nanoparticle-Encapsulated TALEN-Encoding mRNA Inactivates Hepatitis B Virus Replication in Cultured Cells and Transgenic Mice
by Tiffany Smith, Prashika Singh, Ridhwaanah Bhana, Dylan Kairuz, Kristie Bloom, Mohube Betty Maepa, Abdullah Ely and Patrick Arbuthnot
Viruses 2025, 17(8), 1090; https://doi.org/10.3390/v17081090 - 7 Aug 2025
Viewed by 1228
Abstract
Chronic infection with the hepatitis B virus (HBV) results in over 1 million deaths annually. Although currently licensed treatments, including pegylated interferon-α and nucleoside/nucleotide analogs, can inhibit viral replication, they rarely eradicate covalently closed circular DNA (cccDNA) reservoirs. Moreover, vaccination does not offer [...] Read more.
Chronic infection with the hepatitis B virus (HBV) results in over 1 million deaths annually. Although currently licensed treatments, including pegylated interferon-α and nucleoside/nucleotide analogs, can inhibit viral replication, they rarely eradicate covalently closed circular DNA (cccDNA) reservoirs. Moreover, vaccination does not offer therapeutic benefit to already infected individuals or non-responders. Consequently, chronic infection is maintained by the persistence of cccDNA in infected hepatocytes. For this reason, novel therapeutic strategies that permanently inactivate cccDNA are a priority. Obligate heterodimeric transcription activator-like effector nucleases (TALENs) provide the precise gene-editing needed to disable cccDNA. To develop this strategy using a therapeutically relevant approach, TALEN-encoding mRNA targeting viral core and surface genes was synthesized using in vitro transcription with co-transcriptional capping. TALENs reduced hepatitis B surface antigen (HBsAg) by 80% in a liver-derived mammalian cell culture model of infection. In a stringent HBV transgenic murine model, a single dose of hepatotropic lipid nanoparticle-encapsulated TALEN mRNA lowered HBsAg by 63% and reduced viral particle equivalents by more than 99%, without evidence of toxicity. A surveyor assay demonstrated mean in vivo HBV DNA mutation rates of approximately 16% and 15% for Core and Surface TALENs, respectively. This study presents the first evidence of the therapeutic potential of TALEN-encoding mRNA to inactivate HBV replication permanently. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

25 pages, 4393 KB  
Article
Development and Preclinical Evaluation of Fixed-Dose Capsules Containing Nicergoline, Piracetam, and Hawthorn Extract for Sensorineural Hearing Loss
by Lucia Maria Rus, Andrei Uncu, Sergiu Parii, Alina Uifălean, Simona Codruța Hegheș, Cristina Adela Iuga, Ioan Tomuță, Ecaterina Mazur, Diana Șepeli, Irina Kacso, Fliur Macaev, Vladimir Valica and Livia Uncu
Pharmaceutics 2025, 17(8), 1017; https://doi.org/10.3390/pharmaceutics17081017 - 5 Aug 2025
Viewed by 887
Abstract
Background: Fixed-dose combinations have advanced in many therapeutic areas, including otorhinolaryngology, where hearing disorders are increasingly prevalent. Objectives: The present study focuses on developing and evaluating a new capsule combining nicergoline (NIC), piracetam (PIR), and hawthorn extract (HE) for the management of sensorineural [...] Read more.
Background: Fixed-dose combinations have advanced in many therapeutic areas, including otorhinolaryngology, where hearing disorders are increasingly prevalent. Objectives: The present study focuses on developing and evaluating a new capsule combining nicergoline (NIC), piracetam (PIR), and hawthorn extract (HE) for the management of sensorineural hearing loss. Methods: The first phase methodology comprised preformulation studies (DSC, FTIR, and PXRD) to assess compatibility among active substances and excipients. Subsequently, four formulations were prepared and tested for flowability, dissolution behavior in acidic and neutral media, and stability under oxidative, thermal, and photolytic stress. Quantification of the active substances and flavonoids was performed using validated spectrophotometric and HPLC-UV methods. Results: Among the tested variants, the F1 formulation (4.5 mg NIC, 200 mg PIR, 50 mg HE, 2.5 mg magnesium stearate, 2.5 mg sodium starch glycolate, and 240.5 mg monohydrate lactose per capsule) displayed optimal technological properties, superior dissolution in acidic media, and was further selected for evaluation. The antioxidant activity of the formulation was confirmed through the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, Trolox Equivalent Antioxidant Capacity (TEAC), and iron chelation tests, and was primarily attributed to the flavonoid content of the HE. Acute toxicity tests in mice and rats indicated a high safety margin (LD50 > 2500 mg/kg), while ototoxicity assessments showed no adverse effects on auditory function. Conclusions: The developed formulation displayed good stability, safety, and therapeutic potential, while the applied workflow could represent a model for the development of future fixed-dose combinations. Full article
(This article belongs to the Special Issue Natural Product Pharmaceuticals, 2nd Edition)
Show Figures

Figure 1

23 pages, 698 KB  
Article
Modelling the Bioaccumulation of Ciguatoxins in Parrotfish on the Great Barrier Reef Reveals Why Biomagnification Is Not a Property of Ciguatoxin Food Chains
by Michael J. Holmes and Richard J. Lewis
Toxins 2025, 17(8), 380; https://doi.org/10.3390/toxins17080380 - 30 Jul 2025
Viewed by 936
Abstract
We adapt previously developed conceptual and numerical models of ciguateric food chains on the Great Barrier Reef, Australia, to model the bioaccumulation of ciguatoxins (CTXs) in parrotfish, the simplest food chain with only two trophic levels. Our model indicates that relatively low (1 [...] Read more.
We adapt previously developed conceptual and numerical models of ciguateric food chains on the Great Barrier Reef, Australia, to model the bioaccumulation of ciguatoxins (CTXs) in parrotfish, the simplest food chain with only two trophic levels. Our model indicates that relatively low (1 cell/cm2) densities of Gambierdiscus/Fukuyoa species (hereafter collectively referred to as Gambierdiscus) producing known concentrations of CTX are unlikely to be a risk of producing ciguateric fishes on the Great Barrier Reef unless CTX can accumulate and be retained in parrotfish over many months. Cell densities on turf algae equivalent to 10 Gambierdiscus/cm2 producing known maximum concentrations of Pacific-CTX-4 (0.6 pg P-CTX-4/cell) are more difficult to assess but could be a risk. This cell density may be a higher risk for parrotfish than we previously suggested for production of ciguateric groupers (third-trophic-level predators) since second-trophic-level fishes can accumulate CTX loads without the subsequent losses that occur between trophic levels. Our analysis suggests that the ratios of parrotfish length-to-area grazed and weight-to-area grazed scale differently (allometrically), where the area grazed is a proxy for the number of Gambierdiscus consumed and hence proportional to toxin accumulation. Such scaling can help explain fish size–toxicity relationships within and between trophic levels for ciguateric fishes. Our modelling reveals that CTX bioaccumulates but does not necessarily biomagnify in food chains, with the relative enrichment and depletion rates of CTX varying with fish size and/or trophic level through an interplay of local and regional food chain influences. Our numerical model for the bioaccumulation and transfer of CTX across food chains helps conceptualize the development of ciguateric fishes by comparing scenarios that reveal limiting steps in producing ciguateric fish and focuses attention on the relative contributions from each part of the food chain rather than only on single components, such as CTX production. Full article
(This article belongs to the Collection Ciguatoxin)
Show Figures

Figure 1

14 pages, 1185 KB  
Article
Role of Oral Bacteria in Mediating Gemcitabine Resistance in Pancreatic Cancer
by Geng Xu, Yaling Jiang, Chen Sun, Bernd W. Brandt, Kamran Nazmi, Luca Morelli, Giulia Lencioni, Elisa Giovannetti and Dongmei Deng
Biomolecules 2025, 15(7), 1018; https://doi.org/10.3390/biom15071018 - 15 Jul 2025
Viewed by 986
Abstract
Oral microbiota have been implicated in pancreatic ductal adenocarcinoma (PDAC) and may contribute to chemotherapy resistance. While previous studies attributed bacteria-induced resistance to indirect host modulation, recent findings suggest a direct mechanism. Escherichia coli expressing long-form cytidine deaminase (CDDL) can degrade [...] Read more.
Oral microbiota have been implicated in pancreatic ductal adenocarcinoma (PDAC) and may contribute to chemotherapy resistance. While previous studies attributed bacteria-induced resistance to indirect host modulation, recent findings suggest a direct mechanism. Escherichia coli expressing long-form cytidine deaminase (CDDL) can degrade gemcitabine, a chemotherapeutic agent, into a non-toxic form, leading to resistance. In contrast, bacteria carrying short form (CDDS) or lacking CDD did not induce resistance. This study investigates whether oral bacteria can cause gemcitabine resistance in PDAC cells through CDD-mediated degradation. Oral microbes associated with PDAC were selected based on CDD isoforms: Aggregatibacter actinomycetemcomitans carrying CDDL, Enterococcus faecalis, Streptococcus mutans, Porphyromonas gingivalis, all carrying CDDS, and Fusobacterium nucleatum lacking CDD. The selected microbes, along with wild-type and CDD-deficient E. coli, were co-incubated with gemcitabine to assess its degradation and PDAC cell proliferation. A. actinomycetemcomitans fully degraded gemcitabine and induced resistance. Surprisingly, CDDS-expressing oral bacteria partially degraded gemcitabine in a strain-dependent manner. Expressing either CDDL or CDDS in CDD-deficient E. coli resulted in equivalent gemcitabine degradation and resistance, indicating that CDD function is independent of isoform length. These findings highlight the role of oral bacteria in gemcitabine resistance and the need for strategies to mitigate microbial-driven resistance in PDAC treatment. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

18 pages, 907 KB  
Article
Evaluating Coffee and Rosemary Extracts as Sustainable Alternatives to Synthetic Preservatives
by Luiza Aparecida Luna Silvério, Érica Mendes dos Santos, Josélia Cristina de Oliveira Moreira, Ana Lucia Tasca Gois Ruiz, Karina Cogo-Müller, Janaína Artem Ataide, Ana Cláudia Paiva-Santos and Priscila Gava Mazzola
Cosmetics 2025, 12(4), 147; https://doi.org/10.3390/cosmetics12040147 - 11 Jul 2025
Cited by 1 | Viewed by 1377
Abstract
Preservatives are essential for ensuring the stability, safety, and efficacy of pharmaceuticals, cosmetics, and food products. However, synthetic preservatives often raise toxicity concerns. This study evaluated Rosmarinus officinalis (rosemary) leaf extracts and coffee by-products from Coffea arabica and Coffea canephora as potential natural [...] Read more.
Preservatives are essential for ensuring the stability, safety, and efficacy of pharmaceuticals, cosmetics, and food products. However, synthetic preservatives often raise toxicity concerns. This study evaluated Rosmarinus officinalis (rosemary) leaf extracts and coffee by-products from Coffea arabica and Coffea canephora as potential natural preservatives for emulsions. Antimicrobial activity was assessed against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans, along with cytotoxicity tests on human keratinocytes and antioxidant activity. The most effective extracts were incorporated into an oil-in-water emulsion for evaluation. C. arabica extracts showed the best results among coffee samples, with 43.53 mg GAE/g (gallic acid equivalents) and 2.32 mg QE/g of total phenolics (quercetin equivalents) and flavonoids, and minimum inhibitory concentrations (MICs) of 12.5 mg/mL against Escherichia coli, and 25 mg/mL against Staphylococcus aureus and Pseudomonas aeruginosa. Rosemary extract showed 158.01 ± 23.67 mg GAE/g and 1.95 ± 0.05 mg QE/g, with MICs of 2.5 mg/mL against E. coli, 1.25 mg/mL against P. aeruginosa, 0.3 mg/mL against S. aureus, and 0.08 mg/mL against Candida albicans. However, rosemary extracts displayed complete inhibition of keratinocyte growth at 20 µg/mL. A combination of both extracts had synergistic effects against S. aureus and P. aeruginosa. The emulsion met microbial safety standards in the challenge test for bacteria but not yeast. The results suggest that rosemary extracts enhance the potential of coffee by-product as a preservative system, and as a multifunctional excipient system in cosmetics, offering preservation and antioxidant protection. However, further strategies, such as adding other ingredients or adjusting the formulation pH, are required to ensure yeast inhibition. Full article
(This article belongs to the Section Cosmetic Formulations)
Show Figures

Figure 1

29 pages, 3081 KB  
Review
“Non-Classical” Platinum Complexes: A Concise Review
by Adriana Bakalova, Nina Ruseva and Emiliya Cherneva
Int. J. Mol. Sci. 2025, 26(13), 6270; https://doi.org/10.3390/ijms26136270 - 28 Jun 2025
Viewed by 1068
Abstract
The utilization of platinum complexes in medicine continues to be a prevalent treatment modality for diverse tumour types. However, it should be noted that certain platinum complexes are characterized by a high degree of toxicity. In recent years, there has been a focus [...] Read more.
The utilization of platinum complexes in medicine continues to be a prevalent treatment modality for diverse tumour types. However, it should be noted that certain platinum complexes are characterized by a high degree of toxicity. In recent years, there has been a focus among scientists on synthesizing “non-classic” platinum complexes, such as those with a trans-configuration, Pt(IV) complexes, and mixed ammine/amine platinum complexes, with the aim of reducing the toxic side effects of certain platinum complexes, including cisplatin. For instance, newly synthesized platinum complexes with a trans-configuration exhibited substantial cytotoxic activity which was comparable to that of the corresponding cis-isomers and cisplatin. This finding challenged the prevailing cis-geometry paradigm and prompted a re-evaluation of the structural activity relationships (SARs) of antitumour platinum complexes. It is widely accepted that Pt(IV) complexes act as prodrugs and release the active Pt(II) species. This property renders them promising candidates as anticancer drugs. Furthermore, it has been established that mixed ammine/amine platinum complexes are less toxic than cisplatin. In addition, compared to cisplatin, they have been observed to have equivalent or greater cytotoxic activity. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

57 pages, 1430 KB  
Review
A Fresh Perspective on Cyanobacterial Paralytic Shellfish Poisoning Toxins: History, Methodology, and Toxicology
by Zacharias J. Smith, Kandis M. Arlinghaus, Gregory L. Boyer and Cathleen J. Hapeman
Mar. Drugs 2025, 23(7), 271; https://doi.org/10.3390/md23070271 - 27 Jun 2025
Viewed by 1881
Abstract
Paralytic shellfish poisoning toxins (PSPTs) are a class of neurotoxins most known for causing illness from consuming contaminated shellfish. These toxins are also present in freshwater systems with the concern that they contaminate drinking and recreational waters. This review provides (1) a complete [...] Read more.
Paralytic shellfish poisoning toxins (PSPTs) are a class of neurotoxins most known for causing illness from consuming contaminated shellfish. These toxins are also present in freshwater systems with the concern that they contaminate drinking and recreational waters. This review provides (1) a complete list of the 84+ known PSPTs and important chemical features; (2) a complete list of all environmental freshwater PSPT detections; (3) an outline of the certified PSPT methods and their inherent weaknesses; and (4) a discussion of PSPT toxicology, the weaknesses in existing data, and existing freshwater regulatory limits. We show ample evidence of production of freshwater PSPTs by cyanobacteria worldwide, but data and method uncertainties limit a proper risk assessment. One impediment is the poor understanding of freshwater PSPT profiles and lack of commercially available standards needed to identify and quantify freshwater PSPTs. Further constraints are the limitations of toxicological data derived from human and animal model exposures. Unassessed mouse toxicity data from 1978 allowed us to calculate and propose toxicity equivalency factors (TEF) for 11-hydroxysaxitoxin (11-OH STX; M2) and 11-OH dcSTX (dcM2). TEFs for the 11-OH STX epimers were calculated to be 0.4 and 0.6 for 11α-OH STX (M2α) and 11β-OH STX (M2β), while we estimate that TEFs for 11α-OH dcSTX (dcM2α) and 11β-OH dcSTX (dcM2β) congeners would be 0.16 and 0.23, respectively. Future needs for freshwater PSPTs include increasing the number of reference materials for environmental detection and toxicity evaluation, developing a better understanding of PSPT profiles and important environmental drivers, incorporating safety factors into exposure guidelines, and evaluating the accuracy of the established no-observed-adverse-effect level. Full article
(This article belongs to the Section Marine Toxins)
Show Figures

Figure 1

15 pages, 2312 KB  
Article
The G311E Mutant Gene of MATE Family Protein DTX6 Confers Diquat and Paraquat Resistance in Rice Without Yield or Nutritional Penalties
by Gaoan Chen, Jiaying Han, Ziyan Sun, Mingming Zhao, Zihan Zhang, Shuo An, Muyu Shi, Jinxiao Yang and Xiaochun Ge
Int. J. Mol. Sci. 2025, 26(13), 6204; https://doi.org/10.3390/ijms26136204 - 27 Jun 2025
Viewed by 528
Abstract
Weeds present a pervasive challenge in agricultural fields. The integration of herbicide-resistant crops with chemical weed management offers an effective solution for sustainable weed control while reducing labor inputs, particularly in large-scale intensive farming systems. Consequently, the development of herbicide-resistant cultivars has emerged [...] Read more.
Weeds present a pervasive challenge in agricultural fields. The integration of herbicide-resistant crops with chemical weed management offers an effective solution for sustainable weed control while reducing labor inputs, particularly in large-scale intensive farming systems. Consequently, the development of herbicide-resistant cultivars has emerged as an urgent priority. In this study, we found that the G311E mutant gene of Arabidopsis MATE (multidrug and toxic compound extrusion) family transporter DTX6, designated DTX6m, confers robust resistance to bipyridyl herbicides paraquat and diquat in rice. DTX6m-overexpression lines exhibited marked resistance to these two herbicides, tolerating diquat concentrations up to 5 g/L, which is five-fold higher than the recommended field application dosage. Agronomic assessments demonstrated that grain yields of DTX6m-overexpressing plants were statistically equivalent to those of wild-type plants. Moreover, the plants displayed beneficial phenotypic changes, such as accelerated flowering and a slight reduction in height. Seed morphometric analysis indicated that in comparison with the wild-type control, DTX6m-transgenic lines exhibited altered grain dimensions while maintaining consistent 1000-grain weight. Nutritional assays further demonstrated that DTX6m increased the levels of free amino acids in seeds, while normal protein and starch contents were retained. Collectively, these results establish that DTX6m effectively boosts rice resistance to paraquat and diquat, validating DTX6m as a candidate gene for engineering plant herbicide resistance and also implying a potential role for DTX6m in amino acid homeostasis in plants. Full article
(This article belongs to the Special Issue Advanced Plant Molecular Responses to Abiotic Stresses)
Show Figures

Figure 1

Back to TopTop