Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (32,693)

Search Parameters:
Keywords = track

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3413 KB  
Article
Research on a Soil Mechanical Resistance Detection Device Based on Flexible Thin-Film Pressure Sensors
by Haojie Zhang, Wenyi Zhang, Bing Qi, Yunxia Wang, Youqiang Ding, Yue Deng and Maxat Amantayev
Agronomy 2025, 15(9), 2041; https://doi.org/10.3390/agronomy15092041 (registering DOI) - 25 Aug 2025
Abstract
Soil compaction is a pivotal factor influencing crop growth and yield, and its accurate assessment is imperative for precision agricultural management. Soil mechanical resistance is the key indicator of soil compaction, with accurate measurement enabling precise assessment. Dynamic soil mechanical resistance measurement outperforms [...] Read more.
Soil compaction is a pivotal factor influencing crop growth and yield, and its accurate assessment is imperative for precision agricultural management. Soil mechanical resistance is the key indicator of soil compaction, with accurate measurement enabling precise assessment. Dynamic soil mechanical resistance measurement outperforms conventional manual fixed-point sampling in data acquisition efficiency. In this paper, a methodology is proposed for the dynamic acquisition of soil mechanical resistance using a flexible thin-film pressure sensor. This study dynamically captures soil mechanical resistance at three depths (5 cm, 10 cm, and 15 cm) under dynamic machinery operating conditions. A device was designed for the detection of soil mechanical resistance, and a prediction model for soil mechanical resistance was developed based on the Kalman filter algorithm. Tests were conducted under steady-state and variable-load conditions, and the predicted values accurately tracked the reference pressure. Soil tank trials showed that at an operating speed of 0.69–0.72 km/h, the average prediction errors for the three soil layers were 2.03%, 1.48%, and 6.27%, with the coefficient of determination (R2) between predicted and measured values reaching 0.96. The system effectively predicts multi-depth soil resistance, providing novel theoretical and technical approaches for dynamic acquisition. Full article
(This article belongs to the Section Precision and Digital Agriculture)
16 pages, 722 KB  
Article
Genomic Epidemiology of Vancomycin-Resistant Enterococcus faecium Isolates with Full and Truncated vanA Operons from Russian Hospitals
by Anna Slavokhotova, Andrey Shelenkov, Yulia Mikhaylova, Lyudmila Petrova, Vitaly Gusarov, Mikhail Zamyatin and Vasiliy Akimkin
Antibiotics 2025, 14(9), 858; https://doi.org/10.3390/antibiotics14090858 (registering DOI) - 25 Aug 2025
Abstract
Background: Vancomycin-resistant Enterococcus faecium (VREfm), particularly vanA-positive strains, represents a growing threat in hospital settings worldwide. These bacteria are able to survive under severe environmental conditions, including high temperatures and saline concentrations. High genome plasticity and advanced ability of inheriting antimicrobial resistance [...] Read more.
Background: Vancomycin-resistant Enterococcus faecium (VREfm), particularly vanA-positive strains, represents a growing threat in hospital settings worldwide. These bacteria are able to survive under severe environmental conditions, including high temperatures and saline concentrations. High genome plasticity and advanced ability of inheriting antimicrobial resistance determinants defined the success of E. faecium as a hospital pathogen. Methods: This study presents the whole genomic characterization of vanA-positive VREfm isolates, analyzing 10 clinical isolates collected from three tertiary care hospitals in Moscow, Russia. Several typing approaches, including two MLST schemes and cgMLST profiles, were used to elucidate the relationship between the isolates. Phylogenetic analysis placed the isolates in context with global VREfm populations, demonstrating both local clonal expansion and possible international connections. Phenotypic and genomic antimicrobial resistance profiles were obtained, as well as data regarding the repertoire of virulence factors and plasmid content. Results: Whole genome sequencing revealed that all isolates belonged to the clinically significant CC17 lineage, specifically sequence types ST80 and ST552. Notably, two isolates possessed truncated Tn1546-type transposons lacking vanY and vanZ genes, representing a potentially emerging variant of the vanA operon in Russian clinical settings. A plasmid carrying a truncated vanA operon was reconstructed using long-read sequencing. Conclusions: The study highlights the utility of genomic investigation for tracking resistance mechanisms and strain dissemination, providing crucial baseline data for epidemiological surveillance of infections caused by VREfm in Russia. These findings emphasize the need for continued genomic monitoring to understand the evolution and spread of antimicrobial resistance in clinically important enterococcal lineages. Full article
17 pages, 1832 KB  
Article
Construction and Characterization of a Vesicular Stomatitis Virus Chimera Expressing Schmallenberg Virus Glycoproteins
by Huijuan Guo, Zhigang Jiang, Jing Wang, Fang Wang, Qi Jia, Zhigao Bu, Xin Yin and Zhiyuan Wen
Vet. Sci. 2025, 12(9), 809; https://doi.org/10.3390/vetsci12090809 (registering DOI) - 25 Aug 2025
Abstract
Schmallenberg virus (SBV) is a negative-sense RNA virus transmitted by insect vectors, causing arthrogryposis-hydranencephaly syndrome in newborn ruminants. Since its discovery in Germany and the Netherlands in 2011, SBV has rapidly spread across multiple European countries, resulting in significant economic losses in the [...] Read more.
Schmallenberg virus (SBV) is a negative-sense RNA virus transmitted by insect vectors, causing arthrogryposis-hydranencephaly syndrome in newborn ruminants. Since its discovery in Germany and the Netherlands in 2011, SBV has rapidly spread across multiple European countries, resulting in significant economic losses in the livestock industry. With the increasing global animal trade and the expanded range of insect transmission, the risk of SBV introduction into non-endemic regions is also rising. As the gold standard for serological testing, the virus neutralization test (VNT) is crucial for tracking the spread of SBV and evaluating the efficacy of vaccines. However, in non-endemic regions, the lack of local viral strains and the biosafety risks associated with introducing foreign strains pose challenges to the implementation of VNT. In this study, we employed reverse genetics techniques using vesicular stomatitis virus (VSV) to substitute the VSV G protein with the envelope glycoproteins of SBV, thereby successfully generating and rescuing the recombinant virus rVSVΔG-eGFP-SBVGPC. The recombinant virus was then thoroughly characterized in terms of SBV Gc protein expression, viral morphology, and growth kinetics. Importantly, rVSVΔG-eGFP-SBVGPC exhibited SBV-specific cell tropism and was capable of reacting with SBV-positive serum, enabling the measurement of neutralizing antibody titers. The results suggest that this recombinant virus can serve as a feasible alternative for SBV neutralization tests, with promising potential for application in serological screening and vaccine evaluation. Full article
(This article belongs to the Section Veterinary Microbiology, Parasitology and Immunology)
Show Figures

Figure 1

43 pages, 9119 KB  
Article
ProVANT Simulator: A Virtual Unmanned Aerial Vehicle Platform for Control System Development
by Junio E. Morais, Daniel N. Cardoso, Brenner S. Rego, Richard Andrade, Iuro B. P. Nascimento, Jean C. Pereira, Jonatan M. Campos, Davi F. Santiago, Marcelo A. Santos, Leandro B. Becker, Sergio Esteban and Guilherme V. Raffo
Aerospace 2025, 12(9), 762; https://doi.org/10.3390/aerospace12090762 (registering DOI) - 25 Aug 2025
Abstract
This paper introduces the ProVANT Simulator, a comprehensive environment for developing and validating control algorithms for Unmanned Aerial Vehicles (UAVs). Built on the Gazebo physics engine and integrated with the Robot Operating System (ROS), it enables reliable Software-in-the-Loop (SIL) and Hardware-in-the-Loop (HIL) testing. [...] Read more.
This paper introduces the ProVANT Simulator, a comprehensive environment for developing and validating control algorithms for Unmanned Aerial Vehicles (UAVs). Built on the Gazebo physics engine and integrated with the Robot Operating System (ROS), it enables reliable Software-in-the-Loop (SIL) and Hardware-in-the-Loop (HIL) testing. Addressing key challenges such as modeling complex multi-body dynamics, simulating disturbances, and supporting real-time implementation, the framework features a modular architecture, an intuitive graphical interface, and versatile capabilities for modeling, control, and hardware validation. Case studies demonstrate its effectiveness across various UAV configurations, including quadrotors, tilt-rotors, and unmanned aerial manipulators, highlighting its applications in aggressive maneuvers, load transportation, and trajectory tracking under disturbances. Serving both academic research and industrial development, the ProVANT Simulator reduces prototyping costs, development time, and associated risks. Full article
16 pages, 1937 KB  
Article
The Study and Development of BPM Noise Monitoring at the Siam Photon Source
by Wanisa Promdee, Sukho Kongtawong, Surakawin Suebka, Thapakron Pulampong, Natthawut Suradet, Roengrut Rujanakraikarn, Puttimate Hirunuran and Siriwan Jummunt
Particles 2025, 8(3), 76; https://doi.org/10.3390/particles8030076 (registering DOI) - 25 Aug 2025
Abstract
This study presents the development of a noise-monitoring system for the storage ring at the Siam Photon Source, designed to detect and classify noise patterns in real time using beam position monitor (BPM) data. Noise patterns were categorized into four classes: broad peak, [...] Read more.
This study presents the development of a noise-monitoring system for the storage ring at the Siam Photon Source, designed to detect and classify noise patterns in real time using beam position monitor (BPM) data. Noise patterns were categorized into four classes: broad peak, multipeak, normal peak, and no beam. Two BPMs located at the multipole wiggler section, BPM-MPW1 and BPM-MPW2, were selected for detailed monitoring based on consistent noise trends observed across the ring. The dataset was organized in two complementary formats: two-dimensional (2D) images used for training and validating the models and one-dimensional (1D) CSV files containing the corresponding raw numerical signal data. Pre-trained deep learning and 1D convolutional neural network (CNN) models were employed to classify these patterns, achieving an overall classification accuracy of up to 99.83%. The system integrates with the EPICS control framework and archiver log data, enabling continuous data acquisition and long-term analyses. Visualization and monitoring features were developed using CS-Studio/Phoebus, providing both operators and beamline scientists with intuitive tools to track beam quality and investigate noise-related anomalies. This approach highlights the potential of combining beam diagnostics with machine learning to enhance operational stability and optimize the synchrotron radiation performance for user experiments. Full article
(This article belongs to the Special Issue Generation and Application of High-Power Radiation Sources 2025)
22 pages, 5532 KB  
Article
OFNet: Integrating Deep Optical Flow and Bi-Domain Attention for Enhanced Change Detection
by Liwen Zhang, Quan Zou, Guoqing Li, Wenyang Yu, Yong Yang and Heng Zhang
Remote Sens. 2025, 17(17), 2949; https://doi.org/10.3390/rs17172949 (registering DOI) - 25 Aug 2025
Abstract
Change detection technology holds significant importance in disciplines such as urban planning, land utilization tracking, and hazard evaluation, as it can efficiently and accurately reveal dynamic regional change processes, providing crucial support for scientific decision-making and refined management. Although deep learning methods based [...] Read more.
Change detection technology holds significant importance in disciplines such as urban planning, land utilization tracking, and hazard evaluation, as it can efficiently and accurately reveal dynamic regional change processes, providing crucial support for scientific decision-making and refined management. Although deep learning methods based on computer vision have achieved remarkable progress in change detection, they still face challenges including reducing dynamic background interference, capturing subtle changes, and effectively fusing multi-temporal data features. To address these issues, this paper proposes a novel change detection model called OFNet. Building upon existing Siamese network architectures, we introduce an optical flow branch module that supplements pixel-level dynamic information. By incorporating motion features to guide the network’s attention to potential change regions, we enhance the model’s ability to characterize and discriminate genuine changes in cross-temporal remote sensing images. Additionally, we innovatively propose a dual-domain attention mechanism that simultaneously models discriminative features in both spatial and frequency domains for change detection tasks. The spatial attention focuses on capturing edge and structural changes, while the frequency-domain attention strengthens responses to key frequency components. The synergistic fusion of these two attention mechanisms effectively improves the model’s sensitivity to detailed changes and enhances the overall robustness of detection. Experimental results demonstrate that OFNet achieves an IoU of 83.03 on the LEVIR-CD dataset and 82.86 on the WHU-CD dataset, outperforming current mainstream approaches and validating its superior detection performance and generalization capability. This presents a novel technical method for environmental observation and urban transformation analysis tasks. Full article
(This article belongs to the Special Issue Advances in Remote Sensing Image Target Detection and Recognition)
20 pages, 44464 KB  
Article
Spatial Guidance Overrides Dynamic Saliency in VR: An Eye-Tracking Study on Gestalt Grouping Mechanisms and Visual Attention Patterns
by Qiaoling Zou, Wanyu Zheng, Xinyan Jiang and Dongning Li
J. Eye Mov. Res. 2025, 18(5), 37; https://doi.org/10.3390/jemr18050037 (registering DOI) - 25 Aug 2025
Abstract
(1) Background: Virtual Reality (VR) films challenge traditional visual cognition by offering novel perceptual experiences. This study investigates the applicability of Gestalt grouping principles in dynamic VR scenes, the influence of VR environments on grouping efficiency, and the relationship between viewer experience and [...] Read more.
(1) Background: Virtual Reality (VR) films challenge traditional visual cognition by offering novel perceptual experiences. This study investigates the applicability of Gestalt grouping principles in dynamic VR scenes, the influence of VR environments on grouping efficiency, and the relationship between viewer experience and grouping effects. (2) Methods: Eye-tracking experiments were conducted with 42 participants using the HTC Vive Pro Eye and Tobii Pro Lab. Participants watched a non-narrative VR film with fixed camera positions to eliminate narrative and auditory confounds. Eye-tracking metrics were analyzed using SPSS version 29.0.1, and data were visualized through heat maps and gaze trajectory plots. (3) Results: Viewers tended to focus on spatial nodes and continuous structures. Initial fixations were anchored near the body but shifted rapidly thereafter. Heat maps revealed a consistent concentration of fixations on the dock area. (4) Conclusions: VR reshapes visual organization, where proximity, continuity, and closure outweigh traditional saliency. Dynamic elements draw attention only when linked to user goals. Designers should prioritize spatial logic, using functional nodes as cognitive anchors and continuous paths as embodied guides. Future work should test these mechanisms in narrative VR and explore neural correlates via fNIRS or EEG. Full article
(This article belongs to the Special Issue Eye Tracking and Visualization)
Show Figures

Figure 1

22 pages, 2775 KB  
Review
Tracking Lead: Potentiometric Tools and Technologies for a Toxic Element
by Martyna Drużyńska, Nikola Lenar and Beata Paczosa-Bator
Molecules 2025, 30(17), 3492; https://doi.org/10.3390/molecules30173492 (registering DOI) - 25 Aug 2025
Abstract
Lead contamination remains a critical global concern due to its persistent toxicity, bioaccumulative nature, and widespread occurrence in water, food, and industrial environments. The accurate, cost-effective, and rapid detection of lead ions (Pb2+) is essential for protecting public health and ensuring [...] Read more.
Lead contamination remains a critical global concern due to its persistent toxicity, bioaccumulative nature, and widespread occurrence in water, food, and industrial environments. The accurate, cost-effective, and rapid detection of lead ions (Pb2+) is essential for protecting public health and ensuring environmental safety. Among the available techniques, potentiometric sensors, particularly ion-selective electrodes (ISEs), have emerged as practical tools owing to their simplicity, portability, low power requirements, and high selectivity. This review summarizes recent progress in lead-selective potentiometry, with an emphasis on electrode architectures and material innovations that enhance analytical performance. Reported sensors achieve detection limits as low as 10−10 M, broad linear ranges typically spanning 10−10–10−2 M, and near-Nernstian sensitivities of ~28–31 mV per decade. Many designs also demonstrate reproducible responses in complex matrices. Comparative analysis highlights advances in traditional liquid-contact electrodes and modern solid-contact designs modified with nanomaterials, ionic liquids, and conducting polymers. Current challenges—including long-term stability, calibration frequency, and selectivity against competing metal ions—are discussed, and future directions for more sensitive, selective, and user-friendly Pb2+ sensors are outlined. Full article
Show Figures

Figure 1

25 pages, 7099 KB  
Article
Tracking of Tobacco Mosaic Virus in Taxonomically Different Plant Fungi
by Natascia Filomena Barnaba, Lorenza Vaccaro, Rita Milvia De Miccolis Angelini, Roberta Spanò, Franco Nigro and Tiziana Mascia
J. Fungi 2025, 11(9), 619; https://doi.org/10.3390/jof11090619 (registering DOI) - 25 Aug 2025
Abstract
Plant viruses have been traditionally considered pathogens restricted to plant hosts. However, recent studies have shown that some plant viruses can infect and replicate in filamentous fungi and oomycetes, suggesting that their host range is broader than previously thought, and that their ecological [...] Read more.
Plant viruses have been traditionally considered pathogens restricted to plant hosts. However, recent studies have shown that some plant viruses can infect and replicate in filamentous fungi and oomycetes, suggesting that their host range is broader than previously thought, and that their ecological interactions are more complex. In this study, we investigated the ability of the well-characterized positive-sense RNA plant virus Tobacco mosaic virus (TMV) to replicate in four major phytopathogenic fungi from different taxonomic groups: Botrytis cinerea, Fusarium oxysporum f. sp. lycopersici, Verticillium dahliae, and Monilinia fructicola. Using a recombinant TMV-based vector expressing a green fluorescent protein (TMV-GFP-1056) as reporter, we demonstrated that TMV can enter, replicate, and persist within the mycelia of B. cinerea and V. dahliae—at least through the first subculture. However, it cannot replicate in F. oxysporum f. sp. lycopersici and M. fructicola. RNA interference (RNAi) is a conserved eukaryotic epigenetic mechanism that provides an efficient defence against viruses. We explored the role of RNAi in the interaction between TMV and the mycelia of V. dahliae and B. cinerea. Our results revealed a strong induction of the Dicer-like 1 and Argonaute 1 genes, which are key compounds of the RNA silencing pathway. This RNAi-based response impaired TMV-GFP replication in both fungi. Notably, despite viral replication and RNAi activation, the virulence of V. dahliae and B. cinerea on their respective host plants remained unaffected. These findings reinforce the emerging recognition of cross-kingdom virus transmission and interactions, which likely play a crucial role in pathogen ecology and viral evolution. Understanding these virus–fungus interactions not only sheds light on RNAi interference silencing mechanisms but also suggests that plant viruses like TMV could serve as simple and effective tools for functional genomic studies in fungi, such as in V. dahliae and B. cinerea. Full article
(This article belongs to the Special Issue Plant Pathogenic Sclerotiniaceae)
Show Figures

Figure 1

26 pages, 7413 KB  
Article
Comprehensive Urban Assessment and Major Function Verification Based on City Examination: The Case of Hubei Province
by Dingyu Wang, Yan Zhang, Qiang Niu, Yijie Wan and Lei Wu
Land 2025, 14(9), 1719; https://doi.org/10.3390/land14091719 (registering DOI) - 25 Aug 2025
Abstract
China’s major function-oriented zoning (MFOZ) serves as a crucial policy instrument for functional regulation of land use, playing a significant role in the latest territorial spatial planning. Studies on the implementation of MFOZ have been conducted since its release in 2012, but there [...] Read more.
China’s major function-oriented zoning (MFOZ) serves as a crucial policy instrument for functional regulation of land use, playing a significant role in the latest territorial spatial planning. Studies on the implementation of MFOZ have been conducted since its release in 2012, but there is a lack of comprehensive methods to assess the effectiveness of its implementation. In China, the newly initiated City Examination provides novel technical support for verifying MFOZ planning, addressing the gap in comprehensive evaluation methodologies and channels. This study proposes a comprehensive urban assessment framework and a major function classification approach based on City Examination data, enabling the identification of implementation deviations in MFOZ planning based on the current urban conditions reflected by City Examination. The methodology incorporates dimensionality reduction, multi-indicator clustering, entropy-weighted overlays, and natural break classification techniques and examines the degree of strategic deviation in China’s MFOZ through a comprehensive and systematic assessment. Due to the timeliness and long-term nature City Examination data, the method allows for the long-time dynamic tracking and evaluation of the real-time progress in MFOZ. Empirical analysis of Hubei Province revealed that 77.9% of its urban development aligns with the 2011 MFOZ scheme while demonstrating discernible deviation types and hierarchical discrepancies, with geographically clustered patterns observed among cities exhibiting such deviations. Full article
Show Figures

Figure 1

13 pages, 1492 KB  
Article
SecureTeleMed: Privacy-Preserving Volumetric Video Streaming for Telemedicine
by Kaiyuan Hu, Deen Ma and Shi Qiu
Electronics 2025, 14(17), 3371; https://doi.org/10.3390/electronics14173371 (registering DOI) - 25 Aug 2025
Abstract
Volumetric video streaming holds transformative potential for telemedicine, enabling immersive remote consultations, surgical training, and real-time collaborative diagnostics. However, transmitting sensitive patient data (e.g., 3D medical scans, surgeon head/gaze movements) raises critical privacy risks, including exposure of biometric identifiers and protected health information [...] Read more.
Volumetric video streaming holds transformative potential for telemedicine, enabling immersive remote consultations, surgical training, and real-time collaborative diagnostics. However, transmitting sensitive patient data (e.g., 3D medical scans, surgeon head/gaze movements) raises critical privacy risks, including exposure of biometric identifiers and protected health information (PHI). To address the above concerns, we propose SecureTeleMed, a dual-track encryption scheme tailored for volumetric video based telemedicine. SecureTeleMed combines viewport obfuscation and region of interest (ROI)-aware frame encryption to protect both patient data and clinician interactions while complying with healthcare privacy regulations (e.g., HIPAA, GDPR). Evaluations show SecureTeleMed reduces privacy leakage by 89% compared to baseline encryption methods, with sub-50 ms latency suitable for real-time telemedicine applications. Full article
(This article belongs to the Special Issue Big Data Security and Privacy)
Show Figures

Figure 1

21 pages, 2319 KB  
Article
Analysis of Employees’ Visual Perception During Training in the Field of Occupational Safety in Construction
by Wojciech Drozd and Marcin Kowalik
Appl. Sci. 2025, 15(17), 9323; https://doi.org/10.3390/app15179323 (registering DOI) - 25 Aug 2025
Abstract
The article presents the results of research on improving construction safety using the eye tracking method. The analysis was carried out during training in the field of construction safety. Eye tracker allows for analysis of the way in which training participants process visual [...] Read more.
The article presents the results of research on improving construction safety using the eye tracking method. The analysis was carried out during training in the field of construction safety. Eye tracker allows for analysis of the way in which training participants process visual information and elements that attract their attention and the effectiveness of learning the principles of work safety. Eye tracking studies, in the aspect of construction safety, determine the effectiveness of training in this area. Moreover, the main advantage of such studies lies in the possibility of identifying elements of the construction site that are omitted or misunderstood by training participants, and which are important from the point of view of safe implementation of construction works. The study found that employees achieved the highest level of error detection (70%), with a shorter fixation time (240 ms), suggesting the role of experience and cognitive automation. Post-trained students demonstrated the longest fixation time (350 ms) and moderate error detection (35%), suggesting greater cognitive engagement but lower efficiency than experts. Students without training achieved the lowest results (30% detection, 200 ms FT), which is related to a lack of knowledge and experience. ANOVA confirmed statistically significant differences between groups in fixation time (F(3,36) = 244.83; p < 0.0001), with a high confidence level (>99.99%). Tukey’s post hoc test indicated significant differences between untrained and post-trained students and between post-trained students and employees (p < 0.001), underscoring the importance of both training and professional practice. Full article
(This article belongs to the Special Issue Technology and Organization Applied to Civil Engineering)
Show Figures

Figure 1

14 pages, 1559 KB  
Article
Preparation of Air Nanobubble-Laden Diesel
by Jiajun Yang, Xiao Xu, Hui Jin and Qiang Yang
Nanomaterials 2025, 15(17), 1309; https://doi.org/10.3390/nano15171309 (registering DOI) - 25 Aug 2025
Abstract
This research has successfully addressed the technical challenge of generating nanobubbles in diesel fuel, which inherently lacks hydrophilic structures and charged ions, enabling the effective production of high-concentration nanobubble diesel fuel. This breakthrough lays a solid foundation for subsequent research into the combustion [...] Read more.
This research has successfully addressed the technical challenge of generating nanobubbles in diesel fuel, which inherently lacks hydrophilic structures and charged ions, enabling the effective production of high-concentration nanobubble diesel fuel. This breakthrough lays a solid foundation for subsequent research into the combustion performance and combustion mechanism of high-concentration nanobubble fuels. Furthermore, it holds promising potential to advance high-concentration nanobubble fuel as a viable new type of energy source. A specialized device was designed to generate nanobubble-embedded diesel, and particle tracking analysis with n-hexadecane dilution was employed to quantify nanobubble concentration. The results demonstrate that the nanobubble concentration in diesel increases with both circulation time and pressure, reaching up to 5 × 108 ± 3.1 × 107 bubbles/mL under a pressure of 2.5 MPa. Stability tests indicate an initial rapid decay (50% reduction within one week), followed by a slower decline, which stabilizes at 4.5 × 107 ± 3.13 × 106 bubbles/mL after two months. Notably, nanobubble concentration has a minimal impact on the density and viscosity of diesel but slightly decreases its surface tension. This study presents a feasible method for preparing high-concentration nanobubble diesel, which lays a foundation for investigating the combustion mode and mechanism of nanobubble diesel fuel. With the goal of enhancing combustion efficiency and reducing pollutant emissions, this work further paves the way for the application of high-concentration nanobubble diesel as a new energy source in fields including automotive, marine, and aerospace industries. Full article
(This article belongs to the Special Issue Nanobubbles and Nanodroplets: Current State-of-the-Art)
Show Figures

Figure 1

12 pages, 1190 KB  
Article
Utilization of Child-Appropriate Medicines: Use of Pediatric Use Marketing Authorisation (PUMA) Products in Croatia
by Andrej Belančić, Marta Kučan Štiglić, Arnes Rešić, Almir Fajkić and Dinko Vitezić
J. Clin. Med. 2025, 14(17), 5994; https://doi.org/10.3390/jcm14175994 (registering DOI) - 25 Aug 2025
Abstract
Background/Objectives: Children remain underserved in pharmaceutical development, with off-label prescribing still prevalent in part due to a lack of age-appropriate formulations. This study aimed to evaluate the national uptake of Pediatric Use Marketing Authorisation (PUMA)-labelled medicines in Croatia from 2017 to 2024. [...] Read more.
Background/Objectives: Children remain underserved in pharmaceutical development, with off-label prescribing still prevalent in part due to a lack of age-appropriate formulations. This study aimed to evaluate the national uptake of Pediatric Use Marketing Authorisation (PUMA)-labelled medicines in Croatia from 2017 to 2024. Methods: We conducted a retrospective, descriptive pharmacoepidemiological study using the IMS (Intercontinental Medical Statistics) and IQVIA (Information, Quintiles, VIA; formerly IMS Health and Quintiles) datasets to track utilization and the expenditure of all PUMA products. Utilization was assessed using defined daily doses per 1000 inhabitants per day (DDDs/1000/day) and annual product dispensation counts. Results: Over the study period, five PUMA medicines entered the Croatian market, with usage rising from 853 packages in 2018 to 9232 in 2024. The DDDs/1000/day increased 33.8-fold, while the expenditure escalated nearly 5.8-fold, from EUR 145,898 to EUR 844,145. Midazolam and melatonin were the most frequently prescribed, yet the overall utilization remained marginal relative to pediatric needs. Conclusions: In conclusion, while regulatory availability of PUMA products has improved, their clinical adoption in Croatia remains limited. Addressing economic, educational, and policy barriers is essential to close the gap between authorization and utilization. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

10 pages, 800 KB  
Article
A Comparison Between the Expansion Force Exerted by Thermo-Printed Aligners and 3D Printed Aligners: An In Vitro Study
by Samuele Avolese, Simone Parrini, Andrea Tancredi Lugas, Cristina Bignardi, Mara Terzini, Valentina Cantù, Tommaso Castroflorio, Emanuele Grifalconi, Nicola Scotti and Fabrizio Sanna
Bioengineering 2025, 12(9), 912; https://doi.org/10.3390/bioengineering12090912 (registering DOI) - 25 Aug 2025
Abstract
Background: The fabrication of orthodontic aligners directly via three-dimensional (3D) printing presents potential to increase the efficiency of aligner production relative to traditional workflows; however, several aspects of the 3D printing process might affect the dimensional fidelity of the fabricated appliances. The aim [...] Read more.
Background: The fabrication of orthodontic aligners directly via three-dimensional (3D) printing presents potential to increase the efficiency of aligner production relative to traditional workflows; however, several aspects of the 3D printing process might affect the dimensional fidelity of the fabricated appliances. The aim of this study is to measure the forces expressed by a 3D printed aligner made with TC-85 DAC resin (Grapy Inc., Seoul, Republic of Korea) when an expansion movement of the entire upper dental arch is programmed, comparing the measured forces with those obtained by a common thermoformed aligner (Smart Track®, Align Technology, Santa Clara, CA, USA). Materials and methods: A patient in transitional mixed dentition was selected, with the presence of all the first molars and permanent upper and lower incisors, and the canines and premolars have not started the exchange. From this patient, a virtual set up of the upper arch has been planned with an expansion of 0.2 mm and 0.4 mm per side; 3 mm horizontal rectangular attachments were added to the set up on the vestibular surface of the permanent molars, deciduous premolars, and deciduous canines. On this set up, 10 Smart Track aligners and 10 3D printed aligners with TC-85 DAC resin were produced. The fabricated aligners were mounted on the machinery used for the test (ElectroForce® Test Bench; TA Instruments, New Castle, DE, USA) by means of specific supports that simulate the upper arch of the patient (divided into two sides: right and left). To simulate the intraoral environment, the measurements were carried out in a thermostatic bath at a temperature of 37 °C. Results: The key results of this paper showed differences between Smart Track® and TC-85 DAC. In particular, the expanding force exerted by the 0.2 mm per side expanded Smart Track® aligners was on average +0.2162 N with a D.S. of ±0.0051 N during the 8 h; meanwhile, the force exerted by the 0.2 mm per side expanded TC-85 DAC 3D printed aligners was on average −0.0034 N with a D.S. of ±0.0036 N during the 8 h. The force exerted by the 0.4 mm per side expanded Smart Track® aligners was on average +0.7159 N with a D.S. of ±0.0543 N during the 8 h; meanwhile, the force exerted by the 0.4 mm per side expanded TC-85 DAC 3D printed aligners was on average +0.0141 N with a D.S. of ±0.004 N during the 8 h. Conclusions: Smart Track® aligners express a quantitatively measurable force in Newtons during the programmed movements to obtain a posterior expansion of the dental arches; on the contrary, aligners made with TC-85 DAC resin, in light of the results obtained from this study, express forces close to 0 during the realization of the movements programmed to obtain a posterior expansion of the dental arches. Full article
Show Figures

Figure 1

Back to TopTop