Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = traction rectifier

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4858 KB  
Article
Research on the Double Frequency Suppression Strategy of DC Bus Voltage on the Rectification Side of a Power Unit in a New Type of Same Phase Power Supply System
by Jinghua Zhou and Yuchen Li
Electronics 2025, 14(10), 2047; https://doi.org/10.3390/electronics14102047 - 17 May 2025
Viewed by 374
Abstract
This work provides a new solution for high-power quality traction power systems. The rapid development of electrified railways not only promotes economic development, but also seriously restricts the improvement of electric locomotive operation performance due to power quality problems, such as second harmonic [...] Read more.
This work provides a new solution for high-power quality traction power systems. The rapid development of electrified railways not only promotes economic development, but also seriously restricts the improvement of electric locomotive operation performance due to power quality problems, such as second harmonic distortion and negative sequence in the power supply system. In view of the shortcomings of the traditional in-phase power supply system in DC bus voltage stability control, a new in-phase power supply topology based on a back-to-back H-bridge power supply unit is proposed in this study. By establishing the iterative analysis model of the rectifier side double closed-loop control system, the internal correlation mechanism between the DC bus voltage second harmonic fluctuation and the grid side current harmonic is deeply revealed. On this basis, a rectifier-side disturbance compensation control strategy with a second harmonic suppression function is designed. Through real-time detection and compensation of second harmonic components, the active stability control of DC bus voltage is realized. The simulation model of the new cophase power supply system based on the experimental platform shows that the strategy can reduce the ripple coefficient of the DC bus voltage and the total harmonic distortion of the grid side current, which effectively verifies the superiority of the second harmonic suppression strategy in improving the power quality of the cophase power supply system. This work provides a new solution for a high-power quality traction power system. Full article
Show Figures

Figure 1

20 pages, 3309 KB  
Article
Rectifier Fault Diagnosis Using LTSA Optimization High-Dimensional Energy Entropy Feature
by Xiangde Mao, Haiying Dong and Jinping Liang
Electronics 2025, 14(7), 1405; https://doi.org/10.3390/electronics14071405 - 31 Mar 2025
Viewed by 330
Abstract
In the electric locomotive traction transmission system, a four-quadrant rectifier has a high fault rate owing to the complicated control and bad operating conditions, and the fault directly affects the system’s safety and stability. To address such an issue, a rectifier fault diagnosis [...] Read more.
In the electric locomotive traction transmission system, a four-quadrant rectifier has a high fault rate owing to the complicated control and bad operating conditions, and the fault directly affects the system’s safety and stability. To address such an issue, a rectifier fault diagnosis approach regarding a local tangent space alignment (LTSA) dimensionality reduction to optimize the high-dimensional energy entropy feature is proposed. Firstly, the fault signal is analyzed by using different wavelet functions through wavelet packet multi-resolution decomposition technology so as to extract the frequency band information of the signal. Each wavelet function corresponds to a specific frequency band; the energy–information entropy ratio of each frequency band coefficient is calculated, and then, the wavelet function and optimal frequency band, which are appropriate for the fault signal, are determined. Secondly, the energy entropy of each coefficient in the optimal frequency band is calculated to form the high-dimensional energy entropy feature. The LTSA algorithm is adopted to optimize the high-dimensional feature, through the fault sample number and clustering results, solve the difficulty of selecting the inherent dimension and nearest neighbor number in high-dimensional data, and obtain the simple and effective low-dimensional feature vector to describe the fault features, which reduces the conflict and redundancy between features. Finally, the optimized fault features are used as an input to the classifier support vector machine (SVM), and the fault types are obtained through training and testing. To validate the efficacy of the presented approach, it is tested from the aspects of noise environment, sample proportion and algorithm complexity, and compared with advanced methods. The results indicate that the proposed technique attains an average accuracy of 99.0625% in four-quadrant rectifier fault diagnosis. Under a different signal-to-noise ratio (SNR) and different training and test ratios, the average value after 30 diagnoses is better. Compared with other methods, this method shows a high diagnostic rate and strong robustness in terms of output voltage, noise, training and test ratio. Full article
Show Figures

Figure 1

17 pages, 2573 KB  
Article
Rectifier Fault Diagnosis Based on Euclidean Norm Fusion Multi-Frequency Bands and Multi-Scale Permutation Entropy
by Jinping Liang and Xiangde Mao
Electronics 2025, 14(3), 612; https://doi.org/10.3390/electronics14030612 - 5 Feb 2025
Cited by 1 | Viewed by 780
Abstract
With the emphasis on energy conversion and energy-saving technologies, the single-phase pulse width modulation (PWM) rectifier method is widely used in urban rail transit because of its advantages of bidirectional electric energy conversion and higher power factor. However, due to the complex control [...] Read more.
With the emphasis on energy conversion and energy-saving technologies, the single-phase pulse width modulation (PWM) rectifier method is widely used in urban rail transit because of its advantages of bidirectional electric energy conversion and higher power factor. However, due to the complex control and harsh environment, it can easily fail. Faults can cause current and voltage distortion, harmonic increases and other problems, which can threaten the safety of the power system and the train. In order to ensure the stable operation of the rectifier, incidences of faults should be reduced. A fault diagnosis technique based on Euclidean norm fusion multi-frequency bands and multi-scale permutation entropy is proposed. Firstly, by the optimal wavelet function, information on the optimal multi-frequency bands of the fault signal is selected after wavelet packet decomposition. Secondly, the multi-scale permutation entropy of each frequency band is calculated, and multiple fault feature vectors are obtained for each frequency band. To reduce the classifier’s computational cost, the Euclidean norm is used to fuse the multi-scale permutation entropy into an entropy value, so that each frequency band uses an entropy value to characterize the fault information features. Finally, the optimal multi-frequency bands and multi-scale permutation entropy after fusion are used as the fault feature vector. In the simulation system, it is shown that the method’s average accuracy is 78.46%, 97.07%, and 99.45% when the SNR is 5 dB, 10 dB, and 15 dB, respectively. And the fusion of multi-scale permutation entropy can improve the accuracy, recall rate, precision, and F1 score and reduce the False Alarm Rate (FAR) and the Missing Alarm Rate (MAR). The results show that the fault diagnosis method has high diagnosis accuracy, is a simple feature fusion method, and has good robustness to working conditions and noise. Full article
(This article belongs to the Section Power Electronics)
Show Figures

Figure 1

24 pages, 7565 KB  
Article
Simulation and Testing of Self-Reconfigurable Battery Advanced Functions for Automotive Application
by Rémy Thomas, Nicolas Léto, Jérome Lachaize, Sylvain Bacquet, Yan Lopez and Leandro Cassarino
World Electr. Veh. J. 2024, 15(6), 250; https://doi.org/10.3390/wevj15060250 - 8 Jun 2024
Viewed by 1854
Abstract
This article presents the design and production work carried out jointly by Vitesco Technologies and the CEA in order to build a Self-Reconfigurable Battery (SRB) demonstrator representative of an electric vehicle traction battery pack. The literature demonstrates that the use of an SRB [...] Read more.
This article presents the design and production work carried out jointly by Vitesco Technologies and the CEA in order to build a Self-Reconfigurable Battery (SRB) demonstrator representative of an electric vehicle traction battery pack. The literature demonstrates that the use of an SRB allows for individual bypassing or serialization of each cell in a battery pack, enabling control of the voltage output and dynamic balancing of the battery pack during all phases of vehicle use. The simulations and tests presented in this article confirm that the use of an SRB results in a 6% reduction in energy consumption compared to a Conventional Battery Pack (CBP) on a driving profile based on WLTP cycles. Additionally, an SRB enhances fast charging performance, with a charging time that is 22% faster than a CBP. Furthermore, it is shown that an SRB without a voltage inversion capability can still be connected directly to the AC grid for charging without the need for a dedicated converter, using only a single diode bridge rectifier for the whole system. Full article
Show Figures

Figure 1

20 pages, 12414 KB  
Article
Modelling a DC Electric Railway System and Determining the Optimal Location of Wayside Energy Storage Systems for Enhancing Energy Efficiency and Energy Management
by Hammad Alnuman
Energies 2024, 17(12), 2825; https://doi.org/10.3390/en17122825 - 8 Jun 2024
Cited by 4 | Viewed by 1780
Abstract
Global demand for fossil fuels is highly increasing, necessitating energy efficiency to be enhanced in transitioning to low-carbon energy systems. Electric railways are highly efficient in reducing the transportation demand for fossil fuels as they are lightweight and their energy demand can be [...] Read more.
Global demand for fossil fuels is highly increasing, necessitating energy efficiency to be enhanced in transitioning to low-carbon energy systems. Electric railways are highly efficient in reducing the transportation demand for fossil fuels as they are lightweight and their energy demand can be fed by renewable energy resources. Further, the regenerative braking energy of decelerating trains can be fed to accelerating trains and stored in onboard energy storage systems (ESSs) and stationary ESSs. It is fundamental to model electric railways accurately before investigating approaches to enhancing their energy efficiency. However, electric railways are challenging to model as they are nonlinear, resulting from the rectifier substations, overvoltage protection circuits, and the unpredictability and uncertainty of the load according to the train position. There have been few studies that have examined the ESS location’s impact on improving the energy efficiency of electric railways while using specialised simulation tools in electric railways. However, no single study exists that has studied the location impact of stationary ESSs on the energy efficiency of electric railways while the trains are supported by onboard ESSs. Given these goals and challenges, the main objective of this work is to develop a model using commercial software used by industry practitioners. Further, the energy saving is aimed to be maximised using stationary ESSs installed in optimal locations while trains are supported by onboard ESSs. The model includes trains, onboard ESSs, rail tracks, passenger stations, stationary ESSs, and traction power systems involving power lines, connectors, switches, sectioning, and isolators. In this article, a test scenario is presented comprising two trains running on a 20 km with three passenger stations and two substations. The trains and track are modelled in OpenTrack simulation software (Version 1.9) while the power system is modelled in OpenPowerNet simulation software (Version 1.11). The two simulation tools are used in the railway industry and can produce realistic results by taking into account the entire electrical network structure. A stationary ESS is added on the wayside and moved in steps of 1 km to obtain the optimal location before investigating the impact of stationary ESSs on the performance and energy management of onboard ESSs. It is found that the energy saving when installing a stationary ESS at the optimal location is 56.05%, the peak-power reduction of Substation 1 is 4.37%, and the peak-power reduction of Substation 2 is 18.67%. Full article
(This article belongs to the Special Issue New Challenges in Railway Energy Management Systems)
Show Figures

Figure 1

15 pages, 1709 KB  
Article
Radiological and Pulmonary Results of Surgical Treatment of Severe Idiopathic Scoliosis Using Preoperative Halo Gravity Traction Compared with Less Invasive Temporary Internal Distraction in Staged Surgery in Adolescents
by Pawel Grabala, Michael A. Galgano, Michal Grabala and Jacob M. Buchowski
J. Clin. Med. 2024, 13(10), 2875; https://doi.org/10.3390/jcm13102875 - 13 May 2024
Cited by 5 | Viewed by 3581
Abstract
Background: Severe and rigid scoliosis represents a type of spinal deformity characterized by a Cobb angle exceeding 90° and a flexibility of less than 30%. Halo spinal traction remains the established standard for managing severe scoliosis, although alternative approaches such as temporary internal [...] Read more.
Background: Severe and rigid scoliosis represents a type of spinal deformity characterized by a Cobb angle exceeding 90° and a flexibility of less than 30%. Halo spinal traction remains the established standard for managing severe scoliosis, although alternative approaches such as temporary internal distraction rods and staged surgical correction exist. The primary objective of this investigation was to compare two cohorts of patients treated using these distinct methods to ascertain any divergences in terms of surgical and radiological outcomes, pulmonary function (PF), and quality of life (QoL). Methods: This study encompassed a total of 62 pediatric patients meeting the specified criteria, which included severe idiopathic scoliosis (major Cobb curve >90) and flexibility <30%. Group 1 (G1) underwent surgical intervention involving preoperative Halo gravity traction (HGT) succeeded by posterior spinal fusion (PSF). On the other hand, Group 2 (G2) underwent a two-stage procedure starting with a less invasive temporary internal distraction technique (LITID) prior to PSF. The radiological outcomes, PF, and QoL were documented and assessed over a monitoring period ranging from 2 to 5 years. Results: The average preoperative major curves (MCs) measured 124° and 122° in G1 and G2, respectively (p < 0.426). Initial flexibility, as observed in preoperative bending films, ranged from 18% in G1 to 21% in G2 (p < 0.001). Following the ultimate surgical intervention, the MCs were corrected to 45° and 37.4° in G1 and G2, respectively (p < 0.001). The percentage correction of the MCs was higher in G2 (63% vs. 70% in G1 and G2, respectively), with significant between-group disparities (p < 0.001). The mean preoperative thoracic kyphoses (TKs) were 96.5° in G1 and 92° in G2 (p = 0.782), which were rectified to 45.8° in G1 and 36.2° in G2 (p < 0.001), equating to correction rates of 55% and 60% in the respective groups. Initially, G2 exhibited lower values for the percentage of predicted lung volume (FVC) and predicted FEV1 compared with G1 (49% and 58% vs. 54.5% and 60.8%; N.S.). Nonetheless, both groups demonstrated enhancements in their FVC and FEV1 values over the follow-up period. Conclusions: The surgical management of severe and untreated spinal curvatures in the pediatric and adolescent population can be considered safe, with a tolerable incidence of minor complications. LITID emerges as a method offering improved QoL and pulmonary function, achieving notably substantial average corrections in deformity by 70% in the coronal plane and 60% in the sagittal plane, alongside a mean increase in trunk height of 10.8 cm. Furthermore, a typical reduction of 76% in rib humps and enhancements in respiratory function, as indicated by improvements in 1 s predicted forced expiratory volume (by 25–56%) and forced vital capacity (by 35–65%), were achieved, leading to a clinically and statistically significant enhancement in QoL when evaluated using SRS-22r, without resorting to more radical, high-risk procedures. Full article
(This article belongs to the Special Issue State of the Art in Management of Idiopathic Scoliosis)
Show Figures

Figure 1

13 pages, 920 KB  
Article
Voltage and Current Sensor Fault Diagnosis Method for Traction Rectifier in High-Speed Trains
by Yunjun Yu, Yunquan Song, Hongwei Tao and Jiawen Hu
Electronics 2024, 13(1), 197; https://doi.org/10.3390/electronics13010197 - 2 Jan 2024
Cited by 8 | Viewed by 2073
Abstract
The traction rectifier plays a key role in high-speed trains. Unexpected failure often occurs in the sensors of the rectifier, which may affect the control performance of the electric traction rectifier and even cause serious deterioration to high-speed trains. A sensor fault diagnosis [...] Read more.
The traction rectifier plays a key role in high-speed trains. Unexpected failure often occurs in the sensors of the rectifier, which may affect the control performance of the electric traction rectifier and even cause serious deterioration to high-speed trains. A sensor fault diagnosis method is presented in this paper, considering three kinds of common fault types. It can not only locate the sensor fault, but also identify fault types. Based on the influences of the sensor faults, the fault diagnosis thresholds can be calculated quantitatively. No additional hardware is required. First, the model of the rectifier is established, and the estimator is built. The current residuals with different faults can be obtained. Next, residuals are analyzed and features are acquired. Then, diagnosis functions are constructed, which are used for fault location and fault type identification. Finally, the feasibility and effectiveness of the method have been confirmed by the experimental results. Full article
(This article belongs to the Section Power Electronics)
Show Figures

Figure 1

25 pages, 12066 KB  
Review
A Review of Power Electronic Devices for Heavy Goods Vehicles Electrification: Performance and Reliability
by Olayiwola Alatise, Arkadeep Deb, Erfan Bashar, Jose Ortiz Gonzalez, Saeed Jahdi and Walid Issa
Energies 2023, 16(11), 4380; https://doi.org/10.3390/en16114380 - 28 May 2023
Cited by 12 | Viewed by 4344
Abstract
This review explores the performance and reliability of power semiconductor devices required to enable the electrification of heavy goods vehicles (HGVs). HGV electrification can be implemented using (i) batteries charged with ultra-rapid DC charging (350 kW and above); (ii) road electrification with overhead [...] Read more.
This review explores the performance and reliability of power semiconductor devices required to enable the electrification of heavy goods vehicles (HGVs). HGV electrification can be implemented using (i) batteries charged with ultra-rapid DC charging (350 kW and above); (ii) road electrification with overhead catenaries supplying power through a pantograph to the HGV powertrain; (iii) hydrogen supplying power to the powertrain through a fuel cell; (iv) any combination of the first three technologies. At the heart of the HGV powertrain is the power converter implemented through power semiconductor devices. Given that the HGV powertrain is rated typically between 500 kW and 1 MW, power devices with voltage ratings between 650 V and 1200 V are required for the off-board/on-board charger’s rectifier and DC-DC converter as well as the powertrain DC-AC traction inverter. The power devices available for HGV electrification at 650 V and 1.2 kV levels are SiC planar MOSFETs, SiC Trench MOSFETs, silicon super-junction MOSFETs, SiC Cascode JFETs, GaN HEMTs, GaN Cascode HEMTs and silicon IGBTs. The MOSFETs can be implemented with anti-parallel SiC Schottky diodes or can rely on their body diodes for third quadrant operation. This review examines the various power semiconductor technologies in terms of losses, electrothermal ruggedness under short circuits, avalanche ruggedness, body diode and conduction performance. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

13 pages, 6329 KB  
Article
Study of the Aerodynamic Performance of Pantograph Bowhead with Serrated Lower Surface in the Thermal Management Systems of the High-Speed Train Electrical Devices
by Bo Cai, Zhongkai Wu, Jiyou Fei, Chang Liu and Zhongzhen Guan
Energies 2023, 16(5), 2234; https://doi.org/10.3390/en16052234 - 25 Feb 2023
Cited by 3 | Viewed by 1815
Abstract
The thermal management problems of traction drive systems for high-speed trains are of great importance for the operation reliability of high-speed trains. The thermal performance of transformer and traction rectifier are mainly affected by the aerodynamic performance of pantograph. Nine bowheads with different [...] Read more.
The thermal management problems of traction drive systems for high-speed trains are of great importance for the operation reliability of high-speed trains. The thermal performance of transformer and traction rectifier are mainly affected by the aerodynamic performance of pantograph. Nine bowheads with different sawtooth structures on the lower surface are proposed and a CFD numerical model is built with Transition SST turbulence model. The influence of the number and height of sawteeth on the aerodynamic characteristics of the bowhead flow field are investigated. The results show that compared with the rectangular bowhead, the aerodynamic drag of the 5w3h-shaped bowhead is reduced by 8.6%, 8.7%, and 9.9% at train speeds of 250 km/h, 300 km/h, and 350 km/h, respectively. The promotion of aerodynamic performance of pantograph is beneficial to improve the thermal characteristics of traction drive systems for high-speed trains. Full article
(This article belongs to the Special Issue Advances in Thermal and Fluid Science)
Show Figures

Figure 1

16 pages, 3626 KB  
Article
Comparative Study of Electrically Excited Conventional and Homopolar Synchronous Motors for the Traction Drive of a Mining Dump Truck Operating in a Wide Speed Range in Field-Weakening Region
by Vladimir Prakht, Vladimir Dmitrievskii, Vadim Kazakbaev and Alecksey Anuchin
Mathematics 2022, 10(18), 3364; https://doi.org/10.3390/math10183364 - 16 Sep 2022
Cited by 13 | Viewed by 3633
Abstract
A synchronous homopolar motor (SHM) has a salient pole passive rotor, an excitation winding located on the stator, and no permanent magnets, which ensures high reliability and makes this type of motor a good alternative to motors traditionally used in traction drives. However, [...] Read more.
A synchronous homopolar motor (SHM) has a salient pole passive rotor, an excitation winding located on the stator, and no permanent magnets, which ensures high reliability and makes this type of motor a good alternative to motors traditionally used in traction drives. However, there is no comparison between SHMs and conventional brushed synchronous machines for traction applications in the literature. In this paper, the performances of a wound rotor synchronous machine (WRSM) and SHM are theoretically compared at the operating points of a 370 kW dump mining truck drive traction curve that has a 10:1 constant power range in the field weakening region. The nine-phase motors under comparison have the same outer diameter of the stator lamination. Before comparison, both motor designs are optimized using the Nelder–Mead method to minimize the semiconductor inverter rated current and the operating cycle power loss. The main advantages of the WRSM, which was designed, are reduction in stator length, smaller losses, and smaller inverter. The reduction in the total stator length was by 1.23 times taking into account the winding end parts as well. Losses were reduced by 1.21 times for the same radius of the stator lamination. Finally, the cost of power modules of the inverter was decreased by 1.4 times. SHM is more reliable since its rotor does not have an excitation winding and a diode rectifier, as in a WRSM with a brushless exciter. In addition, SHM provides lower consumption of copper, which reduces the total mass and cost of active materials. This article also introduces a new term, “inverter utilization factor”, which can be useful, more informative than motor power factor, when comparing traction drives with different types of motors. Full article
(This article belongs to the Special Issue Control, Modeling and Optimization for Multiphase Machines and Drives)
Show Figures

Figure 1

20 pages, 8864 KB  
Article
Power Quality Management Strategy for High-Speed Railway Traction Power Supply System Based on MMC-RPC
by Teng Li and Yongbin Shi
Energies 2022, 15(14), 5205; https://doi.org/10.3390/en15145205 - 18 Jul 2022
Cited by 12 | Viewed by 2786
Abstract
This paper adopts the Modular Multilevel Converter Type Railway Power Conditioner (MMC-RPC) equipment to effectively manage the power quality of the high-speed railway traction power supply system including the reactive power and negative sequence component. Firstly, the single-phase model of the MMC was [...] Read more.
This paper adopts the Modular Multilevel Converter Type Railway Power Conditioner (MMC-RPC) equipment to effectively manage the power quality of the high-speed railway traction power supply system including the reactive power and negative sequence component. Firstly, the single-phase model of the MMC was established to deduce the working characteristics of the MMC-RPC and its compensation principle for the traction power supply system with the v/v wiring transformer. Secondly, the adaptive VSG control strategy was adopted for the inverter of the MMC-RPC to provide dynamic inertial and damping support for the traction power supply system based on the virtual synchronous generator (VSG) control. Compared with the traditional double closed-loop (DCL) and VSG controls, it has better anti-disturbance and dynamic performance. The root locus analysis of control parameters based on a small signal model shows that VSG control can provide more stability margin. Furthermore, Differential Flatness Control (DFC) was used in the inner-loop controller to ensure the stable control of the inverter and the stability was verified by the Lyapunov stability analysis. For the rectifier of the MMC-RPC, a hierarchical three-level control strategy with system-level control, cluster-group voltage control, and inter-cluster voltage control for keeping the voltage balance was adopted. Finally, simulation results on the Matlab/Simulink platform verified the effectiveness and stability of the joint control applied in the MMC-RPC. Full article
(This article belongs to the Special Issue Studies in the Energy Efficiency and Power Supply for Railway Systems)
Show Figures

Figure 1

16 pages, 3351 KB  
Article
Power Factor Correction Application Based on Independent Double-Boost Interleaved Converter (IDBIC)
by Norbert Csaba Szekely, Sorin Ionut Salcu, Vasile Mihai Suciu, Lucian Nicolae Pintilie, Gheorghe Ioan Fasola and Petre Dorel Teodosescu
Appl. Sci. 2022, 12(14), 7209; https://doi.org/10.3390/app12147209 - 18 Jul 2022
Cited by 8 | Viewed by 2775
Abstract
In this paper, a Power Factor Correction (PFC) application, based on the novel power stage topology named Independent Double-Boost Interleaved Converter (IDBIC), has been analyzed. The novelty of the proposed PFC rectifier is based on the sum of capabilities, such as supplying three [...] Read more.
In this paper, a Power Factor Correction (PFC) application, based on the novel power stage topology named Independent Double-Boost Interleaved Converter (IDBIC), has been analyzed. The novelty of the proposed PFC rectifier is based on the sum of capabilities, such as supplying three independent output voltage levels with interleaved operation at the input and high voltage gain. The hardware used within this application consists of an AC input L-C-L filter, a single-phase bridge rectifier, the IDBIC power stage, output capacitors group and a group of variable high-power rheostats (resistors) group as DC load. The main purpose of the carried study was to highlight the advantages and disadvantages of the novel power stage topology in the context of a green and modern AC to DC conversion solution. Nowadays, a high level of the efficiency and power factor have become a mandatory feature for the AC to DC conversion solutions to satisfy the international electrical standards. Thus, considering the modern electrical standards and recommendations, the current study tries to better depict the working steps and principles of the modern power stage topology within an AC to DC conversion application. The behavior of the considered power stage described in different detailed working steps (such as the Discontinuous Conduction Mode and Continuous Conduction Mode) may help understand how the energy conversions process of AC to DC becomes more efficient. The high output voltage gain of the considered power stage is the key feature in the Power Factor Correction process. With such a feature, the AC to DC conversion solution/application can also operate at lower input AC voltages (such as 90 [V] and 110 [V]). The proposed solution can be successfully used in the electric vehicle (automotive field) and high-power electrical traction (e.g., trains, high power electrical machines and drives). The same solution can also be used successfully in fast battery charging applications and chemical electrolysis processes. Full article
(This article belongs to the Special Issue Electric Power Applications)
Show Figures

Figure 1

18 pages, 7215 KB  
Article
Ergonomic Design and Performance Evaluation of H-Suit for Human Walking
by Leiyu Zhang, Zhenxing Jiao, Yandong He and Peng Su
Micromachines 2022, 13(6), 825; https://doi.org/10.3390/mi13060825 - 25 May 2022
Cited by 5 | Viewed by 2396
Abstract
A soft exoskeleton for the hip flexion, named H-Suit, is developed to improve the walking endurance of lower limbs, delay muscle fatigue and reduce the activation level of hip flexors. Based on the kinematics and biomechanics of the hip joints, the ergonomic design [...] Read more.
A soft exoskeleton for the hip flexion, named H-Suit, is developed to improve the walking endurance of lower limbs, delay muscle fatigue and reduce the activation level of hip flexors. Based on the kinematics and biomechanics of the hip joints, the ergonomic design of the H-Suit system is clearly presented and the prototype was developed. The profile of the auxiliary forces is planned in the auxiliary range where the forces start at the minimum hip angle, reach the maximum (120 N) and end at 90% of each gait cycle. The desired displacements of the traction unit which consist of the natural and elastic displacements of the steel cables are obtained by the experimental method. An assistance strategy is proposed to track the profile of the auxiliary forces by dynamically adjusting the compensation displacement Lc and the hold time Δt. The influences of the variables Lc and Δt on the natural gaits and auxiliary forces have been revealed and analyzed. The real profile of the auxiliary forces can be obtained and is consistent with the theoretical one by the proposed assistance strategy. The H-Suit without the drive unit has little effect on the EMG signal of the lower limbs. In the powered condition, the H-Suit can delay the muscle fatigue of the lower limbs. The average rectified value (ARV) slope decreases and the median frequency (MNF) slope increases significantly. Wearing the H-Suit resulted in a significant reduction of the vastus lateralis effort, averaged over subjects and walking speeds, of 13.3 ± 2.1% (p = 2 × 10−5). Full article
Show Figures

Figure 1

17 pages, 4802 KB  
Article
A Novel Co-Phase Power-Supply System Based on Modular Multilevel Converter for High-Speed Railway AT Traction Power-Supply System
by Si Wu, Mingli Wu and Yi Wang
Energies 2021, 14(1), 253; https://doi.org/10.3390/en14010253 - 5 Jan 2021
Cited by 16 | Viewed by 4150
Abstract
The existing problems of the traction power-supply system (i.e., the existence of the neutral section and the power quality problems) limit the development of railways, especially high-speed railways, which are developing rapidly worldwide. The existence of the neutral section leads to the speed [...] Read more.
The existing problems of the traction power-supply system (i.e., the existence of the neutral section and the power quality problems) limit the development of railways, especially high-speed railways, which are developing rapidly worldwide. The existence of the neutral section leads to the speed loss and traction loss as well as mechanical failures, all of which threaten the fast and safe operation of the train and the system. Meanwhile, the power quality problems (e.g., the negative sequence current, the reactive power, and the harmonic) can bring a series of problems that cannot be ignored on the three-phase grid side. In response, many researchers have proposed co-phase power-supply schemes to solve these two problems simultaneously. Given that the auto-transformer (AT) power-supply mode has become the main power-supply mode for the high-speed railway traction power-supply system, it has a bright future following the rapid development of the high-speed railway. In addition, there is no co-phase power-supply scheme designed for AT power-supply mode in the existing schemes. Therefore, the main contribution of this paper is to propose a specifically designed power-supply mode more suitable for the AT, as well as to establish the control systems for the rectifier side and the inverter side. In addition, for the proposed scheme, the operation principle is analyzed, the mathematical model is built, and the control system is created, and its functionality is verified by simulation, and its advantages are compared and summarized finally. The result proves that it can meet functional requirements. At the same time, compared with the existing co-phase power-supply scheme, it saves an auto-transformer in terms of topology, reduces the current stress by 10.9% in terms of the current stress of the switching device, and reduces the power loss by 0.25% in terms of the entire system power loss, which will result in a larger amount of electricity being saved. All of this makes it a more suitable co-phase power-supply scheme for the AT power-supply mode. Full article
(This article belongs to the Special Issue Power Quality in Electrified Transportation Systems)
Show Figures

Graphical abstract

13 pages, 2976 KB  
Article
Load Transfer during Magnetic Mucoperiosteal Distraction in Newborns with Complete Unilateral and Bilateral Orofacial Clefts: A Three-Dimensional Finite Element Analysis
by Prasad Nalabothu, Carlalberta Verna, Benito K. Benitez, Michel Dalstra and Andreas A. Mueller
Appl. Sci. 2020, 10(21), 7728; https://doi.org/10.3390/app10217728 - 31 Oct 2020
Cited by 2 | Viewed by 2608
Abstract
The primary correction of congenital complete unilateral cleft lip and palate (UCLP) and bilateral cleft lip and palate (BCLP) is challenging due to inherent lack of palatal tissue and small extent of the palatal shelves at birth. The tissue deficiency affects the nasal [...] Read more.
The primary correction of congenital complete unilateral cleft lip and palate (UCLP) and bilateral cleft lip and palate (BCLP) is challenging due to inherent lack of palatal tissue and small extent of the palatal shelves at birth. The tissue deficiency affects the nasal mucosa, maxillary bone and palatal mucosa. This condition has driven the evolution of several surgical and non-surgical techniques for mitigating the inherent problem of anatomical deficits. These techniques share the common principle of altering the neighboring tissues around the defect area in order to form a functional seal between the oral and nasal cavity. However, there is currently no option for rectifying the tissue deficiency itself. Investigations have repeatedly shown that despite the structural tissue deficiency of the cleft, craniofacial growth proceeds normal if the clefts remain untreated, but the cleft remains wide. Conversely, craniofacial growth is reduced after surgical repair and the related alteration of the tissues. Therefore, numerous attempts have been made to change the surgical technique and timing so as to reduce the effects of surgical repairs on craniofacial growth, but they have been only minimally effective so far. We have determined whether the intrinsic structural soft and hard tissue deficiency can be ameliorated before surgical repair using the principles of periosteal distraction by means of magnetic traction. Two three-dimensional maxillary finite element models, with cleft patterns of UCLP and BCLP, respectively, were created from computed tomography slice data using dedicated image analysis software. A virtual dental magnet was positioned on either side of the cleft at the mucoperiosteal borders, and an incremental magnetic attraction force of up to 5 N was applied to simulate periosteal distraction. The stresses and strains in the periosteal tissue induced by the magnet were calculated using finite element analysis. For a 1 N attraction force the maximum strains did not exceed 1500 µstrain suggesting that adaptive remodeling will not take place for attraction forces lower than 1 N. At 5 N the regions subject to remodeling differed between the UCLP and BCLP models. Stresses and strains at the periosteum of the palatal shelf ridges in the absence of compressive forces at the alveolar borders were greater in the UCLP model than the BCLP model. The findings suggest that in newborns with UCLP and BCLP, periosteal distraction by means of a magnetic 5 N attraction force can promote the generation of soft and hard tissues along the cleft edges and rectify the tissue deficiency associated with the malformation. Full article
(This article belongs to the Special Issue Applied Biomaterials in Oral Surgery and Personalized Dentistry)
Show Figures

Figure 1

Back to TopTop