Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (574)

Search Parameters:
Keywords = trajectory reconstruction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3402 KB  
Article
Monocular Modeling of Non-Cooperative Space Targets Under Adverse Lighting Conditions
by Hao Chi, Ken Chen and Jiwen Zhang
Aerospace 2025, 12(10), 901; https://doi.org/10.3390/aerospace12100901 - 7 Oct 2025
Abstract
Accurate modeling of non-cooperative space targets remains a significant challenge, particularly under complex illumination conditions. A hybrid virtual–real framework is proposed that integrates photometric compensation, 3D reconstruction, and visibility determination to enhance the robustness and accuracy of monocular-based modeling systems. To overcome the [...] Read more.
Accurate modeling of non-cooperative space targets remains a significant challenge, particularly under complex illumination conditions. A hybrid virtual–real framework is proposed that integrates photometric compensation, 3D reconstruction, and visibility determination to enhance the robustness and accuracy of monocular-based modeling systems. To overcome the breakdown of the classical photometric constancy assumption under varying illumination, a compensation-based photometric model is formulated and implemented. A point cloud–driven virtual space is constructed and refined through Poisson surface reconstruction, enabling per-pixel depth, normal, and visibility information to be efficiently extracted via GPU-accelerated rendering. An illumination-aware visibility model further distinguishes self-occluded and shadowed regions, allowing for selective pixel usage during photometric optimization, while motion parameter estimation is stabilized by analyzing angular velocity precession. Experiments conducted on both Unity3D-based simulations and a semi-physical platform with robotic hardware and a sunlight simulator demonstrate that the proposed method consistently outperforms conventional feature-based and direct SLAM approaches in trajectory accuracy and 3D reconstruction quality. These results highlight the effectiveness and practical significance of incorporating virtual space feedback for non-cooperative space target modeling. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

20 pages, 1507 KB  
Article
Design and Experiment of Trajectory Reconstruction Algorithm of Wireless Pipeline Robot Based on GC-LSTM
by Weiwei Wang and Mingkuan Zhou
Electronics 2025, 14(19), 3941; https://doi.org/10.3390/electronics14193941 - 4 Oct 2025
Abstract
Wireless pipeline robots often suffer from localization drift and position loss due to electromagnetic attenuation and shielding in complex pipeline configurations, which hinders accurate pipeline reconstruction. This paper proposes a trajectory reconstruction method based on Geometric Constraint–Long Short-Term Memory (GC-LSTM). First, a motor [...] Read more.
Wireless pipeline robots often suffer from localization drift and position loss due to electromagnetic attenuation and shielding in complex pipeline configurations, which hinders accurate pipeline reconstruction. This paper proposes a trajectory reconstruction method based on Geometric Constraint–Long Short-Term Memory (GC-LSTM). First, a motor control system based on Field-Oriented Control (FOC) was developed for the proposed pipeline robot; second, trajectory errors are mitigated by exploiting pipeline geometric characteristics; third, a Long Short-Term Memory (LSTM) network is used to predict and compensate the robot’s velocity when odometer slip occurs; finally, multi-sensor fusion is employed to obtain the reconstructed trajectory. In straight-pipe tests, the GC-LSTM method reduced the maximum deviation and mean absolute deviation by 69.79% and 72.53%, respectively, compared with the Back Propagation (BP) method, resulting in a maximum deviation of 0.0933 m and a mean absolute deviation of 0.0351 m. In bend-pipe tests, GC-LSTM reduced the maximum deviation and the mean absolute deviation by 60.48% and 69.91%, respectively, compared with BP, yielding a maximum deviation of 0.2519 m and a mean absolute deviation of 0.0850 m. The proposed method significantly improves localization accuracy for wireless pipeline robots and enables more precise reconstruction of pipeline environments, providing a practical reference for accurate localization in pipeline inspection applications. Full article
20 pages, 2812 KB  
Article
Seven Decades of River Change: Sediment Dynamics in the Diable River, Quebec
by Ali Faghfouri, Daniel Germain and Guillaume Fortin
Geosciences 2025, 15(10), 388; https://doi.org/10.3390/geosciences15100388 - 4 Oct 2025
Abstract
This study reconstructs seven decades (1949–2019) of morphodynamic changes and sediment dynamics in the Diable River (Québec, Canada) using nine series of aerial photographs, a high-resolution LiDAR Digital Elevation Model (2021), and grain-size analysis. The objectives were to document long-term river evolution, quantify [...] Read more.
This study reconstructs seven decades (1949–2019) of morphodynamic changes and sediment dynamics in the Diable River (Québec, Canada) using nine series of aerial photographs, a high-resolution LiDAR Digital Elevation Model (2021), and grain-size analysis. The objectives were to document long-term river evolution, quantify erosion and deposition, and evaluate sediment connectivity between eroding sandy bluffs and depositional zones. Planform analysis and sediment budgets derived from DEMs of Difference (DoD) reveal an oscillatory trajectory characterized by alternating phases of sediment export and temporary stabilization, rather than a simple trend of degradation or aggradation. The most dynamic interval (1980–2001) was marked by widespread meander migration and the largest net export (−142.5 m3/km/year), whereas the 2001–2007 interval showed net storage (+70.8 m3/km/year) and short-term geomorphic recovery. More recent floods (2017, 2019; 20–50-year return periods) induced localized but persistent sediment loss, underlining the structuring role of extreme events. Grain-size results indicate partial connectivity: coarse fractions tend to remain in local depositional features, while finer sediments are preferentially exported downstream. These findings emphasize the geomorphic value of temporary sediment sinks (bars, beaches) and highlight the need for adaptive river management strategies that integrate sediment budgets and local knowledge into floodplain governance. Full article
42 pages, 17206 KB  
Article
Sedimentary Architecture Prediction Using Facies Interpretation and Forward Seismic Modeling: Application to a Mediterranean Land–Sea Pliocene Infill (Roussillon Basin, France)
by Teddy Widemann, Eric Lasseur, Johanna Lofi, Serge Berné, Carine Grélaud, Benoît Issautier, Philippe-A. Pezard and Yvan Caballero
Geosciences 2025, 15(10), 383; https://doi.org/10.3390/geosciences15100383 - 3 Oct 2025
Abstract
This study predicts sedimentary architectures and facies distribution within the Pliocene prograding prism of the Roussillon Basin (Gulf of Lion, France), developed along an onshore–offshore continuum. Boreholes and outcrops provide facies-scale observations onshore, while seismic data capture basin-scale structures offshore. Forward seismic modeling [...] Read more.
This study predicts sedimentary architectures and facies distribution within the Pliocene prograding prism of the Roussillon Basin (Gulf of Lion, France), developed along an onshore–offshore continuum. Boreholes and outcrops provide facies-scale observations onshore, while seismic data capture basin-scale structures offshore. Forward seismic modeling bridges spatial and scale gaps between these datasets, yielding characteristic synthetic seismic signatures for the sedimentary facies associations observed onshore, used as analogs for offshore deposits. These signatures are then identified in offshore seismic data, allowing seismic profiles to be populated with sedimentary facies without a well tie. Predicted offshore architectures are consistent with shoreline trajectories and facies successions observed onshore. The Roussillon prism records passive margin reconstruction in the Mediterranean Basin following the Messinian Salinity Crisis, through the following three successive depositional profiles marking the onset of infilling: (1) Gilbert deltas, (2) wave- and storm-reworked fan deltas, and (3) a wave-dominated delta. Offshore, transitions in clinoform type modify sedimentary architectures, influenced by inherited Messinian paleotopography. This autogenic control generates spatial variability in accommodation, driving changes in depositional style. Overall, this multi-scale and integrative approach provides a robust framework for predicting offshore sedimentary architectures and can be applied to other deltaic settings with limited land–sea data continuity. Full article
Show Figures

Figure 1

29 pages, 3717 KB  
Article
Inverse Procedure to Initial Parameter Estimation for Air-Dropped Packages Using Neural Networks
by Beata Potrzeszcz-Sut and Marta Grzyb
Appl. Sci. 2025, 15(19), 10422; https://doi.org/10.3390/app151910422 - 25 Sep 2025
Abstract
This paper presents a neural network–driven framework for solving the inverse problem of initial parameter estimation in air-dropped package missions. Unlike traditional analytical methods, which are computationally intensive and often impractical in real time, the proposed system leverages the flexibility of multilayer perceptrons [...] Read more.
This paper presents a neural network–driven framework for solving the inverse problem of initial parameter estimation in air-dropped package missions. Unlike traditional analytical methods, which are computationally intensive and often impractical in real time, the proposed system leverages the flexibility of multilayer perceptrons to model both forward and inverse relationships between drop conditions and flight outcomes. In the forward stage, a trained network predicts range, flight time, and impact velocity from predefined release parameters. In the inverse stage, a deeper neural model reconstructs the required release velocity, angle, and altitude directly from the desired operational outcomes. By employing a hybrid workflow—combining physics-based simulation with neural approximation—our approach generates large, high-quality datasets at low computational cost. Results demonstrate that the inverse network achieves high accuracy across deterministic and stochastic tests, with minimal error when operating within the training domain. The study confirms the suitability of neural architectures for tackling complex, nonlinear identification tasks in precision airdrop operations. Beyond their technical efficiency, such models enable agile, GPS-independent mission planning, offering a reliable and low-cost decision support tool for humanitarian aid, scientific research, and defense logistics. This work highlights how artificial intelligence can transform conventional trajectory design into a fast, adaptive, and autonomous capability. Full article
(This article belongs to the Special Issue Application of Neural Computation in Artificial Intelligence)
Show Figures

Figure 1

22 pages, 8401 KB  
Article
Multi-Camera Machine Vision for Detecting and Analyzing Vehicle–Pedestrian Conflicts at Signalized Intersections: Deep Neural-Based Pose Estimation Algorithms
by Ahmed Mohamed and Mohamed M. Ahmed
Appl. Sci. 2025, 15(19), 10413; https://doi.org/10.3390/app151910413 - 25 Sep 2025
Abstract
Over the past decade, researchers have advanced traffic monitoring using surveillance cameras, unmanned aerial vehicles (UAVs), loop detectors, LiDAR, microwave sensors, and sensor fusion. These technologies effectively detect and track vehicles, enabling robust safety assessments. However, pedestrian detection remains challenging due to diverse [...] Read more.
Over the past decade, researchers have advanced traffic monitoring using surveillance cameras, unmanned aerial vehicles (UAVs), loop detectors, LiDAR, microwave sensors, and sensor fusion. These technologies effectively detect and track vehicles, enabling robust safety assessments. However, pedestrian detection remains challenging due to diverse motion patterns, varying clothing colors, occlusions, and positional differences. This study introduces an innovative approach that integrates multiple surveillance cameras at signalized intersections, regardless of their types or resolutions. Two distinct convolutional neural network (CNN)-based detection algorithms accurately track road users across multiple views. The resulting trajectories undergo analysis, smoothing, and integration, enabling detailed traffic scene reconstruction and precise identification of vehicle–pedestrian conflicts. The proposed framework achieved 97.73% detection precision and an average intersection over union (IoU) of 0.912 for pedestrians, compared to 68.36% and 0.743 with a single camera. For vehicles, it achieved 98.2% detection precision and an average IoU of 0.955, versus 58.78% and 0.516 with a single camera. These findings highlight significant improvements in detecting and analyzing traffic conflicts, enhancing the identification and mitigation of potential hazards. Full article
Show Figures

Figure 1

19 pages, 4701 KB  
Article
Temporal Dynamics and Source Apportionment of PM2.5 in a Coastal City of Southeastern China: Insights from Multiyear Analysis
by Liliang Chen, Jing Wang, Qiyuan Wang, Youwei Hong, Xinhua Wang, Wen Yang, Bin Han, Mazhan Zhuang and Zhipeng Bai
Atmosphere 2025, 16(10), 1119; https://doi.org/10.3390/atmos16101119 - 24 Sep 2025
Viewed by 51
Abstract
Xiamen, a rapidly developing coastal metropolis and tourist hub in southeastern China, faces air quality challenges due to its dense population and tourism reliance. This study investigates PM2.5 sources and temporal variations during autumn 2013–2017 via chemical characterization, mass reconstruction, and receptor [...] Read more.
Xiamen, a rapidly developing coastal metropolis and tourist hub in southeastern China, faces air quality challenges due to its dense population and tourism reliance. This study investigates PM2.5 sources and temporal variations during autumn 2013–2017 via chemical characterization, mass reconstruction, and receptor modeling. The Positive Matrix Factorization (PMF) model identified five sources: secondary sulfate (31%), coal/vehicle emissions (28%), industrial emissions with secondary organic aerosols (SOA, 20%), ship emissions (14%), and fugitive dust (7%). Interannual variations in source contributions highlighted impacts of anthropogenic activities, meteorology, power plant upgrades, and stricter vehicle standards. PM2.5 declined 19% (2013–2017), driven by emission controls, while SOA surged 42% (2015–2017) due to VOC oxidation and lower temperatures. Backward trajectory and Potential Source Contribution Function (PSCF) analyses revealed significant regional transport from northern industrial zones (32% contribution) and maritime activities. Ship emissions, which have remained relatively stable over the years, underscore the need for stricter marine regulations. Fugitive dust peaked in 2015 (25.8% of PM2.5), linked to urban construction. The findings emphasize the interplay of local emissions and regional transport in shaping PM2.5 pollution, providing a scientific basis for targeted control strategies in coastal cities with similar socioeconomic and geographic contexts. Full article
(This article belongs to the Special Issue Air Pollution in China (4th Edition))
Show Figures

Figure 1

18 pages, 5099 KB  
Systematic Review
Dynamics in Quality of Life of Breast Cancer Patients Following Surgery: Systematic Review and Meta-Analysis
by Iryna Makhnevych, Mussab Ibrahim Mohamed Fadl Elseed, Ibrahim Mohamed Ahmed Musa, Jood Jasem Shaddad Alblooshi, Darya Smetanina, Faisal Tahsin and Yauhen Statsenko
Cancers 2025, 17(19), 3108; https://doi.org/10.3390/cancers17193108 - 24 Sep 2025
Viewed by 159
Abstract
Background and Objectives: Surgical treatment is central to breast cancer management; however, its long-term impact on QoL varies substantially among patients. This study sought to model the dynamic trajectories of postoperative QoL following breast-conserving surgery (BCS), mastectomy with immediate reconstruction (Mx+IR), and mastectomy [...] Read more.
Background and Objectives: Surgical treatment is central to breast cancer management; however, its long-term impact on QoL varies substantially among patients. This study sought to model the dynamic trajectories of postoperative QoL following breast-conserving surgery (BCS), mastectomy with immediate reconstruction (Mx+IR), and mastectomy alone (MA). It also examined how these trajectories varied across different age groups and over time. Materials and Methods: The review and meta-analysis identified 150 peer-reviewed studies reporting QoL outcomes using validated instruments (EORTC QLQ-C30 or BREAST-Q). A total of 123 observations from 45 studies were included for analysis of global QoL. We standardized QoL scores to a 0–100 scale and harmonized postoperative assessments across six time intervals, extending to more than 73 months. Multilevel random-effects models evaluated linear, quadratic, and logarithmic functions. Subgroup analyses and meta-regressions assessed the moderating effects of surgical type and age. Results: BCS showed the steepest QoL gains, followed by Mx+IR, while MA had the lowest scores and slowest recovery. Compared to BCS, MA showed significantly poorer and delayed recovery, and Mx+IR showed a smaller, borderline decrease. All groups displayed modest long-term QoL plateauing. Conclusions: Global QoL after breast cancer surgery follows distinct, time-dependent patterns shaped by surgical approach and age. These findings emphasize the importance of discussing patients’ quality-of-life expectations with them so that survivorship care can be personalized to their needs. Full article
(This article belongs to the Section Cancer Survivorship and Quality of Life)
Show Figures

Figure 1

17 pages, 5954 KB  
Article
A Hybrid RUL Prediction Framework for Lithium-Ion Batteries Based on EEMD and KAN-LSTM
by Zhao Zhang, Xin Liu, Xinyu Dong, Pengyu Jiang, Runrun Zhang, Chaolong Zhang, Jiajia Shao, Yong Xie, Yan Zhang, Xuming Liu, Kaixin Cheng, Shi Chen, Zining Wang and Jieqi Wei
Batteries 2025, 11(10), 348; https://doi.org/10.3390/batteries11100348 - 23 Sep 2025
Viewed by 134
Abstract
Accurately estimating the remaining useful life (RUL) of lithium-ion batteries in energy storage systems is critical for ensuring both the safety and reliability of the power grid. To address the complex nonlinear degradation behavior associated with battery aging, this study proposes a novel [...] Read more.
Accurately estimating the remaining useful life (RUL) of lithium-ion batteries in energy storage systems is critical for ensuring both the safety and reliability of the power grid. To address the complex nonlinear degradation behavior associated with battery aging, this study proposes a novel RUL prediction framework that integrates ensemble empirical mode decomposition (EEMD) with an ensemble learning algorithm. The approach first applies EEMD to decompose aging data into a residual component and several intrinsic mode functions (IMFs). The residual component is then modeled using a long short-term memory (LSTM) network, while the Kolmogorov–Arnold network (KAN) focuses on learning from the IMF components. These individual predictions are subsequently combined to reconstruct the overall capacity degradation trajectory. Experimental validation on real lithium-ion battery aging datasets demonstrates that the proposed method provides highly accurate RUL predictions, exhibits strong robustness, and effectively captures nonlinear characteristics under varying operating conditions. Specifically, the method achieves R2 above 0.96 with absolute RUL errors within 2–3 cycles on NASA datasets, and maintains R2 values above 0.91 with errors within 7–15 cycles on CALCE datasets. Furthermore, the optimal KAN hyperparameters for different IMF components are identified, offering valuable insights for multi-scale modeling and future model optimization. Full article
(This article belongs to the Special Issue 10th Anniversary of Batteries: Battery Diagnostics and Prognostics)
Show Figures

Figure 1

29 pages, 5817 KB  
Article
Unsupervised Segmentation and Alignment of Multi-Demonstration Trajectories via Multi-Feature Saliency and Duration-Explicit HSMMs
by Tianci Gao, Konstantin A. Neusypin, Dmitry D. Dmitriev, Bo Yang and Shengren Rao
Mathematics 2025, 13(19), 3057; https://doi.org/10.3390/math13193057 - 23 Sep 2025
Viewed by 202
Abstract
Learning from demonstration with multiple executions must contend with time warping, sensor noise, and alternating quasi-stationary and transition phases. We propose a label-free pipeline that couples unsupervised segmentation, duration-explicit alignment, and probabilistic encoding. A dimensionless multi-feature saliency (velocity, acceleration, curvature, direction-change rate) yields [...] Read more.
Learning from demonstration with multiple executions must contend with time warping, sensor noise, and alternating quasi-stationary and transition phases. We propose a label-free pipeline that couples unsupervised segmentation, duration-explicit alignment, and probabilistic encoding. A dimensionless multi-feature saliency (velocity, acceleration, curvature, direction-change rate) yields scale-robust keyframes via persistent peak–valley pairs and non-maximum suppression. A hidden semi-Markov model (HSMM) with explicit duration distributions is jointly trained across demonstrations to align trajectories on a shared semantic time base. Segment-level probabilistic motion models (GMM/GMR or ProMP, optionally combined with DMP) produce mean trajectories with calibrated covariances, directly interfacing with constrained planners. Feature weights are tuned without labels by minimizing cross-demonstration structural dispersion on the simplex via CMA-ES. Across UAV flight, autonomous driving, and robotic manipulation, the method reduces phase-boundary dispersion by 31% on UAV-Sim and by 30–36% under monotone time warps, noise, and missing data (vs. HMM); improves the sparsity–fidelity trade-off (higher time compression at comparable reconstruction error) with lower jerk; and attains nominal 2σ coverage (94–96%), indicating well-calibrated uncertainty. Ablations attribute the gains to persistence plus NMS, weight self-calibration, and duration-explicit alignment. The framework is scale-aware and computationally practical, and its uncertainty outputs feed directly into MPC/OMPL for risk-aware execution. Full article
(This article belongs to the Section E1: Mathematics and Computer Science)
Show Figures

Figure 1

16 pages, 4910 KB  
Article
Three-Dimensional Reconstruction of Fragment Shape and Motion in Impact Scenarios
by Milad Davoudkhani and Hans-Gerd Maas
Sensors 2025, 25(18), 5842; https://doi.org/10.3390/s25185842 - 18 Sep 2025
Viewed by 301
Abstract
Photogrammetry-based 3D reconstruction of the shape of fast-moving objects from image sequences presents a complex yet increasingly important challenge. The 3D reconstruction of a large number of fast-moving objects may, for instance, be of high importance in the study of dynamic phenomena such [...] Read more.
Photogrammetry-based 3D reconstruction of the shape of fast-moving objects from image sequences presents a complex yet increasingly important challenge. The 3D reconstruction of a large number of fast-moving objects may, for instance, be of high importance in the study of dynamic phenomena such as impact experiments and explosions. In this context, analyzing the 3D shape, size, and motion trajectory of the resulting fragments provides valuable insights into the underlying physical processes, including energy dissipation and material failure. High-speed cameras are typically employed to capture the motion of the resulting fragments. The high cost, the complexity of synchronizing multiple units, and lab conditions often limit the number of high-speed cameras that can be practically deployed in experimental setups. In some cases, only a single high-speed camera will be available or can be used. Challenges such as overlapping fragments, shadows, and dust often complicate tracking and degrade reconstruction quality. These challenges highlight the need for advanced 3D reconstruction techniques capable of handling incomplete, noisy, and occluded data to enable accurate analysis under such extreme conditions. In this paper, we use a combination of photogrammetry, computer vision, and artificial intelligence techniques in order to improve feature detection of moving objects and to enable more robust trajectory and 3D shape reconstruction in complex, real-world scenarios. The focus of this paper is on achieving accurate 3D shape estimation and motion tracking of dynamic objects generated by impact loading using stereo- or monoscopic high-speed cameras. Depending on the object’s rotational behavior and the number of available cameras, two methods are presented, both enabling the successful 3D reconstruction of fragment shapes and motion. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

20 pages, 23718 KB  
Article
A Mamba-Based Hierarchical Partitioning Framework for Upper-Level Wind Field Reconstruction
by Wantong Chen, Yifan Zhang, Ruihua Liu, Shuguang Sun and Qing Feng
Aerospace 2025, 12(9), 842; https://doi.org/10.3390/aerospace12090842 - 18 Sep 2025
Viewed by 209
Abstract
An accurate perception of upper-level wind fields is essential for improving civil aviation safety and route optimization. However, the sparsity of observational data and the structural complexity of wind fields make reconstruction highly challenging. To address this, we propose QuadMamba-WindNet (QMW-Net), a structure-enhanced [...] Read more.
An accurate perception of upper-level wind fields is essential for improving civil aviation safety and route optimization. However, the sparsity of observational data and the structural complexity of wind fields make reconstruction highly challenging. To address this, we propose QuadMamba-WindNet (QMW-Net), a structure-enhanced deep neural network that integrates a hierarchical state-space modeling framework with a learnable quad-tree-based regional partitioning mechanism, enabling multi-scale adaptive encoding and efficient dynamic modeling. The model is trained end-to-end on ERA5 reanalysis data and validated with simulated flight trajectory observation masks, allowing the reconstruction of complete horizontal wind fields at target altitude levels. Experimental results show that QMW-Net achieves a mean absolute error (MAE) of 1.62 m/s and a mean relative error (MRE) of 6.68% for wind speed reconstruction at 300 hPa, with a mean directional error of 4.85° and an R2 of 0.93, demonstrating high accuracy and stable error convergence. Compared with Physics-Informed Neural Networks (PINNs) and Gaussian Process Regression (GPR), QMW-Net delivers superior predictive performance and generalization across multiple test sets. The proposed model provides refined wind field support for civil aviation forecasting and trajectory planning, and shows potential for broader applications in high-dynamic flight environments and atmospheric sensing. Full article
(This article belongs to the Section Air Traffic and Transportation)
Show Figures

Figure 1

15 pages, 891 KB  
Article
Reinforced Model Predictive Guidance and Control for Spacecraft Proximity Operations
by Lorenzo Capra, Andrea Brandonisio and Michèle Roberta Lavagna
Aerospace 2025, 12(9), 837; https://doi.org/10.3390/aerospace12090837 - 17 Sep 2025
Viewed by 324
Abstract
An increased level of autonomy is attractive above all in the framework of proximity operations, and researchers are focusing more and more on artificial intelligence techniques to improve spacecraft’s capabilities in these scenarios. This work presents an autonomous AI-based guidance algorithm to plan [...] Read more.
An increased level of autonomy is attractive above all in the framework of proximity operations, and researchers are focusing more and more on artificial intelligence techniques to improve spacecraft’s capabilities in these scenarios. This work presents an autonomous AI-based guidance algorithm to plan the path of a chaser spacecraft for the map reconstruction of an artificial uncooperative target, coupled with Model Predictive Control for the tracking of the generated trajectory. Deep reinforcement learning is particularly interesting for enabling spacecraft’s autonomous guidance, since this problem can be formulated as a Partially Observable Markov Decision Process and because it leverages domain randomization well to cope with model uncertainty, thanks to the neural networks’ generalizing capabilities. The main drawback of this method is that it is difficult to verify its optimality mathematically and the constraints can be added only as part of the reward function, so it is not guaranteed that the solution satisfies them. To this end a convex Model Predictive Control formulation is employed to track the DRL-based trajectory, while simultaneously enforcing compliance with the constraints. Two neural network architectures are proposed and compared: a recurrent one and the more recent transformer. The trained reinforcement learning agent is then tested in an end-to-end AI-based pipeline with image generation in the loop, and the results are presented. The computational effort of the entire guidance and control strategy is also verified on a Raspberry Pi board. This work represents a viable solution to apply artificial intelligence methods for spacecraft’s autonomous motion, still retaining a higher level of explainability and safety than that given by more classical guidance and control approaches. Full article
Show Figures

Figure 1

30 pages, 5222 KB  
Article
A Backstepping Sliding Mode Control of a Quadrotor UAV Using a Super-Twisting Observer
by Vicente Borja-Jaimes, Jarniel García-Morales, Ricardo Fabricio Escobar-Jiménez, Gerardo Vicente Guerrero-Ramírez and Manuel Adam-Medina
Appl. Sci. 2025, 15(18), 10120; https://doi.org/10.3390/app151810120 - 16 Sep 2025
Viewed by 303
Abstract
This study addresses robust trajectory tracking for quadrotor unmanned aerial vehicles (QUAVs) under partial state measurements and bounded external disturbances. To this end, a control framework is introduced that integrates backstepping sliding mode control (BSMC) with a super-twisting observer (STO). In this scheme, [...] Read more.
This study addresses robust trajectory tracking for quadrotor unmanned aerial vehicles (QUAVs) under partial state measurements and bounded external disturbances. To this end, a control framework is introduced that integrates backstepping sliding mode control (BSMC) with a super-twisting observer (STO). In this scheme, only position and attitude are directly measured while the STO reconstructs the linear and angular velocities in real time. The estimated states are then fed into the control law, enabling accurate trajectory tracking and robust performance without full-state feedback or explicit disturbance compensation. The approach is validated through three simulation scenarios: nominal full-state feedback, observer-based control without disturbances, and observer-based control under bounded time-varying perturbations. Quantitative metrics confirm consistent tracking accuracy and closed-loop stability across all scenarios. These results demonstrate the effectiveness of the integrated BSMC–STO framework for QUAV operations in sensor-limited and disturbance-prone environments. Full article
(This article belongs to the Section Aerospace Science and Engineering)
Show Figures

Figure 1

43 pages, 3753 KB  
Review
Comprehensive Review of Deep Learning Approaches for Single-Image Super-Resolution
by Zirun Liu, Shijie Jiang, Shuhan Feng, Qirui Song and Ji Zhang
Sensors 2025, 25(18), 5768; https://doi.org/10.3390/s25185768 - 16 Sep 2025
Viewed by 394
Abstract
Single-image super-resolution (SISR) is a core challenge in the field of image processing, aiming to overcome the physical limitations of imaging systems and improve their resolution. This article systematically introduces the SISR method based on deep learning, proposes a method-oriented classification framework, and [...] Read more.
Single-image super-resolution (SISR) is a core challenge in the field of image processing, aiming to overcome the physical limitations of imaging systems and improve their resolution. This article systematically introduces the SISR method based on deep learning, proposes a method-oriented classification framework, and explores it from three aspects: theoretical basis, technological evolution, and domain-specific applications. Firstly, the basic concepts, development trajectory, and practical value of SISR are introduced. Secondly, in-depth research is conducted on key technical components, including benchmark dataset construction, a multi-scale upsampling strategy, objective function optimization, and quality assessment indicators. Thirdly, some classic SISR model reconstruction results are listed and compared. Finally, the limitations of SISR research are pointed out, and some prospective research directions are proposed. This article provides a systematic knowledge framework for researchers and offers important reference value for the future development of SISR. Full article
Show Figures

Figure 1

Back to TopTop