Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (985)

Search Parameters:
Keywords = transit routes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1210 KB  
Article
Towards Green and Smart Ro–Ro Port Terminal Operations: A Comparative Analysis of ICE, BET and e-AGT Tractors
by Caterina Malandri, Luca Mantecchini and Filippo Paganelli
Future Transp. 2025, 5(3), 121; https://doi.org/10.3390/futuretransp5030121 - 8 Sep 2025
Abstract
The decarbonization and automation of port operations are emerging as key strategies to enhance the sustainability and efficiency of maritime logistics. This study proposes a simulation-based framework to assess the operational and environmental impacts of transitioning from traditional Internal Combustion Engine (ICE) tractors [...] Read more.
The decarbonization and automation of port operations are emerging as key strategies to enhance the sustainability and efficiency of maritime logistics. This study proposes a simulation-based framework to assess the operational and environmental impacts of transitioning from traditional Internal Combustion Engine (ICE) tractors to Battery Electric Tractors (BET) and Automated Electric Guided Tractors (e-AGT) in Roll-on/Roll-off (Ro–Ro) port terminal operations. The proposed framework is applied to simulate a full vessel turnaround at the Ro–Ro terminal of the Port of Ravenna (Italy). A set of Key Performance Indicators (KPIs) is defined to evaluate turnaround time, vehicle productivity, energy consumption and CO2 emissions across three scenarios. The results indicate that both BET and e-AGT configurations significantly reduce emissions compared to ICE, with reductions up to 40%. However, the e-AGT scenario reveals operational drawbacks, including increased unloading time and reduced fleet availability due to charging constraints and routing limitations. These findings highlight the environmental potential of automation and electrification but also emphasize the need for integrated planning of fleet size, charging infrastructure and circulation specifications. The proposed framework provides a replicable decision-support tool for port authorities and logistics operators to evaluate alternative handling technologies under realistic conditions. Full article
Show Figures

Figure 1

27 pages, 4462 KB  
Review
Unlocking Alternative Cement Solutions: Utilizing Wastes and By-Products for Magnesium Phosphate Cement Development
by Anna Alfocea-Roig, Jessica Giro-Paloma, Sergio Huete-Hernández and Joan Formosa
Urban Sci. 2025, 9(9), 352; https://doi.org/10.3390/urbansci9090352 - 3 Sep 2025
Viewed by 457
Abstract
Concrete is the most used material worldwide, with cement as its essential component. Cement production, however, has a considerable environmental footprint contributing nearly 8% of global CO2 emissions, largely from clinker calcination. This review aims to examine strategies for reducing these emissions, [...] Read more.
Concrete is the most used material worldwide, with cement as its essential component. Cement production, however, has a considerable environmental footprint contributing nearly 8% of global CO2 emissions, largely from clinker calcination. This review aims to examine strategies for reducing these emissions, with a particular focus on alternative materials for producing magnesium phosphate cements (MPCs). Specifically, the objectives are first to summarize mitigation pathways, such as CO2 capture, energy efficiency, and alternative raw materials, and second evaluate the feasibility of using industrial wastes and by-products, including low-grade MgO, tundish deskulling waste (TUN), boron-MgO (B-MgO), and magnesia refractory brick waste (MRB), as MgO sources for MPC. The review highlights that these materials represent a promising route to reduce the environmental impact of cement production and support the transition toward carbon neutrality by 2050. Full article
Show Figures

Figure 1

17 pages, 899 KB  
Article
A Cluster Analysis of Cooperative Recycling Behaviors for Post-Consumer Plastic Waste in Urban Areas: A Case Study on Sendai, Kawasaki, and Kyoto City in Japan
by Zhuojiao Yu, Xiaoyue Liu, Jeongsoo Yu, Mohammad Sujauddin and Gaku Manago
Sustainability 2025, 17(17), 7939; https://doi.org/10.3390/su17177939 - 3 Sep 2025
Viewed by 404
Abstract
Post-consumer plastic waste poses increasing challenges in urban areas, where recycling heavily relies on consumer cooperation. In Japan, two recycling routes for post-consumer plastic waste from households exist, the municipal recycling route and the retailer recycling route, with the latter requiring more voluntary [...] Read more.
Post-consumer plastic waste poses increasing challenges in urban areas, where recycling heavily relies on consumer cooperation. In Japan, two recycling routes for post-consumer plastic waste from households exist, the municipal recycling route and the retailer recycling route, with the latter requiring more voluntary effort. This study aims to explore the diversity of consumers’ cooperative behaviors in Japan’s post-consumer plastic waste recycling system, with a focus on the retailer route. We conducted an online survey with 758 respondents from Sendai, Kawasaki, and Kyoto in urban Japan, using a structured questionnaire based on the knowledge–attitude–practice (KAP) framework. K-means clustering was conducted to identify behaviorally distinct consumer groups. Three clusters were revealed: Fully Engaged Consumers, Knowledge-Driven Consumers, and Passively Engaged Consumers. These groups exhibited distinct differences in cooperative recycling behaviors and socio-demographic characteristics. Our findings demonstrate the heterogeneity of consumer cooperation and underscore the importance of targeted strategies. By focusing on the retailer recycling route and consumer segmentation, this study addresses key gaps in Japan’s research on urban plastic waste. The results provide a theoretical and empirical foundation for differentiated policy-making, ultimately supporting the transition to a more sustainable and circular economy in post-consumer plastic waste recycling in urban Japan. Full article
Show Figures

Figure 1

15 pages, 395 KB  
Article
Multimodal Transport Optimization from Doorstep to Airport Using Mixed-Integer Linear Programming and Dynamic Programming
by Evangelos D. Spyrou, Vassilios Kappatos, Maria Gkemou and Evangelos Bekiaris
Sustainability 2025, 17(17), 7937; https://doi.org/10.3390/su17177937 - 3 Sep 2025
Viewed by 350
Abstract
Efficient multimodal transportation from a passenger’s doorstep to the airport is critical for ensuring timely arrivals, reducing travel uncertainty, and optimizing overall travel experience. However, coordinating different modes of transport—such as walking, public transit, ride-hailing, and private vehicles—poses significant challenges due to varying [...] Read more.
Efficient multimodal transportation from a passenger’s doorstep to the airport is critical for ensuring timely arrivals, reducing travel uncertainty, and optimizing overall travel experience. However, coordinating different modes of transport—such as walking, public transit, ride-hailing, and private vehicles—poses significant challenges due to varying schedules, traffic conditions, and transfer times. Traditional route planning methods often fail to account for real-time disruptions, leading to delays and inefficiencies. As air travel demand grows, optimizing these multimodal routes becomes increasingly important to minimize delays, improve passenger convenience, and enhance transport system resilience. To address this challenge, we propose an optimization framework combining Mixed-Integer Linear Programming (MILP) and Dynamic Programming (DP) to generate optimal travel routes from a passenger’s location to the airport gate. MILP is used to model and optimize multimodal trip decisions, considering time windows, cost constraints, and transfer dependencies. Meanwhile, DP allows for adaptive, real-time adjustments based on changing conditions such as traffic congestion, transit delays, and service availability. By integrating these two techniques, our approach ensures a robust, efficient, and scalable solution for multimodal transport routing, ultimately enhancing reliability and reducing travel time variability. The results demonstrate that the MILP solver converges within 20 iterations, reducing the objective value from 15.2 to 7.1 units with an optimality gap of 8.5%; the DP-based adaptation maintains feasibility under a 2 min disruption; and the multimodal analysis yields a total travel time of 9.0 min with a fare of 3.0 units, where the bus segment accounts for 6.5 min and 2.2 units of the total. In the multimodal transport evaluation, DP adaptation reduced cumulative delays by more than half after disruptions, while route selection demonstrated balanced trade-offs between cost and time across walking, bus, and train segments. Full article
Show Figures

Figure 1

12 pages, 7860 KB  
Article
In Situ Synthesis of RMB6-TMB2 Composite Nanopowders via One-Step Solid-State Reduction
by Xiaogang Guo, Linyan Wang, Hang Zhou, Jun Xu, An Liu, Mengdong Ma, Rongxin Sun, Weidong Qin, Yufei Gao, Bing Liu, Baozhong Li, Lei Sun and Dongli Yu
Nanomaterials 2025, 15(17), 1341; https://doi.org/10.3390/nano15171341 - 1 Sep 2025
Viewed by 390
Abstract
RMB6-TMB2 (RM = rare earth elements, TM = transition metal elements) composites retain superior field emission properties of RMB6 while addressing its inherent mechanical limitations by constructing a eutectic structure with TMB2. Herein, an in situ route [...] Read more.
RMB6-TMB2 (RM = rare earth elements, TM = transition metal elements) composites retain superior field emission properties of RMB6 while addressing its inherent mechanical limitations by constructing a eutectic structure with TMB2. Herein, an in situ route for synthesizing RMB6-TMB2 composite nanopowders with homogeneous phase distribution using reduction reactions was proposed. The LaB6-ZrB2 composite nanopowders were synthesized in situ for the first time using sodium borohydride (NaBH4) as both a reducing agent and boron source, with lanthanum oxide (La2O3) and zirconium dioxide (ZrO2) serving as metal sources. The effects of the synthesis temperature on phase compositions and microstructure of the composites were systematically investigated. The LaB6-ZrB2 system with a eutectic weight ratio exhibited an accelerated reaction rate, achieving a complete reaction at 1000 °C, 300 °C lower than that of single-phase ZrB2 synthesis. The composite phases were uniformly distributed even at nanoscale. The composite powder displayed an average particle size of ~170 nm when synthesized at 1300 °C. With the benefit of the in situ synthesis method, LaB6-TiB2, CeB6-ZrB2, and CeB6-TiB2 composite powders were successfully synthesized. This process effectively addresses phase separation and contamination issues typically associated with traditional mixing methods, providing a scalable precursor for high-performance RMB6-TMB2 composites. Full article
(This article belongs to the Special Issue Synthesis, Characterization and Upscaling of Nanomaterials)
Show Figures

Figure 1

12 pages, 301 KB  
Article
Patient and Family Perspectives on Integrated Transitional Care for Anorexia Nervosa in Mantova, Italy
by Debora Bussolotti, Giovanni Barillà, Antonia Di Genni, Martina Comini, Alberto Gallo, Mariateresa Torre, Laura Orlando, Beatrice Mastrolorenzo, Eva Corradini, Barbara Bazzoli, Francesco Bonfà, Andrea Mora, Luca Pasqualini, Elisa Mariantoni, Alessandro Cuomo, Despoina Koukouna and Paola Accorsi
Nutrients 2025, 17(17), 2830; https://doi.org/10.3390/nu17172830 - 30 Aug 2025
Viewed by 591
Abstract
Background/Objectives: The child and adolescent mental health service (CAMHS) hand-over to adult mental health service (AMHS) remains an ongoing shortfall in eating disorder (ED) treatment, typically in tandem with diagnostic drift, heightened suicide risk, and carer burn-out. We created one 14-to-25 Transition—ED track [...] Read more.
Background/Objectives: The child and adolescent mental health service (CAMHS) hand-over to adult mental health service (AMHS) remains an ongoing shortfall in eating disorder (ED) treatment, typically in tandem with diagnostic drift, heightened suicide risk, and carer burn-out. We created one 14-to-25 Transition—ED track within our own unit, where a single multidisciplinary team continuously follows each patient and family across the CAMHS–AMHS boundary (via weekly joint paediatric and adult clinician meeting) without changing the individual psychotherapist, family therapist, or dietitian at the age 18 transition. We investigated the manner in which patients and parents perceive this model. Methods: A survey of two naturalistic parent cohorts—CAMHS (n = 16) and Transition—Adult arm (n = 15)—also joined, alongside the original group of young adults who had entered the programme during its set-up phase (n = 9). Here, the 14–25 pathway denotes one unified route of care across adolescence and young adulthood; the Transition—Adult arm is its ≥ 18-years component. All index patients had a primary DSM-5-TR diagnosis of restricting-type anorexia nervosa. Participants completed the Client Satisfaction Questionnaire-8 (CSQ-8; range 8–32) and four bespoke Continuity-of-Care items (1–4 Likert). Results: Overall, the caregivers in both cohorts were pleased (median CSQ-8 = 28.5 [CAMHS] vs. 27.0 [Transition]; p = 0.75). Continuity items were universally well rated across cohorts. Cohort parents reported a median of two unchanged core clinicians (i.e., the individual psychotherapist, the family therapist, or the dietitian), which was nonsignificantly positively correlated with CSQ-8 scores (ρ = 0.22). Early-group patients mirrored caregiver impressions (mean CSQ-8 = 27.0 ± 3.9). Conclusions: It is feasible and highly acceptable to both caregivers and anorexia nervosa young adults to have the same key staff and family-centred sessions over the 14-to-25 age span. Constrained by single-site study and small sample size, these preliminary data provide a rationale for wider implementation and controlled follow-up studies. Full article
17 pages, 3072 KB  
Article
Proinflammatory Cytokines, Type I Interferons, and Specialized Proresolving Mediators Hallmark the Influence of Vaccination and Marketing on Backgrounded Beef Cattle
by Hudson R. McAllister, Sarah F. Capik, Kelsey M. Harvey, Bradly I. Ramirez, Robert J. Valeris-Chacin, Amelia R. Woolums, Brandi B. Karisch, Paul S. Morley and Matthew A. Scott
Vet. Sci. 2025, 12(9), 834; https://doi.org/10.3390/vetsci12090834 - 30 Aug 2025
Viewed by 440
Abstract
Cattle marketed through auction market systems and/or that remain unvaccinated are considered higher risk for BRD, but impacts on host response remain unclear. We sought to identify specific genomic patterns of beef calves vaccinated against BRD viruses or not and commercially marketed or [...] Read more.
Cattle marketed through auction market systems and/or that remain unvaccinated are considered higher risk for BRD, but impacts on host response remain unclear. We sought to identify specific genomic patterns of beef calves vaccinated against BRD viruses or not and commercially marketed or directly transported in a split-plot randomized controlled trial. Forty-one calves who remained clinically healthy from birth through backgrounding were selected (randomly stratified) from a larger cohort of cattle (n = 81). Treatment groups included VAX/DIRECT (n = 12), VAX/AUCTION (n = 11), NOVAX/DIRECT (n = 7), and NOVAX/AUCTION (n = 11). Blood RNA was acquired across five time points, sequenced, and bioinformatically processed via HISAT2 and StringTie2. Significant transcriptional changes (FDR < 0.05) were observed at backgrounding entry (T5) in NOVAX/AUCTION cattle exhibiting 2809 uniquely differentially expressed genes and relative activation of immune, inflammatory, and metabolic pathways with upregulation of interferon-stimulated genes (e.g., IFIT3, MX2, and TRIM25) and downregulation of specialized proresolving mediator (SPM) enzymes (ALOX5 and ALOX15). VAX/AUCTION cattle exhibited modulated immune activation and preserved expression of SPM-associated genes when compared to NOVAX/AUCTION cattle. Both marketing route and vaccination shape the molecular immune landscape during high-stress transitions, with preweaning vaccination potentially modulating this response. This study provides mechanistic insight into how management practices influence immunological resilience and highlights the value of integrating transcriptomics into BRD risk mitigation. Full article
(This article belongs to the Section Veterinary Microbiology, Parasitology and Immunology)
Show Figures

Figure 1

25 pages, 5326 KB  
Article
A Para-Substituted 2-Phenoxy-1,10-Phenanthroline Ligand for Lanthanide Sensitization: Asymmetric Coordination and Enhanced Emission from Eu3+, Tb3+, Sm3+ and Dy3+ Complexes
by Joana Zaharieva, Vladimira Videva, Mihail Kolarski, Rumen Lyapchev, Bernd Morgenstern and Martin Tsvetkov
Molecules 2025, 30(17), 3548; https://doi.org/10.3390/molecules30173548 - 29 Aug 2025
Viewed by 547
Abstract
A para-substituted 1,10-phenanthroline ligand, 2-(4-methylphenoxy)-1,10-phenanthroline (L24), was synthesized and structurally characterized. Complexes with Eu3+, Tb3+, Sm3+, and Dy3+ were obtained in a 2:1 ligand-to-metal ratio and analyzed using single-crystal x-ray diffraction, photoluminescence spectroscopy, and TD-DFT calculations. [...] Read more.
A para-substituted 1,10-phenanthroline ligand, 2-(4-methylphenoxy)-1,10-phenanthroline (L24), was synthesized and structurally characterized. Complexes with Eu3+, Tb3+, Sm3+, and Dy3+ were obtained in a 2:1 ligand-to-metal ratio and analyzed using single-crystal x-ray diffraction, photoluminescence spectroscopy, and TD-DFT calculations. Coordination via the phenanthroline nitrogen atoms, combined with steric asymmetry from the para-methylphenoxy group, induces low-symmetry environments favorable for electric-dipole transitions. Excited-state lifetimes reached 2.12 ms (Eu3+) and 1.12 ms (Tb3+), with quantum yields of 42% and 68%, respectively. The triplet-state energy of L24 (22,741 cm−1) aligns well with emissive levels of Eu3+ and Tb3+, consistent with Latva’s criterion. Fluorescence titrations indicated positively cooperative complexation, with association constants ranging from 0.60 to 1.67. Stark splitting and high 5D07F2/7F1 intensity ratios (R2 = 6.25) confirm the asymmetric coordination field. The para-methylphenoxy substituent appears sufficient to lower coordination symmetry and strengthen electric-dipole transitions, offering a controlled route to enhance photoluminescence in Eu3+ and Tb3+ complexes. Full article
Show Figures

Figure 1

15 pages, 1226 KB  
Article
Connecting the Evolution and Spread of Turkey Reovirus Across the United States: A Genomic Perspective
by Nakarin Pamornchainavakul, Jonathan T. Vannatta, Vikash K. Singh, Robert Porter, Sagar M. Goyal, Sunil K. Mor and Kimberly VanderWaal
Viruses 2025, 17(9), 1185; https://doi.org/10.3390/v17091185 - 29 Aug 2025
Viewed by 608
Abstract
A major cause of lameness in turkeys is reoviral arthritis, driven by turkey reovirus (TRV) infection. In the U.S., TRV was first isolated in the 1980s but re-emerged as a significant pathogen causing arthritis in 2011. Since then, TRV outbreaks have spread nationwide [...] Read more.
A major cause of lameness in turkeys is reoviral arthritis, driven by turkey reovirus (TRV) infection. In the U.S., TRV was first isolated in the 1980s but re-emerged as a significant pathogen causing arthritis in 2011. Since then, TRV outbreaks have spread nationwide across turkey-producing regions and have occasionally resulted in hepatitis-associated pathotypes. The absence of a consistently effective commercial vaccine continues to hinder disease control efforts. To better understand TRV’s evolutionary trajectory and transmission dynamics, we analyzed 211 complete TRV genome sequences collected across the U.S. from 2007 to 2021. Bayesian time-scaled phylogenetic and phylogeographic analyses were conducted for all ten genome segments to estimate gene flow among geographic regions, client groups, and pathotypes. The results reconstructed a coherent, decades-long history of TRV evolution, which revealed segment-specific differences in the evolutionary rates—particularly in S1c (σC protein coding region of S1) and M2—suggesting reassortment with other avian reoviruses during the 2011 emergence. Nationwide spread patterns indicated dominant transmission routes from the Eastern U.S. to Minnesota and from breeder to smallholder flocks, likely driven by inter-regional animal or feed movement via the multi-stage turkey production cycle. Pathotype transitions were more frequently observed from arthritis-associated strains to those causing hepatitis or cardiac lesions. These findings provide crucial insights to support national TRV control strategies and long-term monitoring by industry stakeholders. Full article
(This article belongs to the Special Issue Avian Reovirus)
Show Figures

Figure 1

20 pages, 1880 KB  
Article
A Bunch of Gaps: Factors Behind Service Reliability in Chicago’s High-Frequency Transit Network
by Joseph Rodriguez, Haris N. Koutsopoulos and Jinhua Zhao
Smart Cities 2025, 8(5), 141; https://doi.org/10.3390/smartcities8050141 - 28 Aug 2025
Viewed by 1188
Abstract
Frequent transit services in urban areas have the potential to increase their accessibility to transit-dependent riders and reduce congestion by attracting new ridership through a modal shift. However, bus services operating in mixed traffic face operational challenges that reduce reliability and hinder their [...] Read more.
Frequent transit services in urban areas have the potential to increase their accessibility to transit-dependent riders and reduce congestion by attracting new ridership through a modal shift. However, bus services operating in mixed traffic face operational challenges that reduce reliability and hinder their attractiveness. The sources of unreliability can range from local-level conditions, like the road infrastructure, to higher-level decisions, like the service plan. For the effective planning of improvement strategies, both scales of analysis must be considered. This paper uses a novel modeling framework to understand reliability by analyzing the route and segment factors separately. The Chicago Transit Authority (CTA) bus network is used as a case study for the analysis. The data reflect the operational, demand, and urban conditions of 50 high-frequency bus routes. At the route level, we use the coefficient of headway variation as the dependent variable and diverse route characteristics as explanatory variables. The results indicate that the most significant contributors to the variability of headways are variability in schedules and dispatching at terminals. It is also found that driver experience impacts reliability and that east–west routes are more unreliable than north–south routes. At the segment level, we use data from trips involved in bunching and gaps. As the dependent variable, a novel measure is formulated to capture how quickly bunching or gaps are formed. The bunching and gap events are treated as separate regression models. Findings suggest that link and dwell time variability are the most significant contributors to gap and bunching formation. In terms of infrastructure, bus lane segments reduce gap formations, and left turns increase bunching and gap formations. The insights presented can inform improvements in service and transit infrastructure planning to improve transit level of service (LOS) and support the future of sustainable, smart cities. Full article
(This article belongs to the Special Issue Cost-Effective Transportation Planning for Smart Cities)
Show Figures

Figure 1

15 pages, 3325 KB  
Review
A Minireview on Multiscale Structural Inheritance and Mechanical Performance Regulation of SiC Wood-Derived Ceramics via Reactive Sintering and Hot-Pressing
by Shuying Ji, Yixuan Sun and Haiyang Zhang
Forests 2025, 16(9), 1383; https://doi.org/10.3390/f16091383 - 28 Aug 2025
Viewed by 503
Abstract
Wood-derived ceramics represent a novel class of bio-based composite materials that integrate the hierarchical porous architecture of natural wood with high-performance ceramic phases such as silicon carbide (SiC). This review systematically summarizes recent advances in the fabrication of SiC woodceramics via two predominant [...] Read more.
Wood-derived ceramics represent a novel class of bio-based composite materials that integrate the hierarchical porous architecture of natural wood with high-performance ceramic phases such as silicon carbide (SiC). This review systematically summarizes recent advances in the fabrication of SiC woodceramics via two predominant sintering routes—reactive infiltration sintering and hot-press sintering—and elucidates their effects on the resulting microstructure and mechanical properties. This review leverages the intrinsic anisotropic vascular network and multiscale porosity and mechanical strength, achieving ultralightweight yet mechanically robust ceramics with tunable anisotropy and dynamic energy dissipation capabilities. Critical process–structure–property relationships are highlighted, including the role of ceramic reinforcement phases, interfacial engineering, and multiscale toughening mechanisms. The review further explores emerging applications spanning extreme protection (e.g., ballistic armor and aerospace thermal shields), multifunctional devices (such as electromagnetic shielding and tribological components), and architectural innovations including seismic-resistant composites and energy-efficient building materials. Finally, key challenges such as sintering-induced deformation, interfacial bonding limitations, and scalability are discussed alongside future prospects involving low-temperature sintering, nanoscale interface reinforcement, and additive manufacturing. This mini overview provides essential insights into the design and optimization of wood-derived ceramics, advancing their transition from sustainable biomimetic materials to next-generation high-performance structural components. This review synthesizes data from over 50 recent studies (2011–2025) indexed in Scopus and Web of Science, highlighting three key advancements: (1) bio-templated anisotropy breaking the porosity–strength trade-off, (2) reactive vs. hot-press sintering mechanisms, and (3) multifunctional applications in extreme environments. Full article
(This article belongs to the Special Issue Uses, Structure and Properties of Wood and Wood Products)
Show Figures

Graphical abstract

16 pages, 6875 KB  
Article
Scalable Engineering of Superhydrophobic Copper Surfaces with Enhanced Corrosion Resistance by Combined Nanostructuring and Chemical Vapor Deposition
by N. Rahul, Beomguk Park, Sanjaya Kumar Pradhan, Ho-Eon Sung, Inn-Hyup Jeong, Yong-Sup Yun and Min-Suk Oh
Materials 2025, 18(17), 3981; https://doi.org/10.3390/ma18173981 - 25 Aug 2025
Viewed by 643
Abstract
The vulnerability of copper to corrosion in humid and saline environments remains a critical challenge for its long-term use. In this work, we present a streamlined and scalable approach for fabricating superhydrophobic, corrosion-resistant copper surfaces by integrating a simple wet chemical oxidation process [...] Read more.
The vulnerability of copper to corrosion in humid and saline environments remains a critical challenge for its long-term use. In this work, we present a streamlined and scalable approach for fabricating superhydrophobic, corrosion-resistant copper surfaces by integrating a simple wet chemical oxidation process with atmospheric pressure chemical vapor deposition (APCVD) of a perfluorinated silane. The hierarchical CuO nanostructures formed via alkaline oxidation serve as a robust layer, while subsequent silane functionalization imparts low surface energy, resulting in surfaces with water contact angles exceeding 170° and minimal contact angle hysteresis. Comprehensive surface characterization by SEM and roughness analysis confirmed the preservation of hierarchical morphology after coating. Wettability studies reveal a transition from hydrophilic to superhydrophobic behavior, with the Cassie–Baxter regime achieved on nanostructured and silane-functionalized samples, leading to enhanced droplet mobility and self-cleaning effect. Salt spray tests demonstrate that the superhydrophobic surfaces exhibit a corrosion rate reduction of 85.7% (from 2.51 mm/year for bare copper to 0.36 mm/year for the treated surface), indicating a seven-fold improvement in corrosion resistance compared to bare copper. This methodology offers a practical, reproducible route to multifunctional copper surfaces, advancing their potential for use in anti-fouling, self-cleaning, and long-term protective applications. Full article
Show Figures

Figure 1

16 pages, 1685 KB  
Article
Analytical Method for Modifying Compound Curves on Railway Lines
by Wladyslaw Koc
Geomatics 2025, 5(3), 38; https://doi.org/10.3390/geomatics5030038 - 22 Aug 2025
Viewed by 488
Abstract
The aim of the research presented in the article is to develop a method for modifying compound curves, i.e., geometric systems composed of two (or more) circular arcs with different radii, directed in the same direction and directly connected to each other. These [...] Read more.
The aim of the research presented in the article is to develop a method for modifying compound curves, i.e., geometric systems composed of two (or more) circular arcs with different radii, directed in the same direction and directly connected to each other. These curves are used when connecting two directions of the railway route where one circular arc is impossible due to permanent terrain obstacles. To solve the problem, an analytical method of designing track geometric systems was used, in which individual elements of these systems are described using mathematical equations. The modification itself involves introducing appropriate transition curves between the connecting arcs. Three possibilities for such a connection were presented, resulting from the method of considering conditions related to horizontal curvature of the track axis. A comparative analysis of the obtained solutions was conducted using the developed geometric test system. The analysis was based on the curvature values determined for the considered transition curves, after assuming varying lengths of these curves. For the recommended solution to the problem, it was necessary to verify the practical feasibility of horizontal ordinate values, which could not be too small relative to the implementation error. As stated, to limit the effects of this error, the transition curve lengths should be adjusted to specific geometric situations and excessively short curves should be avoided. As a result of the conducted research, the transition curve determined with strict curvature conditions was determined to be the most advantageous. It maintains curvature continuity along its entire length, there are no abrupt changes in curvature at the edges, and the changes in curvature along the length are much smoother than in the other curves considered. Therefore, this curve should be recommended for practical use. Full article
Show Figures

Figure 1

31 pages, 2557 KB  
Article
A Simulated Annealing Solution Approach for the Urban Rail Transit Rolling Stock Rotation Planning Problem with Deadhead Routing and Maintenance Scheduling
by Alyaa Mohammad Younes, Amr Eltawil and Islam Ali
Logistics 2025, 9(3), 120; https://doi.org/10.3390/logistics9030120 - 22 Aug 2025
Viewed by 895
Abstract
Background: Urban rail transit ensures efficient mobility in densely populated metropolitan areas. This study focuses on the Cairo Metro Network and addresses the Rolling Stock Rotation Planning Problem (RSRPP), aiming to improve operational efficiency and service quality. Methods: A Mixed-Integer Linear [...] Read more.
Background: Urban rail transit ensures efficient mobility in densely populated metropolitan areas. This study focuses on the Cairo Metro Network and addresses the Rolling Stock Rotation Planning Problem (RSRPP), aiming to improve operational efficiency and service quality. Methods: A Mixed-Integer Linear Programming (MILP) model is developed to integrate rolling stock rotation, deadhead routing, and maintenance scheduling. Two single-objective formulations are introduced to separately minimize denied passengers and the number of Electric Multiple Units (EMUs) used. To address scalability for larger instances, a Simulated Annealing (SA) metaheuristic is designed using a list-based solution representation and customized neighborhood operators that preserve feasibility. Results: Computational experiments based on real-world data validate the practical relevance of the model. The MILP achieves optimal solutions for small and medium-sized instances but becomes computationally infeasible for larger ones. In contrast, the SA algorithm consistently produces high-quality solutions with significantly reduced solve times. Conclusions: To the best of the authors’ knowledge, this is the first study to apply SA to the urban rail RSRPP while jointly integrating deadhead routing and maintenance scheduling. The proposed approach proves to be robust and scalable for large metro systems such as Cairo’s. Full article
Show Figures

Figure 1

18 pages, 10039 KB  
Article
Electroless Nickel Plating of Magnesium Particles for Hydrogen Storage
by Sindy Bello, Robinson Aguirre Ocampo, Julián Arias Velandia, Alejandro Zuleta Gil, Esteban Correa, Wilber Silva, Julián Andrés Lenis Rodas, Carlos Arrieta, Francisco Bolívar, Cesar Nieto and Félix Echeverria
Appl. Nano 2025, 6(3), 16; https://doi.org/10.3390/applnano6030016 - 20 Aug 2025
Viewed by 352
Abstract
Hydrogen is emerging as a key energy vector for the transition toward renewable and sustainable energy sources. However, its safe and efficient storage remains a significant technical challenge in terms of cost, safety, and performance. In this study, we aimed to address the [...] Read more.
Hydrogen is emerging as a key energy vector for the transition toward renewable and sustainable energy sources. However, its safe and efficient storage remains a significant technical challenge in terms of cost, safety, and performance. In this study, we aimed to address the kinetic limitations of Mg by synthesizing catalyzed Mg@Ni systems using commercially available micrometric magnesium particles (~26 µm), which were decorated via electroless nickel plating under both aqueous and anhydrous conditions. Morphological and compositional characterization was carried out using SEM, EDS, and XRD. The resulting materials were evaluated through Temperature-Programmed Desorption (TPD), DSC, and isothermal hydrogen absorption/desorption kinetics. Reversibility over multiple absorption–desorption cycles was also investigated. The synthesized Mg@NiB system shows a reduction of 37 °C in the hydrogen release activation temperature at atmospheric pressure and a decrease of 167.3 °C under high vacuum conditions (4.5 × 10−7 MPa), in addition to a reversible hydrogen absorption/desorption capacity of 3.5 ± 0.09 wt.%. Additionally, the apparent activation energy for hydrogen desorption was lower (161.7 ± 21.7 kJ/mol) than that of hydrogenated commercial pure magnesium and was comparable to that of milling MgH2 systems. This research is expected to contribute to the development of efficient and low-cost processing routes for large-scale Mg catalysis. Full article
Show Figures

Figure 1

Back to TopTop