Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (270)

Search Parameters:
Keywords = transmissive optical component

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 3753 KB  
Article
Design and Characteristic Study of Terahertz Photonic Crystal Fiber for Orbital Angular Momentum Modes
by Jingxuan Yang and Wei Li
Photonics 2025, 12(9), 881; https://doi.org/10.3390/photonics12090881 - 31 Aug 2025
Viewed by 127
Abstract
In this paper, we design a new type of terahertz orbital angular momentum (OAM) optical fiber with excellent transmission characteristics over a wide frequency range. Within the 0.8–1.8 THz frequency band, it shows stable support for transmission of the fifth-order OAM mode. Its [...] Read more.
In this paper, we design a new type of terahertz orbital angular momentum (OAM) optical fiber with excellent transmission characteristics over a wide frequency range. Within the 0.8–1.8 THz frequency band, it shows stable support for transmission of the fifth-order OAM mode. Its dispersion control effect is excellent; it maintains the confinement loss of most modes at the extremely low level of 10−10 dB/m; its maximum dispersion is only 5.57 ps/THz/cm; and its effective mode field area is greater than 1.11 × 10−7 m2. These characteristics jointly endow this optical fiber with broad application prospects and significant research value in the field of terahertz communication. With the continuous advancement of technology in this field, this optical fiber is expected to become a key component when building efficient, reliable, and large-capacity communication systems. Full article
Show Figures

Figure 1

14 pages, 3390 KB  
Article
Research on Spatial Optical Path System for Evaluating the Reflection Performance of Quartz-Based Volume Bragg Grating Applied to Fabry–Perot Cavity
by Jiamin Chen, Gengchen Zhang, Hejin Wang, Qianyu Ren, Yongqiu Zheng and Chenyang Xue
Micromachines 2025, 16(9), 998; https://doi.org/10.3390/mi16090998 - 29 Aug 2025
Viewed by 174
Abstract
In the field of high-temperature in situ sensing, highly reflective Fabry–Perot (F-P) cavity mirrors with thermal stress matching are urgently needed. The quartz-based volume Bragg grating (VBG) can replace the dielectric high-reflection film to prepare a high-temperature and high-precision F-P cavity sensitive unit [...] Read more.
In the field of high-temperature in situ sensing, highly reflective Fabry–Perot (F-P) cavity mirrors with thermal stress matching are urgently needed. The quartz-based volume Bragg grating (VBG) can replace the dielectric high-reflection film to prepare a high-temperature and high-precision F-P cavity sensitive unit by virtue of the integrated structure of homogeneous materials. The reflectivity of the VBG is a key parameter determining the performance of the F-P cavity, and its accurate measurement is very important for the pre-evaluation of the device’s sensing ability. Based on the reflectivity measurement of quartz-based VBG with a large aspect ratio, a free-space optical path reflective measurement system is proposed. The ZEMAX simulation is used to optimize the optical transmission path and determine the position of each component when the optimal spot size is achieved. After completing the construction of the VBG reflectivity measurement system, the measurement error is calibrated by measuring the optical path loss, and the maximum error is only 1.2%. Finally, the reflectivity of the VBG measured by the calibrated system is 30.84%, which is basically consistent with the multi-physical field simulation results, showing a deviation as low as 0.85%. The experimental results fully verify the availability and high measurement accuracy of the reflectivity measurement system. This research work provides a new method for testing the characteristics of micron-scale grating size VBGs. Additionally, this work combines optical characterization methods to verify the good effect of VBG preparation technology, providing core technical support for the realization of subsequent homogeneous integrated Fabry–Perot cavity sensors. Furthermore, it holds important application value in the field of optical sensing and micro-nano integration. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

16 pages, 2069 KB  
Article
High-Efficiency Mid-Infrared Transmission Modulator Based on Graphene Plasmon Resonance and Photonic Crystal Defect States
by Jiduo Dong, Qing Zang, Linlong Tang, Binbin Wei, Xiangxing Bai, Hao Zhang, Chunheng Liu, Haofei Shi, Hongyan Shi, Yang Liu and Yueguang Lu
Photonics 2025, 12(8), 800; https://doi.org/10.3390/photonics12080800 - 9 Aug 2025
Viewed by 479
Abstract
With the continuous exploration and advancement of communication frequency bands, terahertz and mid-to-far-infrared communication systems have attracted significant attention in recent years. Modulators are essential components in these systems, making the enhancement of modulator performance in the infrared and terahertz bands a prominent [...] Read more.
With the continuous exploration and advancement of communication frequency bands, terahertz and mid-to-far-infrared communication systems have attracted significant attention in recent years. Modulators are essential components in these systems, making the enhancement of modulator performance in the infrared and terahertz bands a prominent research focus. In this study, we propose a high-performance infrared transmission-type modulator based on the plasmon resonance effect of graphene nanoribbons. This design synergistically exploits near-field enhancement from metal slits and defect states in one-dimensional photonic crystals to strengthen light–graphene interactions. The modulator achieves a modulation depth exceeding 80% and an operating bandwidth greater than 4 THz in the mid-infrared range, enabling efficient signal modulation for free-space optical communication. Importantly, the proposed design alleviates experimental challenges typically associated with the need for high graphene mobility and a wide Fermi energy tuning range in conventional approaches, thereby improving its practical feasibility. Moreover, the approach is scalable to far-infrared and terahertz bands, offering valuable insights for advancing signal modulation technologies across these spectral regions. Full article
(This article belongs to the Special Issue Metamaterials and Nanophotonics: Fundamentals and Applications)
Show Figures

Figure 1

23 pages, 4361 KB  
Article
Novel Visible Light-Driven Ho2InSbO7/Ag3PO4 Photocatalyst for Efficient Oxytetracycline Contaminant Degradation
by Jingfei Luan and Tiannan Zhao
Molecules 2025, 30(15), 3289; https://doi.org/10.3390/molecules30153289 - 6 Aug 2025
Viewed by 422
Abstract
In this study, a Z-scheme Ho2InSbO7/Ag3PO4 (HAO) heterojunction photocatalyst was successfully fabricated for the first time by ultrasound-assisted solvothermal method. The structural features, compositional components and morphological characteristics of the synthesized materials were thoroughly characterized by [...] Read more.
In this study, a Z-scheme Ho2InSbO7/Ag3PO4 (HAO) heterojunction photocatalyst was successfully fabricated for the first time by ultrasound-assisted solvothermal method. The structural features, compositional components and morphological characteristics of the synthesized materials were thoroughly characterized by a series of techniques, including X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectrum, X-ray photoelectron spectroscopy, transmission electron microscopy, scanning electron microscopy and energy-dispersive X-ray spectroscopy. A comprehensive array of analytical techniques, including ultraviolet-visible diffuse reflectance absorption spectra, photoluminescence spectroscopy, time-resolved photoluminescence spectroscopy, photocurrent testing, electrochemical impedance spectroscopy, electron paramagnetic resonance, and ultraviolet photoelectron spectroscopy, was employed to systematically investigate the optical, chemical, and photoelectronic properties of the materials. Using oxytetracycline (OTC), a representative tetracycline antibiotic, as the target substrate, the photocatalytic activity of the HAO composite was assessed under visible light irradiation. Comparative analyses demonstrated that the photocatalytic degradation capability of the HAO composite surpassed those of its individual components. Notably, during the degradation process, the application of the HAO composite resulted in an impressive removal efficiency of 99.89% for OTC within a span of 95 min, along with a total organic carbon mineralization rate of 98.35%. This outstanding photocatalytic performance could be ascribed to the efficient Z-scheme electron-hole separation system occurring between Ho2InSbO7 and Ag3PO4. Moreover, the adaptability and stability of the HAO heterojunction were thoroughly validated. Through experiments involving the capture of reactive species and electron paramagnetic resonance analysis, the active species generated by HAO were identified as hydroxyl radicals (•OH), superoxide anions (•O2), and holes (h+). This identification provides valuable insights into the mechanisms and pathways associated with the photodegradation of OTC. In conclusion, this research not only elucidates the potential of HAO as an efficient Z-scheme heterojunction photocatalyst but also marks a significant contribution to the advancement of sustainable remediation strategies for OTC contamination. Full article
(This article belongs to the Special Issue Nanomaterials in Photochemical Devices: Advances and Applications)
Show Figures

Graphical abstract

17 pages, 1494 KB  
Article
All-Optical Encryption and Decryption at 120 Gb/s Using Carrier Reservoir Semiconductor Optical Amplifier-Based Mach–Zehnder Interferometers
by Amer Kotb, Kyriakos E. Zoiros and Wei Chen
Micromachines 2025, 16(7), 834; https://doi.org/10.3390/mi16070834 - 21 Jul 2025
Viewed by 782
Abstract
Encryption and decryption are essential components in signal processing and optical communication systems, providing data confidentiality, integrity, and secure high-speed transmission. We present a novel design and simulation of an all-optical encryption and decryption system operating at 120 Gb/s using carrier reservoir semiconductor [...] Read more.
Encryption and decryption are essential components in signal processing and optical communication systems, providing data confidentiality, integrity, and secure high-speed transmission. We present a novel design and simulation of an all-optical encryption and decryption system operating at 120 Gb/s using carrier reservoir semiconductor optical amplifiers (CR-SOAs) embedded in Mach–Zehnder interferometers (MZIs). The architecture relies on two consecutive exclusive-OR (XOR) logic gates, implemented through phase-sensitive interference in the CR-SOA-MZI structure. The first XOR gate performs encryption by combining the input data signal with a secure optical key, while the second gate decrypts the encoded signal using the same key. The fast gain recovery and efficient carrier dynamics of CR-SOAs enable a high-speed, low-latency operation suitable for modern photonic networks. The system is modeled and simulated using Mathematica Wolfram, and the output quality factors of the encrypted and decrypted signals are found to be 28.57 and 14.48, respectively, confirming excellent signal integrity and logic performance. The influence of key operating parameters, including the impact of amplified spontaneous emission noise, on system behavior is also examined. This work highlights the potential of CR-SOA-MZI-based designs for scalable, ultrafast, and energy-efficient all-optical security applications. Full article
(This article belongs to the Special Issue Integrated Photonics and Optoelectronics, 2nd Edition)
Show Figures

Figure 1

26 pages, 1906 KB  
Article
The Thermoelastic Component of the Photoacoustic Response in a 3D-Printed Polyamide Coated with Pigment Dye: A Two-Layer Model Incorporating Fractional Heat Conduction Theories
by Marica N. Popovic, Slobodanka P. Galovic, Ervin K. Lenzi and Aloisi Somer
Fractal Fract. 2025, 9(7), 456; https://doi.org/10.3390/fractalfract9070456 - 12 Jul 2025
Viewed by 323
Abstract
This study presents a theoretical model for the thermoelastic response in transmission-mode photoacoustic systems that feature a two-layer structure. The model incorporates volumetric optical absorption in both layers and is based on classical heat conduction theory, hyperbolic generalized heat conduction theory, and fractional [...] Read more.
This study presents a theoretical model for the thermoelastic response in transmission-mode photoacoustic systems that feature a two-layer structure. The model incorporates volumetric optical absorption in both layers and is based on classical heat conduction theory, hyperbolic generalized heat conduction theory, and fractional heat conduction models including inertial memory in Generalizations of the Cattaneo Equation (GCEI, GCEII, and GCEIII). To validate the model, comparisons were made with the existing literature models. Using the proposed model, the thermoelastic photoacoustic response of a two-layer system composed of a 3D-printed porous polyamide (PA12) substrate coated with a thin, highly absorptive protective dye layer is analyzed. We obtain that the thickness and thermal conduction in properties of the coating are very important in influencing the thermoelastic component and should not be overlooked. Furthermore, the thermoelastic component is affected by the selected fractional model—whether it is subdiffusion or superdiffusion—along with the value of the order of the fractional derivative, as well as the optical absorption coefficient of the layer being investigated. Additionally, it is concluded that the phase has a greater impact than the amplitude when selecting the appropriate theoretical heat conduction model. Full article
Show Figures

Figure 1

12 pages, 1086 KB  
Article
Research on High-Precision Measurement Technology of the Extinction Ratio Based on the Transparent Element Mueller Matrix
by Ruiqi Xu, Mingpeng Hu, Xuedong Cao and Jiahui Ren
Micromachines 2025, 16(7), 781; https://doi.org/10.3390/mi16070781 - 30 Jun 2025
Viewed by 337
Abstract
With the widespread application of optical technology in numerous fields, the polarization performance of transmissive optical components has become increasingly crucial. The extinction ratio, an important indicator for evaluating their polarization characteristics, holds great significance for its precise detection. Aiming at the measurement [...] Read more.
With the widespread application of optical technology in numerous fields, the polarization performance of transmissive optical components has become increasingly crucial. The extinction ratio, an important indicator for evaluating their polarization characteristics, holds great significance for its precise detection. Aiming at the measurement of the extinction ratio of a transparent component, this study proposes a measurement method for solving the extinction ratio based on measuring the Mueller matrix of the transparent component. The purpose is to analyze the worst position of the extinction ratio of the transmissive component. The extinction ratio of the sample is obtained according to the phase retardation derived from the Stokes vector of the incident light and the Mueller matrix of the optical component, and a theoretical analysis and simulation of this method are carried out. The simulation results verify the feasibility of the theoretical derivation of this method. To further verify the accuracy of the measurement method, experimental verification is conducted. A standard transparent sample with a phase retardation of 13 nm is selected for actual measurement. The data of independent experiments on the transparent sample under different powers are analyzed, and the extinction ratio of the transparent sample is further obtained. When using this method, the relative error is less than 2%, indicating good accuracy. Full article
(This article belongs to the Special Issue Micro/Nano Optical Devices and Sensing Technology)
Show Figures

Figure 1

27 pages, 2813 KB  
Article
Study of Optical Solitons and Quasi-Periodic Behaviour for the Fractional Cubic Quintic Nonlinear Pulse Propagation Model
by Lotfi Jlali, Syed T. R. Rizvi, Sana Shabbir and Aly R. Seadawy
Mathematics 2025, 13(13), 2117; https://doi.org/10.3390/math13132117 - 28 Jun 2025
Cited by 1 | Viewed by 322
Abstract
This study explores analytical soliton solutions for the cubic–quintic time-fractional nonlinear non-paraxial pulse transmission model. This versatile model finds numerous uses in fiber optic communication, nonlinear optics, and optical signal processing. The strength of the quintic and cubic nonlinear components plays a crucial [...] Read more.
This study explores analytical soliton solutions for the cubic–quintic time-fractional nonlinear non-paraxial pulse transmission model. This versatile model finds numerous uses in fiber optic communication, nonlinear optics, and optical signal processing. The strength of the quintic and cubic nonlinear components plays a crucial role in nonlinear processes, such as self-phase modulation, self-focusing, and wave combining. The fractional nonlinear Schrödinger equation (FNLSE) facilitates precise control over the dynamic properties of optical solitons. Exact and methodical solutions include those involving trigonometric functions, Jacobian elliptical functions (JEFs), and the transformation of JEFs into solitary wave (SW) solutions. This study reveals that various soliton solutions, such as periodic, rational, kink, and SW solitons, are identified using the complete discrimination polynomial methods (CDSPM). The concepts of chaos and bifurcation serve as the framework for investigating the system qualitatively. We explore various techniques for detecting chaos, including three-dimensional and two-dimensional graphs, time-series analysis, and Poincarè maps. A sensitivity analysis is performed utilizing a variety of initial conditions. Full article
Show Figures

Figure 1

24 pages, 8549 KB  
Article
A Novel High-Precision Workpiece Self-Positioning Method for Improving the Convergence Ratio of Optical Components in Magnetorheological Finishing
by Yiang Zhang, Pengxiang Wang, Chaoliang Guan, Meng Liu, Xiaoqiang Peng and Hao Hu
Micromachines 2025, 16(7), 730; https://doi.org/10.3390/mi16070730 - 22 Jun 2025
Viewed by 435
Abstract
Magnetorheological finishing is widely used in the high-precision processing of optical components, but due to the influence of multi-source system errors, the convergence of single-pass magnetorheological finishing (MRF) is limited. Although iterative processing can improve the surface accuracy, repeated tool paths tend to [...] Read more.
Magnetorheological finishing is widely used in the high-precision processing of optical components, but due to the influence of multi-source system errors, the convergence of single-pass magnetorheological finishing (MRF) is limited. Although iterative processing can improve the surface accuracy, repeated tool paths tend to deteriorate mid-spatial frequency textures, and for complex surfaces such as aspheres, traditional manual alignment is time-consuming and lacks repeatability, significantly restricting the processing efficiency. To address these issues, firstly, this study systematically analyzes the effect of six-degree-of-freedom positioning errors on convergence behavior, establishes a positioning error-normal contour error transmission model, and obtains a workpiece positioning error tolerance threshold that ensures that the relative convergence ratio is not less than 80%. Further, based on these thresholds, a hybrid self-positioning method combining machine vision and a probing module is proposed. A composite data acquisition method using both a camera and probe is designed, and a stepwise global optimization model is constructed by integrating a synchronous iterative localization algorithm with the Non-dominated Sorting Genetic Algorithm II (NSGA-II). The experimental results show that, compared with the traditional alignment, the proposed method improves the convergence ratio of flat workpieces by 41.9% and reduces the alignment time by 66.7%. For the curved workpiece, the convergence ratio is improved by 25.7%, with an 80% reduction in the alignment time. The proposed method offers both theoretical and practical support for high-precision, high-efficiency MRF and intelligent optical manufacturing. Full article
(This article belongs to the Special Issue Recent Advances in Micro/Nanofabrication, 2nd Edition)
Show Figures

Figure 1

18 pages, 3754 KB  
Article
N, S-Doped Carbon Dots (N, S-CDs) for Perfluorooctane Sulfonic Acid (PFOS) Detection
by Hani Nasser Abdelhamid
C 2025, 11(2), 36; https://doi.org/10.3390/c11020036 - 29 May 2025
Cited by 1 | Viewed by 1704
Abstract
Nitrogen and sulfur-co-doped carbon dots (N, S-CDs) were synthesized using a simple, eco-friendly hydrothermal technique with L-cysteine as the precursor. The synthesis approach produced highly water-dispersible, heteroatom-doped CDs with surface functional groups comprising amine, carboxyl, thiol, and sulfonic acid. Data analysis of X-ray [...] Read more.
Nitrogen and sulfur-co-doped carbon dots (N, S-CDs) were synthesized using a simple, eco-friendly hydrothermal technique with L-cysteine as the precursor. The synthesis approach produced highly water-dispersible, heteroatom-doped CDs with surface functional groups comprising amine, carboxyl, thiol, and sulfonic acid. Data analysis of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and transmission electron microscopy (TEM) confirmed their amorphous nature, nanoscale dimensions (1–8 nm, average particle size of 2.6 nm), and surface chemistry. Optical examination revealed intense and pure blue fluorescence emission under UV excitation, with excitation-dependent emission behavior attributed to surface defects and heteroatom doping. The N, S-CDs were applied as fluorescent probes for detecting perfluorooctanesulfonic acid (PFOS), a notable component of the perfluoroalkyl substances (PFAS) family, demonstrating pronounced and concentration-dependent fluorescence quenching. A linear detection range of 3.33–20 µM and a limit of detection (LOD) of 2 µM were reported using the N, S-CDs probe. UV-Vis spectral shifts and dye-interaction investigations indicated that the sensing mechanism is regulated by non-covalent interactions, primarily electrostatic and hydrophobic forces. These findings confirm the potential of N, S-CDs to be used as effective optical sensors for detecting PFOS in environmental monitoring applications. Full article
Show Figures

Graphical abstract

20 pages, 1124 KB  
Review
Advances in and Applications of Microwave Photonics in Radar Systems: A Review
by Luka Podbregar, Boštjan Batagelj, Aljaž Blatnik and Andrej Lavrič
Photonics 2025, 12(6), 529; https://doi.org/10.3390/photonics12060529 - 23 May 2025
Viewed by 1696
Abstract
Modern radar systems frequently encounter constraints on bandwidth, transmission speed, and resolution, particularly within complex electromagnetic settings. Microwave photonics (MWP) provides solutions through the integration of photonic elements to improve radar’s functionalities. This review paper examines the question of how to improve radar [...] Read more.
Modern radar systems frequently encounter constraints on bandwidth, transmission speed, and resolution, particularly within complex electromagnetic settings. Microwave photonics (MWP) provides solutions through the integration of photonic elements to improve radar’s functionalities. This review paper examines the question of how to improve radar performance by using MWP-based radar components for signal transmission, local oscillator signal generation, radar waveforming, optical beamforming networks, mixing, filtering, co-site interference suppression, real-time Fourier transformation, and analog-to-digital conversion. MWP radar systems achieve wider bandwidths, greater resistance to electromagnetic interference, and reduced phase noise, size, weight, and power consumption. Consequently, the integration of MWP into radar systems has the potential to increase the accuracy of these systems. Full article
(This article belongs to the Special Issue Recent Advancement in Microwave Photonics)
Show Figures

Figure 1

41 pages, 5928 KB  
Review
Advances in Optical Microfibers: From Fabrication to Functionalization and Sensing Applications
by Joanna Korec-Kosturek and Joanna E. Moś
Materials 2025, 18(11), 2418; https://doi.org/10.3390/ma18112418 - 22 May 2025
Cited by 1 | Viewed by 899
Abstract
Currently, optical fibers play a leading role in telecommunications, serve as special transmission components for industrial applications, and form the basis of highly sensitive sensor elements. One of the most commonly used modifications is the reduction in the initial dimensions of the cladding [...] Read more.
Currently, optical fibers play a leading role in telecommunications, serve as special transmission components for industrial applications, and form the basis of highly sensitive sensor elements. One of the most commonly used modifications is the reduction in the initial dimensions of the cladding and core to a few or several micrometers, allowing the evanescent wave emerging from the tapered region to interact with the surrounding environment. As a result, the microfiber formed in this way is highly sensitive to any changes in its surroundings, making it an ideal sensing element. This article primarily focuses on reviewing the latest trends in science involving various types of optical microfibers, including tapers, rings, loops, coils, and tapered fiber Bragg gratings. Additionally, it discusses the most commonly used materials for coating fiber optic elements—such as metals, oxides, polymers, organic materials, and graphene—which enhance sensitivity to specific physical factors and enable selectivity in the developed sensors. Full article
(This article belongs to the Special Issue Research on New Optoelectronic Materials and Devices)
Show Figures

Figure 1

21 pages, 8002 KB  
Article
Simulating Pulp Vitality Measurements via Digital Optical Twins: Influence of Dental Components on Spectral Transmission
by David Hevisov, Thomas Peter Ertl and Alwin Kienle
Sensors 2025, 25(10), 3217; https://doi.org/10.3390/s25103217 - 20 May 2025
Viewed by 492
Abstract
Optical diagnostic techniques represent an attractive complement to conventional pulp vitality tests, as they can provide direct information about the vascular status of the pulp. However, the complex, multi-layered structure of a tooth significantly influences the detected signal and, ultimately, the diagnostic decision. [...] Read more.
Optical diagnostic techniques represent an attractive complement to conventional pulp vitality tests, as they can provide direct information about the vascular status of the pulp. However, the complex, multi-layered structure of a tooth significantly influences the detected signal and, ultimately, the diagnostic decision. Despite this, the impact of the various dental components on light propagation within the tooth, particularly in the context of diagnostic applications, remains insufficiently studied. To help bridge this gap and potentially enhance diagnostic accuracy, this study employs digital optical twins based on the Monte Carlo method. Using incisor and molar models as examples, the influence of tooth and pulp geometry, blood concentration, and pulp composition, such as the possible presence of pus, on spectrally resolved transmission signals is demonstrated. Furthermore, it is shown that gingival blood absorption can significantly overlay the pulpal measurement signal, posing a substantial risk of misdiagnosis. Strategies such as shifting the illumination and detection axes, as well as time-gated detection, are explored as potential approaches to suppress interfering signals, particularly those originating from the gingiva. Full article
(This article belongs to the Special Issue Vision- and Image-Based Biomedical Diagnostics—2nd Edition)
Show Figures

Figure 1

15 pages, 778 KB  
Article
Research on a Broadband Optical Monitoring Method with an Improved Error Compensation Mechanism
by Ming Ji, Yiming Guo, Yuhui Pei, Zhenjiang Qin, Weiji Liu and Chitin Hon
Coatings 2025, 15(5), 551; https://doi.org/10.3390/coatings15050551 - 5 May 2025
Viewed by 526
Abstract
In modern optical coating production, optical monitoring technology is an indispensable component. The traditional monochromatic monitoring technology used in current commercial and research institutions is usually only for a specific wavelength and cannot fully represent the characteristics of the film in the entire [...] Read more.
In modern optical coating production, optical monitoring technology is an indispensable component. The traditional monochromatic monitoring technology used in current commercial and research institutions is usually only for a specific wavelength and cannot fully represent the characteristics of the film in the entire spectral range. Moreover, for non-quarter-wave coating systems (such as multilayer or complex coating systems), a thickness change in a single coating may have a significant effect on the performance of the entire coating system. In this case, it may be difficult to use monochromatic monitoring to accurately determine the thickness of each layer, resulting in reduced monitoring accuracy. At present, although broadband optical monitoring can be monitored over a wide wavelength range, the stop-plating time may be misjudged due to error accumulation during the coating process. To solve these problems, a broadband optical monitoring method with an improved error compensation mechanism is proposed in this paper. An optimal function that combines the absolute error and shape similarity of the transmission spectrum is designed, and the transmission spectrum is optimized by the limited random search method. In addition, a breakpoint algorithm based on parabolic error curve prediction is designed for the first time in this paper, which avoids the problem of excessive deposition thickness encountered by traditional broadband monitoring methods in the automatic coating processes. To verify the effectiveness of the proposed method, a set of hardware verification platforms based on broadband optical monitoring is designed in this paper, and a 30-layer shortwave-pass filter is constructed as an example. Compared with the traditional time monitoring method (CTMM), the proposed broadband optical monitoring method (PBMM) has significant advantages in terms of the matching degree between the transmission spectrum and the target spectrum, as well as the average transmittance in the low-pass band. In summary, the broadband optical monitoring method with an improved error compensation mechanism proposed in this paper provides an effective solution for high-precision optical coating production and has high practical application value and research significance. Full article
(This article belongs to the Special Issue Developments in Optical Coatings and Thin Films)
Show Figures

Graphical abstract

15 pages, 6305 KB  
Article
A Study on the Spectral Characteristics of 83.4 nm Extreme Ultraviolet Filters
by Qian Liu, Aiming Zhou, Hanlin Wang, Pingxu Wang, Chen Tao, Guang Zhang, Xiaodong Wang and Bo Chen
Coatings 2025, 15(5), 535; https://doi.org/10.3390/coatings15050535 - 30 Apr 2025
Viewed by 805
Abstract
Extreme ultraviolet (EUV) imagers are key tools to monitor the space environment and forecast space weather. EUV filters are important components to block radiation in the ultraviolet (UV), visible, and near-infrared (IR) regions. In this study, various characterization methods were proposed for the [...] Read more.
Extreme ultraviolet (EUV) imagers are key tools to monitor the space environment and forecast space weather. EUV filters are important components to block radiation in the ultraviolet (UV), visible, and near-infrared (IR) regions. In this study, various characterization methods were proposed for the nickel mesh-supported indium (In) filter, and their spectral characteristics were comprehensively studied. The material and thickness of the filter were chosen based on atomic scattering principles, determined through theoretical calculation and software simulation. The metal film was deposited using the vacuum-resistive thermal evaporation method. The measured transmission of the filter was 10.06% at 83.4 nm. The surface elements of the sample were analyzed using X-ray photoelectron spectroscopy (XPS). The surface and cross-sectional morphologies of the filter were observed using a scanning electron microscope (SEM). The impact of the oxide layer and carbon contamination on the filter’s transmittance was investigated using an ellipsometer. A multilayer “In-In2O3-C” model was established to determine the thickness of both the oxide layer and carbon contamination layer on the filter. This model introduces the filling factor based on the original model and considers the diffusion of the contamination layer, resulting in more accurate fitting results. The transmittance of the filter in the visible light range was measured using a UV-VIS spectrophotometer, and the measurement error was analyzed. This article provides preparation methods and test methods for the 83.4 nm EUV filter and conducts a detailed analysis of the spectral characteristics of the prepared optical filters, which hold significant value for space exploration applications. Full article
Show Figures

Figure 1

Back to TopTop