Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,227)

Search Parameters:
Keywords = transmitter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 7670 KB  
Article
A CMOS Hybrid System for Non-Invasive Hemoglobin and Oxygen Saturation Monitoring with Super Wavelength Infrared Light Emitting Diodes
by Hyunjin Park, Seoyeon Kang, Jiwon Kim, Jeena Lee, Somi Park and Sung-Min Park
Micromachines 2025, 16(10), 1086; https://doi.org/10.3390/mi16101086 - 25 Sep 2025
Abstract
This paper presents a CMOS-based hybrid system capable of noninvasively quantifying the total hemoglobin (tHb), the oxygen saturation (SpO2), and the heart rate (HR) by utilizing five-wavelength (670, 770, 810, 850, and 950 nm) photoplethysmography. Conventional pulse oximeters are limited to [...] Read more.
This paper presents a CMOS-based hybrid system capable of noninvasively quantifying the total hemoglobin (tHb), the oxygen saturation (SpO2), and the heart rate (HR) by utilizing five-wavelength (670, 770, 810, 850, and 950 nm) photoplethysmography. Conventional pulse oximeters are limited to the measurements of SpO2 and heart rate, therefore hindering the real-time estimation of tHb that is clinically essential for monitoring anemia, chronic diseases, and postoperative recovery. Therefore, the proposed hybrid system enables us to distinguish between the concentrations of oxygenated (HbO2) and deoxygenated hemoglobin (Hb) by using the absorption characteristics of five wavelengths from the visible to near-infrared range. This CMOS hybrid mixed-signal architecture includes a light emitting diode (LED) driver as a transmitter and an optoelectronic receiver with on-chip avalanche photodiodes, followed by a field-programmable gate array (FPGA) for a real-time signal processing pipeline. The proposed hybrid system, validated through post-layout simulations and algorithmic verification, achieves high precision with ±0.3 g/dL accuracy for tHb and ±1.5% for SpO2, while the heart rate is extracted via 1024-point Fast Fourier Transform (FFT) with an error below ±0.2%. These results demonstrate the potential of a CMOS-based hybrid system as a feasible solution to achieve real-time, low-power, and high-accuracy analysis of bio-signals for clinical and home-use applications. Full article
Show Figures

Figure 1

15 pages, 5383 KB  
Article
Physical Characterization of Multiwire Polystyrene Produced by Electrospinning Technique
by Lorenzo Torrisi, Letteria Silipigni, Alfio Torrisi, Mariapompea Cutroneo, Angela Malara, Antonio Fotia, Chiara Nunnari and Patrizia Frontera
Polymers 2025, 17(19), 2587; https://doi.org/10.3390/polym17192587 - 24 Sep 2025
Abstract
Multiwire polystyrene (PS) produced by the electrospinning technique was physically characterized in terms of morphology and by optical properties of transmittance and absorbance in the IR and UV-Visible regions. A comparison was presented with the properties of bulk PS and multiwire PS containing [...] Read more.
Multiwire polystyrene (PS) produced by the electrospinning technique was physically characterized in terms of morphology and by optical properties of transmittance and absorbance in the IR and UV-Visible regions. A comparison was presented with the properties of bulk PS and multiwire PS containing graphene oxide (GO) nanoparticles (NPs). The polymer is hydrophobic, and this surface property is enhanced when it has a multiwire morphology, and even more when GO NPs are embedded in it. The wetting angles reach up to about 144°. PS is an optimum dielectric polymer, and its permittivity was measured as a function of frequency. Some possible applications of the produced multiwire PS are presented and discussed. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

20 pages, 2936 KB  
Article
Experimental and Numerical Study of Damage Evolution and Fracture Characteristics of Three-Layer Composite Rocks Under Dynamic Loading
by Huajun Xue, Yanbing Wang, Weihong Yang, Pengda Zhang, Hui Xiao, Yaoyao Zhang and Yuanjian Zhang
Appl. Sci. 2025, 15(19), 10369; https://doi.org/10.3390/app151910369 - 24 Sep 2025
Abstract
In order to study the damage evolution and fracture characteristics of rock with different composite modes in three layers under dynamic loading, rock specimens with different composite modes were made by using three materials: sandstone, marble and granite. The dynamic fracture impact test [...] Read more.
In order to study the damage evolution and fracture characteristics of rock with different composite modes in three layers under dynamic loading, rock specimens with different composite modes were made by using three materials: sandstone, marble and granite. The dynamic fracture impact test was carried out by using the Hopkinson pressure bar impact loading system, the voltage signal on the Hopkinson pressure bar was calculated and processed, and the crack propagation mode of the specimen was captured by using a high-speed camera, and the stress wave characteristics, stress time–history relationship and energy change characteristics of rocks with different composite modes were studied. At the same time, combined with Distinct Lattice Spring Model numerical simulation, the fracture process of the specimen was inverted, and the changes in stress intensity factor, stress change and load–displacement change in monitoring point were analyzed to compare the dynamic fracture behavior differences between different composite rocks. The results show that the dynamic fracture process captured by the high-speed camera has a good fit with the crack propagation process simulated by numerical simulation. When marble is used as the upper material, the energy transmittance is larger, and the transmission energy ratio between sandstone and granite is basically the same due to the large difference in hardness. When the comprehensive hardness of the specimen is the same, the smaller the hardness of the material at the cracking position, the faster the cracking will be, and the smaller the hardness of the second layer of the specimen at the cracking position, the faster the cracking speed of the specimen. In terms of dynamic fracture toughness, for specimens with little difference in hardness, when the impact end material is sandstone, the dynamic fracture extreme value of the specimen is lower, and when the sandstone material is used as the impact end material, it is more likely to crack. When the first layer of material is the same, the dynamic fracture toughness of the specimen with less hardness of the second layer of material is smaller, and the easier the crack development is. Full article
(This article belongs to the Special Issue Recent Advances in Rock Mass Engineering)
29 pages, 5066 KB  
Article
Preparation of Urea-Formaldehyde-Coated Cationic Red-Ternary System Microcapsules and Properties Optimization
by Jingyi Hang, Yuming Zou, Xiaoxing Yan and Jun Li
Coatings 2025, 15(9), 1112; https://doi.org/10.3390/coatings15091112 - 22 Sep 2025
Viewed by 2
Abstract
Thermochromic microcapsules were synthesized and optimized using crystal violet lactone, bisphenol A, and decanol as the core materials, a dispersible cationic red dye as the color-modifying additive, and urea-formaldehyde resin as the wall material, based on orthogonal and single-factor experiments. The effects of [...] Read more.
Thermochromic microcapsules were synthesized and optimized using crystal violet lactone, bisphenol A, and decanol as the core materials, a dispersible cationic red dye as the color-modifying additive, and urea-formaldehyde resin as the wall material, based on orthogonal and single-factor experiments. The effects of the proportion of cationic red dye in the core material, the mass ratio of formaldehyde to urea, the emulsifier HLB value, and the core–wall mass ratio on yield, encapsulation rate, thermochromic ΔE, and formaldehyde release of microcapsules were systematically investigated. The results showed that the core–wall ratio was the key factor affecting the comprehensive performance of the microcapsules. Through the comparison of orthogonal and single-factor tests, 11# microcapsule was identified as having the best overall performance in terms of ΔE, and encapsulation rate. The ΔE value was increased by about 165% compared with the lowest-performing sample, significantly enhancing the thermochromic response. The encapsulation rate was improved by nearly 40%, effectively enhancing the encapsulation quality and core stability, with overall performance standing out. The best preparation process was to add 0.5% of the core material mass of dispersible cationic red dye, the mass ratio of formaldehyde and urea was 1.2:1, the HLB value of emulsifier was 10, and the core–wall ratio was 1:1.1. The yield of 11# microcapsules prepared under this condition was 31.95%, the encapsulation rate was 68%, the thermochromic ΔE was 9.292, and the formaldehyde release concentration was 1.381 mg/m3. Furthermore, 11# microcapsules with different addition levels were introduced into the UV primer to evaluate their effects on the mechanical and optical properties of the coating. The results showed that the addition of microcapsules weakened the gloss and light transmittance of the coating, increased the surface roughness, and decreased the elongation at break. When the addition amount was 5%, the coating exhibited the best overall performance: UV-visible light transmittance reached 91.92%, 60° gloss was 42.2 GU, elongation at break was 9.3%, and surface roughness was 0.308 μm. This study developed a purple thermochromic microcapsule system by regulating the dispersible dye content and interfacial conditions. In coating applications, the system exhibited a strong ΔE response and excellent overall performance, offering great advantages over existing similar systems in terms of color-change efficiency, ΔE enhancement, and coating adaptability. Full article
(This article belongs to the Section Functional Polymer Coatings and Films)
Show Figures

Figure 1

18 pages, 13021 KB  
Article
EMPhone: Electromagnetic Covert Channel via Silent Audio Playback on Smartphones
by Yongjae Kim, Hyeonjun An and Dong-Guk Han
Sensors 2025, 25(18), 5900; https://doi.org/10.3390/s25185900 - 21 Sep 2025
Viewed by 153
Abstract
Covert channels enable hidden communication that poses significant security risks, particularly when smartphones are used as transmitters. This paper presents the first end-to-end implementation and evaluation of an electromagnetic (EM) covert channel on modern Samsung Galaxy S21, S22, and S23 smartphones (Samsung Electronics [...] Read more.
Covert channels enable hidden communication that poses significant security risks, particularly when smartphones are used as transmitters. This paper presents the first end-to-end implementation and evaluation of an electromagnetic (EM) covert channel on modern Samsung Galaxy S21, S22, and S23 smartphones (Samsung Electronics Co., Ltd., Suwon, Republic of Korea). We first demonstrate that a previously proposed method relying on zero-volume playback is no longer effective on these devices. Through a detailed analysis of EM emissions in the 0.1–2.5 MHz range, we discovered that consistent, volume-independent signals can be generated by exploiting the hardware’s recovery delay after silent audio playback. Based on these findings, we developed a complete system comprising a stealthy Android application for transmission, a time-based modulation scheme, and a demodulation technique designed around the characteristics of the generated signals to ensure reliable reception. The channel’s reliability and robustness were validated through evaluations of modulation time, probe distance, and message length. Experimental results show that the maximum error-free bit rate (bits per second, bps) reached 0.558 bps on Galaxy S21 and 0.772 bps on Galaxy S22 and Galaxy S23. Reliable communication was feasible up to 0.5 cm with a near-field probe, and a low alignment-aware bit error rate (BER) was maintained even for 100-byte messages. This work establishes a practical threat, and we conclude by proposing countermeasures to mitigate this vulnerability. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

28 pages, 8495 KB  
Article
Preparation of Tea Tree Essential Oil@Chitosan-Arabic Gum Microcapsules and Its Effect on the Properties of Waterborne Coatings
by Nana Zhang, Ye Zhu, Xiaoxing Yan and Jun Li
Coatings 2025, 15(9), 1105; https://doi.org/10.3390/coatings15091105 - 20 Sep 2025
Viewed by 178
Abstract
Furniture surfaces are prone to the accumulation of bacteria, fungi and other micro-organisms, especially in humid environments such as kitchens and bathrooms. The antimicrobial treatment of coatings has been demonstrated to enhance the performance of wood, prolong its service life, and improve hygiene [...] Read more.
Furniture surfaces are prone to the accumulation of bacteria, fungi and other micro-organisms, especially in humid environments such as kitchens and bathrooms. The antimicrobial treatment of coatings has been demonstrated to enhance the performance of wood, prolong its service life, and improve hygiene and safety. Consequently, by investigating the most effective preparation process for antimicrobial microcapsules and incorporating them into the coating, the coating can be endowed with antimicrobial properties, thereby expanding its application range. Microcapsules were prepared using a composite wall material consisting of chitosan (CS) and Arabic gum (AG), with tea tree essential oil (TTO) serving as the core material. The best CS-AG coated TTO microcapsules were prepared when the core–wall ratio was 1.2:1, the emulsifier concentration was 2%, the pH was 3, and the mass ratio of AG to CS (mAG:mCS) was 3:1. The mAG:mCS was identified as the most significant factor affecting the microcapsule yield and encapsulation rate. With the increase in mAG:mCS, the antimicrobial rate of the coating against Escherichia coli (E. coli) exhibited a trend of first rising and then falling, while the antimicrobial rate against Staphylococcus aureus (S. aureus) demonstrated a trend of first rising, then falling, and then rising again. The colour difference (ΔE) and gloss exhibited an overall downward trend, the light loss rate demonstrated a fluctuating upward trend, and the roughness exhibited a trend of first falling and then rising. The visible light band transmittance exhibited minimal variation, ranging from 86.43% to 92.76%. Microcapsule 14# (mAG:mCS = 3:1) demonstrated remarkable antimicrobial properties (E. coli 65.55%, S. aureus 73.29%), exceptional optical characteristics (light transmittance 92.12%, 60° gloss 24.0 GU), and notable flexibility (elongation at break 18.10%, modulus 0.10 GPa). The waterborne coating was modified by microcapsule technology, thus endowing the coating with antimicrobial properties and concomitantly broadening the scope of application of antimicrobial microcapsules. Full article
(This article belongs to the Section Functional Polymer Coatings and Films)
Show Figures

Figure 1

16 pages, 2156 KB  
Article
Comparative Acquisition, Transmission, and Retention of Distinct Grapevine Red Blotch Virus Isolates in Relation to the Genotype and Sex of Spissistilus festinus, the Treehopper Vector
by Victoria J. Hoyle, Anna O. Wunsch, Heather McLane, Scottie Browning, Madison T. Flasco, Elizabeth J. Cieniewicz and Marc Fuchs
Viruses 2025, 17(9), 1274; https://doi.org/10.3390/v17091274 - 20 Sep 2025
Viewed by 134
Abstract
Grapevine red blotch virus (GRBV), the causal agent of red blotch disease of grapevines, is transmitted by Spissistilus festinus, the threecornered alfalfa hopper. Isolates of GRBV belong to two phylogenetic clades (I and II) and S. festinus is a dimorphic insect, with [...] Read more.
Grapevine red blotch virus (GRBV), the causal agent of red blotch disease of grapevines, is transmitted by Spissistilus festinus, the threecornered alfalfa hopper. Isolates of GRBV belong to two phylogenetic clades (I and II) and S. festinus is a dimorphic insect, with two genotypes found in the western (California, CA) and the southeastern (SE) regions of the United States. The transmission of GRBV by S. festinus is circulative and nonpropagative, yet some parameters of transmission remain to be characterized. Here, we compared the acquisition, transmission, and retention of GRBV isolates from phylogenetic clades I and II by S. festinus males and females of the two genotypes. Results indicated that the SE genotype acquired GRBV more efficiently (72.5%, 29/40) than the CA genotype (22.5%, 18/80), with differences in acquisition observed between males (32.5%, 26/80) and females (52.5%, 21/40) of the two S. festinus genotypes and between GRBV isolates of phylogenetic clades I (29%, 23/80) and II (60%, 24/40). Following acquisition, both S. festinus genotypes and sexes retained GRBV isolates of phylogenetic clades I and II for at least 60 days without access to an infected plant. For transmission, the GRBV isolate of phylogenetic clade II was more efficiently transmitted by the SE genotype (54%, 13/24) than the CA genotype (17%, 4/24) and SE females (75%, 12/16) were significantly more efficient transmitters of GRBV than CA females (19%, 3/16). Together, our findings revealed that S. festinus genotype, sex, and virus isolate influence GRBV acquisition and transmission but not retention. This research addressed important knowledge gaps in S. festinus-mediated transmission of GRBV that are essential for advancing red blotch disease epidemiology and developing appropriate disease management responses. Full article
(This article belongs to the Special Issue Emerging and Reemerging Plant Viruses in a Changing World)
Show Figures

Figure 1

15 pages, 3751 KB  
Article
Local Structural Changes in High-Alumina, Low-Lithium Glass-Ceramics During Crystallization
by Minghan Li, Yan Pan, Shuguang Wei, Yanping Ma, Chuang Dong, Hongxun Hao and Hong Jiang
Nanomaterials 2025, 15(18), 1449; https://doi.org/10.3390/nano15181449 - 20 Sep 2025
Viewed by 197
Abstract
In this study, we investigate the phase transition process during high-alumina, low-lithium glass-ceramics (ZnO-MgO-Li2O-SiO2-Al2O3) crystallization. The differential scanning calorimetry and high-temperature X-ray diffraction results show that approximately 10 wt.% of (Zn, Mg)Al2O4 [...] Read more.
In this study, we investigate the phase transition process during high-alumina, low-lithium glass-ceramics (ZnO-MgO-Li2O-SiO2-Al2O3) crystallization. The differential scanning calorimetry and high-temperature X-ray diffraction results show that approximately 10 wt.% of (Zn, Mg)Al2O4 crystals precipitated when the heat treatment temperature reached 850 °C, indicating that a large number of nuclei had already formed during the earlier stages of heat treatment. Field emission transmission electron microscopy used to observe the microstructure of glass-ceramics after staged heat treatment revealed that cation migration occurred during the nucleation process. Zn and Mg aggregated around Al to form (Zn, Mg)Al2O4 nuclei, which provided sites for crystal growth. Moreover, high-valence Zr aggregated outside the glass network, leading to the formation of nanocrystals. Raman spectroscopy analysis of samples at different stages of crystallization revealed that during spinel precipitation, the Q3 and Q4 structural units in the glass network increased significantly, along with an increase in the number of bridging oxygens. Highly coordinated Al originally present in the network mainly participated in spinel nucleation, effectively suppressing the subsequent formation of LixAlxSi1−xO2, which eventually resulted in the successful preparation of glass-ceramics with (Zn, Mg)Al2O4 and ZrO2 as the main crystalline phases. The grains in this glass-ceramic are all nanocrystals. Its Vickers hardness and flexural strength can reach up to 875 Hv and 350 MPa, respectively, while the visible light transmittance of the glass-ceramic reaches 81.5%. This material shows potential for applications in touchscreen protection, aircraft and high-speed train windshields, and related fields. Full article
(This article belongs to the Section Inorganic Materials and Metal-Organic Frameworks)
Show Figures

Figure 1

37 pages, 6941 KB  
Article
Investigating the Thermal Properties of Structural Partitions Produced Using Additive Technology (3D Printing) from Biodegradable Materials for Use in Construction
by Beata Anwajler, Arkadiusz Wieleżew, Krystian Grabowski, Tullio de Rubeis, Dario Ambrosini, Ewa Zdybel and Ewa Tomaszewska-Ciosk
Materials 2025, 18(18), 4379; https://doi.org/10.3390/ma18184379 - 19 Sep 2025
Viewed by 250
Abstract
Advancements in material technologies and increasingly stringent thermal insulation requirements are driving the search for innovative solutions to serve as an alternative to traditional insulating materials. Using 3D printing techniques to produce thermal insulation opens up new possibilities for creating structures, geometries, and [...] Read more.
Advancements in material technologies and increasingly stringent thermal insulation requirements are driving the search for innovative solutions to serve as an alternative to traditional insulating materials. Using 3D printing techniques to produce thermal insulation opens up new possibilities for creating structures, geometries, and shapes from a variety of raw materials, ranging from synthetic polymers to biodegradable composites. This study aimed to develop a modern thermal insulation barrier with a comparable thermal conductivity to conventional materials to enhance the energy efficiency of buildings. Cellular materials based on the Kelvin cell were fabricated using additive manufacturing via 3D SLS printing from a composite consisting of a biodegradable material (TPS) and a recyclable polymer (PA12). The printed cellular structural partitions were tested for their thermal insulation properties, including thermal conductivity coefficient, thermal transmittance (U-value), and thermal resistance. The best thermal insulation performance was demonstrated by a double-layer partition made from TPS + PA12 at a mass ratio of 5:5 and with a thickness of 60 mm. This sample achieved a thermal conductivity of λ = 0.026 W/(m·K), a thermal resistance of R = 2.4 (m2·K)/W, and a thermal transmittance of U = 0.42 W/(m2·K). Cellular partition variants with the most favorable properties were incorporated into building thermal balance software and an energy simulation was conducted for a single-family house using prototype insulating materials. This enabled an assessment of their energy efficiency and cost-effectiveness. Full article
Show Figures

Figure 1

15 pages, 1544 KB  
Article
Receiver Location Optimization for Heterogeneous S-Band Marine Transmitters in Passive Multistatic Radar Networks via NSGA-II
by Xinpeng Li, Pengfei He, Jie Song and Zhongxun Wang
Sensors 2025, 25(18), 5861; https://doi.org/10.3390/s25185861 - 19 Sep 2025
Viewed by 151
Abstract
Comprehensive maritime domain awareness is crucial for navigation safety, traffic management, and security surveillance. In the context of an increasingly complex modern electromagnetic environment, the disadvantages of traditional active single-station radars, such as their high cost and susceptibility to interference, have started to [...] Read more.
Comprehensive maritime domain awareness is crucial for navigation safety, traffic management, and security surveillance. In the context of an increasingly complex modern electromagnetic environment, the disadvantages of traditional active single-station radars, such as their high cost and susceptibility to interference, have started to surface. Due to their unique advantages, such as low cost, environmental sustainability (by reusing existing signals), and resilience in congested spectral environments, non-cooperative passive multistatic radar (PMR) systems have gained significant interest in maritime monitoring. This paper presents the research background of non-cooperative passive multistatic radar systems, performs a fundamental analysis of the detection performance of multistatic radar systems, and suggests an optimization method for the transceiver configuration of non-cooperative passive multistatic radar systems based on geometric coverage theory and a signal-to-noise ratio model. A multi-objective optimization model is developed, considering both detection coverage and positioning error, and is solved using the Non-dominated Sorting Genetic Algorithm II (NSGA-II). The optimization aims to find the optimal receiver location relative to a fixed configuration of four transmitters, representing common maritime traffic patterns. According to the simulation results, the multi-target genetic algorithm can be utilized to optimize the receiver position under the S-band radar settings used in this work. Compared to a random placement baseline, this can reduce the positioning error by about 8.9% and extend the detection range by about 15.8%. Furthermore, for the specific four-transmitter configuration and S-band radar parameters considered in this study, it is found that the best detection performance is more likely to be obtained when the receiver is placed within 15 km of the transmitters’ geometric center. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Figure 1

30 pages, 6284 KB  
Article
Integration and Risk Transmission Dynamics Between Bitcoin, Currency Pairs, and Traditional Financial Assets in South Africa
by Benjamin Mudiangombe Mudiangombe and John Weirstrass Muteba Mwamba
Econometrics 2025, 13(3), 36; https://doi.org/10.3390/econometrics13030036 - 19 Sep 2025
Viewed by 253
Abstract
This study explores the new insights into the integration and dynamic asymmetric volatility risk spillovers between Bitcoin, currency pairs (USD/ZAR, GBP/ZAR and EUR/ZAR), and traditional financial assets (ALSI, Bond, and Gold) in South Africa using daily data spanning the period from 2010 to [...] Read more.
This study explores the new insights into the integration and dynamic asymmetric volatility risk spillovers between Bitcoin, currency pairs (USD/ZAR, GBP/ZAR and EUR/ZAR), and traditional financial assets (ALSI, Bond, and Gold) in South Africa using daily data spanning the period from 2010 to 2024 and employing Time-Varying Parameter Vector Autoregression (TVP-VAR) and wavelet coherence. The findings revealed strengthened integration between traditional financial assets and currency pairs, as well as weak integration with BTC/ZAR. Furthermore, BTC/ZAR and traditional financial assets were receivers of shocks, while the currency pairs were transmitters of spillovers. Gold emerged as an attractive investment during periods of inflation or currency devaluation. However, the assets have a total connectedness index of 28.37%, offering a reduced systemic risk. Distinct patterns were observed in the short, medium, and long term in time scales and frequency. There is a diversification benefit and potential hedging strategies due to gold’s negative influence on BTC/ZAR. Bitcoin’s high volatility and lack of regulatory oversight continue to be deterrents for institutional investors. This study lays a solid foundation for understanding the financial dynamics in South Africa, offering valuable insights for investors and policymakers interested in the intricate linkages between BTC/ZAR, currency pairs, and traditional financial assets, allowing for more targeted policy measures. Full article
Show Figures

Figure 1

13 pages, 4248 KB  
Article
Luminescence Properties of Eu3+, Ba2+, and Bi3+ Co-Doped YVO4 for Wide-Spectrum Excitation
by Jianhua Huang, Cong Dong, Ping Huang, Wei Zhong, Yinqi Luo, Jianmin Li, Yibiao Hu, Wenjie Duan, Lingjia Qiu, Wenzhen Qin and Yu Xie
Nanomaterials 2025, 15(18), 1444; https://doi.org/10.3390/nano15181444 - 19 Sep 2025
Viewed by 146
Abstract
YVO4 based phosphors have aroused extensive interest in the field of optoelectronics due to their good chemical stability and unique luminescence properties. However, commercialization of YVO4 phosphors requires high luminescence intensity, enhanced conversion efficiency, and a wide excitation spectrum. In this [...] Read more.
YVO4 based phosphors have aroused extensive interest in the field of optoelectronics due to their good chemical stability and unique luminescence properties. However, commercialization of YVO4 phosphors requires high luminescence intensity, enhanced conversion efficiency, and a wide excitation spectrum. In this work, Eu3+, Ba2+, Bi3+ co-doped YVO4 was prepared by the sol–gel method. The XRD of YVO4: 5%Eu3+, 5%Ba2+, 0.5%Bi3+ phosphor analysis confirms the pure tetragonal phase, with a fairly large size of approximately 100 nm for the optimal composition. And the SEM and TEM revealed well-dispersed spherical nanoparticles with sizes of 100–120 nm. The introduction of Ba2+ ions enhanced the luminescence intensity, while the incorporation of Bi3+ ions improved the excitation width of the phosphor. The resulting YVO4: 5%Eu3+, 5%Ba2+, 0.5%Bi3+ phosphor exhibited a 1.39-times broader excitation bandwidth and a 2.72-times greater luminescence intensity at 618 nm compared to the benchmark YVO4: 5% Eu3+ sample. Additionally, the transmittance of the films in the 350 nm to 800 nm region exceeded 85%. The YVO4: 5%Eu3+, 5%Ba2+, 0.5%Bi3+ film effectively absorbed ultraviolet light and converted it to red emission, enabling potential applications in solar cell window layers, dye-sensitized cell luminescence layers, and solar cell packaging glass. Full article
(This article belongs to the Section Physical Chemistry at Nanoscale)
Show Figures

Figure 1

30 pages, 2350 KB  
Article
Effect of Dry Roasting on the Physicochemical, Nutritional, and Techno-Functional Properties of Tri-Color Quinoa Flours
by Yvette Mukunzi and Alberta N. A. Aryee
Foods 2025, 14(18), 3237; https://doi.org/10.3390/foods14183237 - 18 Sep 2025
Viewed by 248
Abstract
Quinoa (Chenopodium quinoa), a gluten-free pseudocereal of increasing interest in food applications, remain underutilized due to limited knowledge of its nutritional and techno-functional properties, particularly following processing. This study investigated the impact of roasting on these properties of tri-color quinoa. Roasting [...] Read more.
Quinoa (Chenopodium quinoa), a gluten-free pseudocereal of increasing interest in food applications, remain underutilized due to limited knowledge of its nutritional and techno-functional properties, particularly following processing. This study investigated the impact of roasting on these properties of tri-color quinoa. Roasting resulted in non-significant increases in the content of protein, lipid, and starch fractions, while carbohydrate and energy contents increased significantly (p < 0.05) by 3.74 and 3.30%, respectively, compared to native tri-color quinoa flour (NTQF). Notably, total dietary fiber, phytic acid, and oxalate contents were decreased by 13.11, 36.05, and 28.78%, respectively, contributing to improvements in in vitro protein digestibility and in vitro protein digestibility-corrected amino acid score in roasted tri-color quinoa flour (RTQF). Although lysine remained the limiting amino acid, its content increased in RTQF. Techno-functional properties were also affected by roasting; water and oil absorption capacities increased by 24.26 and 2.76% (p < 0.05), while emulsifying, foaming, and swelling capacities declined by 47.58, 34.96, and 17.74%, respectively (p < 0.05). RTQF exhibited consistently lower protein solubility across all pH tested, and higher a least gelation concentration, likely due to protein denaturation. Color analysis showed darker (L*), redder (a*), and more yellow (b*) hues in RTQF, with minor but perceptible color difference (ΔE = 1.26) relative to NTQF. Scanning electron microscopy revealed greater starch disruption, increased porosity and fragmentation in RTQF than NTQF. FTIR confirmed structural alterations, with the spectrum of RTQF showing less intense bands and higher transmittance compared to NTQF, associated thermal modification of carbohydrate, moisture content and other components. These findings suggest that dry roasting can be used to modify the nutritional and techno-functional properties of tri-color quinoa, offering expanded opportunities for tailored food applications. Full article
(This article belongs to the Section Grain)
Show Figures

Graphical abstract

19 pages, 1546 KB  
Article
Optimization of Plum Wine Brewing Process and Effects of Different Clarifying Agents on Its Quality and Stability
by Juan Chen, Sijie Zhu, Jia Deng, Hongmin Li, Lu Fang, Xin Hu, Xueting Zhang and Xudong Liu
Foods 2025, 14(18), 3214; https://doi.org/10.3390/foods14183214 - 16 Sep 2025
Viewed by 312
Abstract
Traditional plum wine brewing mostly relies on experience, with problems such as lack of standardized production parameters and easy formation of sediment after fermentation. This study systematically optimized the key production processes. Based on the results of a single-factor experiment, the Box–Behnken design [...] Read more.
Traditional plum wine brewing mostly relies on experience, with problems such as lack of standardized production parameters and easy formation of sediment after fermentation. This study systematically optimized the key production processes. Based on the results of a single-factor experiment, the Box–Behnken design of the response surface method (RSM) was employed to determine the optimal fermentation parameters, which included a fermentation temperature of 31 °C, fermentation duration of 12 days, yeast inoculation rate of 0.86%, initial pH of 3.5, and sugar content of 28.5%. Under these conditions, the alcohol content reached 13.7%vol. On this basis, emphasis was placed on evaluating the effects of various clarification techniques (clarifying agents, heat treatment, membrane filtration, static clarification at different temperatures) on optimized base wine clarity, stability and quality. The results showed that chitosan exhibited excellent overall performance, not only obtaining the highest light transmittance (89.8%) but also the best effect in enhancing the iron stability (88.6%) and oxidative stability (88.9%) of the wine. Additionally, while membrane filtration, heat treatment, and freezing treatment all served to clarify and stabilize the wine, they significantly reduced the polyphenol content, thereby diminishing the wine’s quality. Therefore, the clarification process needs to be selected in practical production by considering the clarification effect and functional ingredient retention in conjunction with the production cost. This study provides key process parameters for the production of high-quality plum wine and theoretical guidance for reductions in sediment formation. Full article
(This article belongs to the Section Drinks and Liquid Nutrition)
Show Figures

Figure 1

21 pages, 3702 KB  
Article
Plant Stress Detection via Molecular Communication: Modeling BVOC-Based Inter-Plant Signaling for Agricultural Monitoring
by Yusheng Sun, Pengfei Zhang and Pengfei Lu
Plants 2025, 14(18), 2874; https://doi.org/10.3390/plants14182874 - 16 Sep 2025
Viewed by 326
Abstract
In the plant kingdom, stress can significantly impact physiological and metabolic processes, leading to growth inhibition, developmental abnormalities, and even mortality. Current detection methods primarily focus on changes in gene expression or observable disease symptoms. However, these approaches are often resource-intensive, costly, and [...] Read more.
In the plant kingdom, stress can significantly impact physiological and metabolic processes, leading to growth inhibition, developmental abnormalities, and even mortality. Current detection methods primarily focus on changes in gene expression or observable disease symptoms. However, these approaches are often resource-intensive, costly, and procedurally complex. To overcome these challenges, this study introduces an innovative molecular communication framework for plant stress monitoring. In this framework, plants that release biogenic volatile organic compounds serve as transmitters, receiving plants act as receivers, and the air serves as the propagation channel. The primary objective is to develop a real-time stress detection method by modulating stress types into distinct profiles of biogenic volatile organic compounds. These profiles are transmitted as chemical signals and are demodulated at the receiver. We analyzed the effects of distance, wind speed, and other factors on compound dispersion in the channel, validating the system through simulations and a molecular communication testbed. This research provides an innovative technical approach for real-time plant stress monitoring while establishing a theoretical foundation for enhancing crop management efficiency and advancing precision agriculture. Full article
Show Figures

Figure 1

Back to TopTop