Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = transmutation Si

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2877 KB  
Article
From Aromatic Motifs to Cluster-Assembled Materials: Silicon–Lithium Nanoclusters for Hydrogen Storage Applications
by Williams García-Argote, Erika Medel, Diego Inostroza, Alejandro Vásquez-Espinal, José Solar-Encinas, Luis Leyva-Parra, Lina María Ruiz, Osvaldo Yañez and William Tiznado
Molecules 2025, 30(10), 2163; https://doi.org/10.3390/molecules30102163 - 14 May 2025
Viewed by 740
Abstract
Silicon–lithium clusters are promising candidates for hydrogen storage due to their lightweight composition, high gravimetric capacities, and favorable non-covalent binding characteristics. In this study, we employ density functional theory (DFT), global optimization (AUTOMATON and Kick–MEP), and Born–Oppenheimer molecular dynamics (BOMD) simulations to evaluate [...] Read more.
Silicon–lithium clusters are promising candidates for hydrogen storage due to their lightweight composition, high gravimetric capacities, and favorable non-covalent binding characteristics. In this study, we employ density functional theory (DFT), global optimization (AUTOMATON and Kick–MEP), and Born–Oppenheimer molecular dynamics (BOMD) simulations to evaluate the structural stability and hydrogen storage performance of key Li–Si systems. The exploration of their potential energy surface (PES) reveals that the true global minima of Li6Si6 and Li10Si10 differ markedly from those of the earlier Si–Li structures proposed as structural analogs of aromatic hydrocarbons such as benzene and naphthalene. Instead, these clusters adopt compact geometries composed of one or two Si4 (Td) units and a Si2 dimer, all stabilized by surrounding Li atoms. Motivated by the recurrence of the Si4Td motif, we explore oligomers of Li4Si4, which can be viewed as electronically transmuted analogues of P4, confirming the additive H2 uptake across dimer, trimer, and tetramer assemblies. Within the series of Si–Li clusters evaluated, the Li12Si5 sandwich complex, featuring a σ-aromatic Si510− ring encapsulated by two Li65+ moieties, achieves the highest hydrogen capacity, adsorbing 34 H2 molecules with a gravimetric density of 23.45 wt%. Its enhanced performance arises from the high density of accessible Li+ adsorption sites and the electronic stabilization afforded by delocalized σ-bonding. BOMD simulations at 300 and 400 K confirm their dynamic stability and reversible storage behavior, while analysis of the interaction regions confirms that hydrogen adsorption proceeds via weak, dispersion-driven physisorption. These findings clarify the structure–property relationships in Si–Li clusters and provide a basis for designing modular, lightweight, and thermally stable hydrogen storage materials. Full article
Show Figures

Graphical abstract

42 pages, 8616 KB  
Review
Cancellous Skeleton, Microskeleton, Ultramicroskeleton: A Geo/Biomorphological Bone Mineral Microbiome of Hierarchical Force Translation and Ancient Golgi-Directed Lineage
by Jean E. Aaron
Biophysica 2024, 4(3), 369-410; https://doi.org/10.3390/biophysica4030026 - 22 Aug 2024
Viewed by 2420
Abstract
Bone minerals may be more complex than the prevailing opinion suggests. Understanding its biomaterial properties in health and disease may address fundamental geo/biomorphological ambiguities recurrent within its calcified cancellous hierarchy of macro-, micro-, and nano-skeletal networks. (i) There is evidence that the outer [...] Read more.
Bone minerals may be more complex than the prevailing opinion suggests. Understanding its biomaterial properties in health and disease may address fundamental geo/biomorphological ambiguities recurrent within its calcified cancellous hierarchy of macro-, micro-, and nano-skeletal networks. (i) There is evidence that the outer mineral macroskeleton of interconnected trabeculae (150 µm diameter) is modulated according to axes of tensile stress by permeating arrays of periosteal Sharpey’s fibres (collagen type III/VI, 5–25 µm thick) studded with tenascin organiser protein. (ii) Its substructural mineral microskeleton is a reticulation of bridged and deformable calcium phosphate/carbonate microspheres (about 1 µm diameter). These organically enshrouded (e.g., bone sialoprotein, osteocalcin, osteopontin) objects, configured by the adhesive organiser protein fibronectin and tempered by trace elements (e.g., Si, Mg, Fe, Al), display differential histochemistry (e.g., acid phosphatase, carbonic anhydrase) and anomalous traits (tetracycline binding, gram-positive microbial staining and nucleic acid staining affinity). The calcified microspheres are intracellular fabrications of osteocyte cohorts developed within “switched on” Golgi cisternae prior to aggregation at the extracellular calcification front in chains and looped assemblies. (iii) Within each microsphere, a less dense centre is encircled by a mineral nanoskeleton of beaded filaments (5 nm in diameter) transmutable in electron density, with a trait for lateral fusion into ladder-like struts, stays and senescent fenestrated plates, constituting domains of microparticle slip and crystal fracture. The evidence suggests a bone mineral biosystem of integrated complexity within which a particulate assemblage at the animate: inanimate calcification front resembles a colonial construct of prokaryote-like, Golgi-fabricated objects calcified with phosphate and harbouring a resident biochemistry. A self-contained “Petrified Microbiome” is proposed to be orchestrated according to a biodynamic primordial paradigm. Full article
(This article belongs to the Special Issue Biomaterials and Bone)
Show Figures

Figure 1

15 pages, 3726 KB  
Article
Advancements in Heavy Metal Stabilization: A Comparative Study on Zinc Immobilization in Glass-Portland Cement Binders
by Abdelhadi Bouchikhi, Amine el Mahdi Safhi, Walid Maherzi, Yannick Mamindy-Pajany, Wolfgang Kunther, Mahfoud Benzerzour and Nor-Edine Abriak
Materials 2024, 17(12), 2867; https://doi.org/10.3390/ma17122867 - 12 Jun 2024
Viewed by 1702
Abstract
Recent literature has exhibited a growing interest in the utilization of ground glass powder (GP) as a supplementary cementitious material (SCM). Yet, the application of SCMs in stabilizing heavy metallic and metalloid elements remains underexplored. This research zeroes in on zinc stabilization using [...] Read more.
Recent literature has exhibited a growing interest in the utilization of ground glass powder (GP) as a supplementary cementitious material (SCM). Yet, the application of SCMs in stabilizing heavy metallic and metalloid elements remains underexplored. This research zeroes in on zinc stabilization using a binder amalgam of GP and ordinary Portland cement (OPC). This study juxtaposes the stability of zinc in a recomposed binder consisting of 30% GP and 70% OPC (denoted as 30GP-M) against a reference binder of 100% CEM I 52.5 N (labeled reference mortar, RM) across curing intervals of 1, 28, and 90 days. Remarkably, the findings indicate a heightened kinetic immobilization of Zn at 90 days in the presence of GP—surging up to 40% in contrast to RM. Advanced microstructural analyses delineate the stabilization locales for Zn, including on the periphery of hydrated C3S particles (Zn–C3S), within GP-reactive sites (Si*–O–Zn), and amid C–S–H gel structures, i.e., (C/Zn)–S–H. A matrix with 30% GP bolsters the hydration process of C3S vis-à-vis the RM matrix. Probing deeper, the microstructural characterization underscores GP’s prowess in Zn immobilization, particularly at the interaction zone with the paste. In the Zn milieu, it was discerning a transmutation—some products born from the GP–Portlandite reaction morph into GP–calcium–zincate. Full article
(This article belongs to the Special Issue Functional Cement-Based Composites for Civil Engineering (Volume II))
Show Figures

Figure 1

13 pages, 6009 KB  
Article
The Effect of Rhenium Content on Microstructural Changes and Irradiated Hardening in W-Re Alloy under High-Dose Ion Irradiation
by Fengfeng Luo, Hongtai Luo, Qiuxiang Liu, Liang Zhou, Wenbin Lin, Ziyang Xie and Liping Guo
Nanomaterials 2023, 13(3), 497; https://doi.org/10.3390/nano13030497 - 26 Jan 2023
Cited by 4 | Viewed by 2180
Abstract
An amount of 100 dpa Si2+ irradiation was used to study the effect of transmutation rhenium content on irradiated microscopic defects and hardening in W-xRe (x = 0, 1, 3, 5 and 10 wt.%) alloys at 550 °C. The increase in Re [...] Read more.
An amount of 100 dpa Si2+ irradiation was used to study the effect of transmutation rhenium content on irradiated microscopic defects and hardening in W-xRe (x = 0, 1, 3, 5 and 10 wt.%) alloys at 550 °C. The increase in Re content could significantly refine the grain in the W-xRe alloys, and no obvious surface topography change could be found after high-dose irradiation via the scanning electron microscope (SEM). The micro defects induced by high-dose irradiation in W and W-3Re alloys were observed using a transmission electron microscope (TEM). Dislocation loops with a size larger than 10 nm could be found in both W and W-3Re alloy, but the distribution of them was different. The distribution of the dislocation loops was more uniform in pure W, while they seemed to be clustered around some locations in W-3Re alloy. Voids (~2.4 nm) were observed in W-3Re alloy, while no void was investigated in W. High-dose irradiation induced obvious hardening with the hardening rate between 75% and 155% in all W-xRe alloys, but W-3Re alloy had the lowest hardening rate (75%). The main reasons might be related to the smallest grain size in W-3Re alloy, which suppressed the formation of defect clusters and induced smaller hardening than that in other samples. Full article
(This article belongs to the Special Issue Nanomaterials Processing for High Performance Thin-Film Transistors)
Show Figures

Figure 1

10 pages, 6557 KB  
Article
Tensile Property of Irradiated LT21 Aluminum Alloy Sampled from Decommissioned Irradiation Channel of Heavy Water Research Reactor
by Wanhuan Yang, Jin Qian, Weihua Zhong, Guangsheng Ning, Shunmi Peng and Wen Yang
Materials 2023, 16(2), 544; https://doi.org/10.3390/ma16020544 - 5 Jan 2023
Cited by 1 | Viewed by 1636
Abstract
LT21 a type of aluminum alloy used for the irradiation channel of the first heavy water research reactor (HWRR) in China. Studying the mechanical property of irradiated LT21 aluminum under actual service conditions is essential for evaluating its application property. In this paper, [...] Read more.
LT21 a type of aluminum alloy used for the irradiation channel of the first heavy water research reactor (HWRR) in China. Studying the mechanical property of irradiated LT21 aluminum under actual service conditions is essential for evaluating its application property. In this paper, tensile specimens of irradiated LT21 were manufactured from the decommissioned irradiation channel of an HWRR; then, tensile tests were carried out, and then the fracture surfaces were observed. The effect of neutron irradiation on tensile behavior and the failure mechanism was analyzed by comparing the result of irradiated and unirradiated LT21 specimens. The results show that, with the thermal neutron flux increasing to 2.38 × 1022 n/cm2, the YS gradually increased from the initial 158 MPa to 251 MPa, the UTS increased from 262 MPa to 321 MPa, and the elongation decreased from 28.8% to about 14.3%; the brittle fracture of the LT21 specimen appeared after irradiation, and the proportion of brittle fracture increased as the neutron fluence increased; the nanophase structures, with a size of less than 50 nm, were precipitated in the LT21 aluminum alloy after neutron irradiation. Transmutation Si is presumed to be the main cause of the radiation effect mechanism of LT21. Full article
(This article belongs to the Special Issue Advances in High-Performance Non-ferrous Materials)
Show Figures

Figure 1

13 pages, 4939 KB  
Article
The Critical Behaviour and Magnetism of MnCoGe0.97Al0.03 Compounds
by Abdul Rashid Abdul Rahman, Muhamad Faiz Md Din, Norinsan Kamil Othman, Jianli Wang, Nur Sabrina Suhaimi, Shi Xue Dou, Noor Fadzilah Mohamed Sharif and Nazrul Fariq Makmor
Crystals 2022, 12(2), 205; https://doi.org/10.3390/cryst12020205 - 29 Jan 2022
Cited by 4 | Viewed by 2726
Abstract
The critical behaviour associated with the field-induced martensitic transformation heavily relies on the vacancy and transition of the magnetic phase in MnCoGe based-compounds. Due to this revelation, an intensive investigation was brought forth to study the substitution of Ge (atomic radius = 1.23 [...] Read more.
The critical behaviour associated with the field-induced martensitic transformation heavily relies on the vacancy and transition of the magnetic phase in MnCoGe based-compounds. Due to this revelation, an intensive investigation was brought forth to study the substitution of Ge (atomic radius = 1.23 Å) by Al (atomic radius = 1.43 Å) in MnCoGe0.97Al0.03 alloy compound. The room-temperature X-ray diffraction indicated that the reflections were identified with the orthorhombic structure (TiNiSi-type, space group Pnma) and minor hexagonal structure (Ni2In-type, space group P63/mmc). The substitution of Al in the supersession of Ge transmuted the crystal structure from TiNiSi-type to Ni2In-type structure. The MnCoGe0.97Al0.03 compound’s magnetism was driven by interactions that are long in range, as indicated by the study of the critical behaviour in the proximity of TC. The magnetic measurement and neutron diffraction revealed that the structural transition took place with the decrease in temperature. The results from neutron diffraction signify that the transformation of the magnetic field-induced martensitic has a crucial function in producing the immense effect of magnetocaloric systems such as these. This outcome serves a critical function for investigations in the future. Full article
(This article belongs to the Special Issue Magnetocaloric Effect and Giant Negative Thermal Expansion)
Show Figures

Figure 1

22 pages, 4131 KB  
Article
Enhanced Heat Transfer in Moderately Ionized Liquid Due to Hybrid MoS2/SiO2 Nanofluids Exposed by Nonlinear Radiation: Stability Analysis
by Umair Khan, A. Zaib, Ilyas Khan, Dumitru Baleanu and Kottakkaran Sooppy Nisar
Crystals 2020, 10(2), 142; https://doi.org/10.3390/cryst10020142 - 24 Feb 2020
Cited by 39 | Viewed by 3331
Abstract
This study considers ethylene-glycol as a moderate ionized regular liquid whose rheological behavior can be analyzed through the relations of the Carreau stress–strain tensor. Hybrid nanoliquids are potent liquids that give better performance for heat transfer and the properties of thermo physical than [...] Read more.
This study considers ethylene-glycol as a moderate ionized regular liquid whose rheological behavior can be analyzed through the relations of the Carreau stress–strain tensor. Hybrid nanoliquids are potent liquids that give better performance for heat transfer and the properties of thermo physical than regular heat transfer liquids (water, ethylene glycol, and oil) and nanoliquids by single nanomaterials. Here, a type of hybrid nanoliquid involving silicon oxide (SiO2) and Molybdenum disulfide (MoS2) nanoparticles with ethylene glycol as a base liquid are considered. In addition, the impact of nonlinear radiation along with Lorentz force is invoked. Similarity variables are utilized to acquire the numerical findings and their solutions for transmuting ordinary differential equations (ODEs). Using bvp4c from MATLAB, we can obtain these quantitative and numerical results of the converted nonlinear equations. The impacts of the pertinent constraints on the temperature distribution, velocity, Nusselt number, and skin friction are estimated. The outcomes indicate that the double-edged methods for the results originate from the precise values of the permeable parameters. Further, the critical values (Sc = 1.9699, 2.0700 and 2.2370) are enhanced due to the influence of the local Weissenberg number. This implies that the increasing value of the local Weissenberg number accelerate the boundary layer separation. Furthermore, a stability investigation is performed and confirms that the first solution is a physically reliable solution. Full article
Show Figures

Figure 1

Back to TopTop