Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (293)

Search Parameters:
Keywords = triboelectric effect

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2981 KB  
Article
Impact of Ethanol on Electrostatic Behaviour of Fluorocarbon Pharmaceutical Propellants
by Lochana Ranatunge, Manoochehr Rasekh, Hussein Ahmad and Wamadeva Balachandran
Pharmaceuticals 2025, 18(11), 1755; https://doi.org/10.3390/ph18111755 - 18 Nov 2025
Abstract
Background/Objectives: Triboelectrification in fluid systems, and specifically in hydrofluorocarbon (HFC)-based propellants, used in pressurised metered-dose inhalers (pMDIs) remains understudied despite its impact on aerosol behaviour and does delivery. This study investigates how ethanol concentration affects charge generation and dissipation in HFC-152a (1,1-difluoroethane; R152a) [...] Read more.
Background/Objectives: Triboelectrification in fluid systems, and specifically in hydrofluorocarbon (HFC)-based propellants, used in pressurised metered-dose inhalers (pMDIs) remains understudied despite its impact on aerosol behaviour and does delivery. This study investigates how ethanol concentration affects charge generation and dissipation in HFC-152a (1,1-difluoroethane; R152a) flowing through low-density polyethylene (LDPE) tubing, a common valve-stem material in pMDIs. Methods: Controlled experiments measured electrical current, charge accumulation, and flow stability for HFC-152a with varying ethanol concentrations in LDPE tubing. Statistical analysis (two-way ANOVA, p < 0.05) assessed the effects of the propellant and material. Comparative tests include R134a (1,1,1,2-tetrafluoroethane) and R227ea (1,1,1,2,3,3,3-heptafluoropropane), and the tubing materials are polybutylene terephthalate (PBT), polyvinyl chloride (VINYL), polyoxymethylene (POM), and LDPE. Results: Increasing ethanol concentration produced larger measured currents, reduced net charge accumulation, and improved flow stability; these effects are attributed to ethanol’s higher dielectric constant and conductivity enhancing charge mobility and dissipation. Significant propellant x material interactions were found (p < 0.05): R152a generated the largest responses with PBT and VINYL (~16 nA and ~5.6 nA, respectively), R227ea showed higher responses with POM and LDPE (~8 nA), and R134a delivered the highest flow rates across materials but exhibited limited electrical responsiveness. Conclusions: Ethanol addition mitigates undesirable electrostatic effects in HFC-based propellants by promoting charge dissipation. The results demonstrate the strong material dependence of triboelectric behaviour and underline the importance of optimising propellant–polymer pairings to minimise the electrostatic adhesion of aerosolised particles and improve pMDI drug delivery performance. Full article
(This article belongs to the Special Issue Advances in Drug Analysis and Drug Development, 2nd Edition)
Show Figures

Figure 1

14 pages, 3122 KB  
Article
Environmentally Friendly Silk Fibroin/Polyethyleneimine High-Performance Triboelectric Nanogenerator for Energy Harvesting and Self-Powered Sensing
by Ziyi Guo, Xinrong Xu, Yue Shen, Menglong Wang, Youzhuo Zhai, Haiyan Zheng and Jiqiang Cao
Coatings 2025, 15(11), 1323; https://doi.org/10.3390/coatings15111323 - 12 Nov 2025
Viewed by 258
Abstract
Due to the large emissions of greenhouse gases from the burning of fossil fuels and people’s demand for green materials and energy, the development of environmentally friendly triboelectric nanogenerators (TENGs) is becoming increasingly significant. Silk fibroin (SF) is considered an ideal biopolymer candidate [...] Read more.
Due to the large emissions of greenhouse gases from the burning of fossil fuels and people’s demand for green materials and energy, the development of environmentally friendly triboelectric nanogenerators (TENGs) is becoming increasingly significant. Silk fibroin (SF) is considered an ideal biopolymer candidate for fabricating green TENGs due to its biodegradability and renewability. However, its intrinsic brittleness and relatively weak triboelectric performance severely limit its practical applications. In this study, SF was physically blended with poly(ethylenimine) (PEI), a polymer rich in amino groups, to fabricate SF/PEI composite films. The resulting films were employed as tribopositive layers and paired with a poly(tetrafluoroethylene) (PTFE) tribonegative layer to assemble high-performance TENGs. Experimental results revealed that the incorporation of PEI markedly enhanced the flexibility and electron-donating capability of composite films. By optimizing the material composition, the SF/PEI-based TENG achieved an open-circuit voltage as high as 275 V and a short-circuit current of 850 nA, with a maximum output power density of 13.68 μW/cm2. Application tests demonstrated that the device could serve as an efficient self-powered energy source, capable of lighting up 66 LEDs effortlessly through simple hand tapping and driving small electronic components such as timers. In addition, the device can function as a highly sensitive self-powered sensor, capable of generating rapid and distinguishable electrical responses to various human motions. This work not only provides an effective strategy to overcome the intrinsic limitations of SF-based materials but also opens up new avenues for the development of high-performance and environmentally friendly technologies for energy harvesting and sensing. Full article
Show Figures

Figure 1

15 pages, 5416 KB  
Article
Acoustic Metamaterial Nanogenerator for Multi-Band Sound Insulation and Acoustic–Electric Conversion
by Xinwu Liang and Ming Yuan
Sensors 2025, 25(21), 6693; https://doi.org/10.3390/s25216693 - 2 Nov 2025
Viewed by 555
Abstract
Controlling low-frequency noise and achieving multi-band sound insulation remain significant challenges and have long been hot topics in industrial research. This study introduces a novel multifunctional device based on the principles of acoustic metamaterials, which not only offers high-performance sound insulation but also [...] Read more.
Controlling low-frequency noise and achieving multi-band sound insulation remain significant challenges and have long been hot topics in industrial research. This study introduces a novel multifunctional device based on the principles of acoustic metamaterials, which not only offers high-performance sound insulation but also converts low-frequency acoustic energy into electrical energy. Through an innovative design featuring multiple local resonance design, the proposed device effectively mitigates the impact of pre-tension on the membrane, while enabling efficient multi-band sound insulation that can be finely tuned by adjusting structural parameters. Experimental results demonstrate that the device achieves a maximum sound insulation of 40 dB and an average sound insulation exceeding 25 dB within the 1000 Hz frequency range. Moreover, by utilizing its local resonance property, a triboelectric nanogenerator (TENG) is specifically designed for low-frequency acoustic–electric conversion, maintaining high performance low-frequency sound insulation while simultaneously powering small scale electronic devices. This work provides a promising approach for multi-band sound insulation and low-frequency acoustic–electric conversion, offering broad potential for industrial applications. Full article
(This article belongs to the Special Issue Advanced Nanogenerators for Micro-Energy and Self-Powered Sensors)
Show Figures

Figure 1

31 pages, 8104 KB  
Review
Recent Advances in Triboelectric Materials for Active Health Applications
by Chang Peng, Yuetong Lin, Zhenyu Jiang, Yiping Liu, Licheng Zhou, Zejia Liu, Liqun Tang and Bao Yang
Electron. Mater. 2025, 6(4), 16; https://doi.org/10.3390/electronicmat6040016 - 23 Oct 2025
Viewed by 568
Abstract
Triboelectric materials can convert irregular mechanical stimuli from human motion or environmental sources into high surface charge densities and instantaneous electrical outputs. Their intrinsic properties, such as flexibility, stretchability, chemical tunability, and compatibility with diverse substrates, play a critical role in determining the [...] Read more.
Triboelectric materials can convert irregular mechanical stimuli from human motion or environmental sources into high surface charge densities and instantaneous electrical outputs. Their intrinsic properties, such as flexibility, stretchability, chemical tunability, and compatibility with diverse substrates, play a critical role in determining the efficiency and reliability of triboelectric devices. In the context of active health, triboelectric materials not only serve as the core functional layers for self-powered sensing but also enable real-time physiological monitoring, motion tracking, and human–machine interaction by directly transducing biomechanical signals into electrical information. Soft triboelectric sensors exhibit high sensitivity, wide operational ranges, excellent biocompatibility, and wearability, making them highly promising for active health monitoring applications. Despite these advantages, challenges remain in enhancing surface charge density, achieving effective signal multiplexing, and ensuring long-term stability. This review provides a comprehensive overview of triboelectric mechanisms, working modes, influencing factors, performance enhancement strategies, and wearable health applications. Finally, it systematically summarizes the key improvement approaches and future development directions of triboelectric materials for active health, offering valuable guidance for advancing wearable self-powered biosensors. Full article
(This article belongs to the Special Issue Feature Papers of Electronic Materials—Third Edition)
Show Figures

Figure 1

40 pages, 3599 KB  
Review
Advanced Triboelectric Nanogenerators for Smart Devices and Emerging Technologies: A Review
by Van-Long Trinh and Chen-Kuei Chung
Micromachines 2025, 16(11), 1203; https://doi.org/10.3390/mi16111203 - 23 Oct 2025
Viewed by 1149
Abstract
Smart devices and emerging technologies are highly popular devices and technologies that considerably improve our daily living by reducing or replacing human workforces, treating disease, monitoring healthcare, enhancing service performance, improving quality, and protecting the natural environment, and promoting non-gas emissions, sustainable working, [...] Read more.
Smart devices and emerging technologies are highly popular devices and technologies that considerably improve our daily living by reducing or replacing human workforces, treating disease, monitoring healthcare, enhancing service performance, improving quality, and protecting the natural environment, and promoting non-gas emissions, sustainable working, green technologies, and renewable energy. Triboelectric nanogenerators (TENGs) have recently emerged as a type of advanced energy harvesting technology that is simple, green, renewable, flexible, and endurable as an energy resource. High-performance TENGs, denoted as advanced TENGs, have potential for use in many practical applications such as in self-powered sensors and sources, portable electric devices, power grid penetration, monitoring manufacturing processes for quality control, and in medical and healthcare applications that meet the criteria for smart devices and emerging technologies. Advanced TENGs are used as highly efficient energy harvesters that can convert many types of wasted mechanical energy into the electric energy used in a range of practical applications in our daily lives. This article reviews recently advanced TENGs and their potential for use with smart devices and emerging technology applications. The work encourages and strengthens motivation to develop new smart devices and emerging technologies to serve us in many fields of our daily living. When TENGs are introduced into smart devices and emerging technologies, they can be applied in a variety of practical applications such as the food processing industry, information and communication technology, agriculture, construction, transportation, marine technology, the energy sector, mechanical processing, manufacturing, self-powered sensors, Industry 4.0, drug safety, and robotics due to their sustainable and renewable energy, light weight, cost effectiveness, flexibility, and self-powered portable energy sources. Their advantages, disadvantages, and solutions are also discussed for further research. Full article
Show Figures

Figure 1

33 pages, 3868 KB  
Review
Application of Polymer Lubricants in Triboelectric Energy Harvesting: A Review
by Ali Nawaz and Hong-Joon Yoon
Micromachines 2025, 16(11), 1195; https://doi.org/10.3390/mi16111195 - 22 Oct 2025
Viewed by 507
Abstract
The range of lubricant applications has broadened to include multiple sectors, aiming to optimize the operational efficiency of mechanical systems. Given their adaptable friction-reducing properties, lubricants have recently been incorporated into energy harvesting technologies such as triboelectric nanogenerators (TENGs). In such devices, lubricants [...] Read more.
The range of lubricant applications has broadened to include multiple sectors, aiming to optimize the operational efficiency of mechanical systems. Given their adaptable friction-reducing properties, lubricants have recently been incorporated into energy harvesting technologies such as triboelectric nanogenerators (TENGs). In such devices, lubricants are essential for mitigating wear, facilitating heat dissipation, eliminating contaminants, and prolonging the service life of mechanically actuated energy harvesters. Notably, emerging developments in sliding and rotational-mode TENGs leverage lubricants to improve electrical output while reducing interface degradation. However, despite significant potential, TENGs still face inherent challenges, including interface friction and energy losses from air breakdown. Recent research indicates that these drawbacks can be effectively addressed by the intentional use of polymer-based lubricants, which contribute to maintaining micro/nanostructured surfaces and minimizing air breakdown, thereby enhancing charge storage capability and increasing device robustness. This review systematically examines the categories, physicochemical attributes, and operational roles of polymeric lubricants used in TENG technology. It underscores their combined function is both primary and support materials to augment triboelectric efficiency. In addition, the article assesses how different lubricants impact device performance and durability, providing a critical analysis of their suitability based on the operational benchmarks of lubricant-embedded TENG configurations. Full article
(This article belongs to the Special Issue Research Progress in Energy Harvesters and Self-Powered Sensors)
Show Figures

Figure 1

18 pages, 3340 KB  
Article
Experimental Investigation of 3D-Printed TPU Triboelectric Composites for Biomechanical Energy Conversion in Knee Implants
by Osama Abdalla, Milad Azami, Amir Ameli, Emre Salman, Milutin Stanacevic, Ryan Willing and Shahrzad Towfighian
Sensors 2025, 25(20), 6454; https://doi.org/10.3390/s25206454 - 18 Oct 2025
Viewed by 510
Abstract
Although total knee replacements have an insignificant impact on patients’ mobility and quality of life, real-time performance monitoring remains a challenge. Monitoring the load over time can improve surgery outcomes and early detection of mechanical imbalances. Triboelectric nanogenerators (TENGs) present a promising approach [...] Read more.
Although total knee replacements have an insignificant impact on patients’ mobility and quality of life, real-time performance monitoring remains a challenge. Monitoring the load over time can improve surgery outcomes and early detection of mechanical imbalances. Triboelectric nanogenerators (TENGs) present a promising approach as a self-powered sensor for load monitoring in TKR. A TENG was fabricated with dielectric layers consisting of Kapton tape and 3D-printed thermoplastic polyurethane (TPU) matrix incorporating CNT and BTO fillers, separated by an air gap and sandwiched between two copper electrodes. The sensor performance was optimized by varying the concentrations of BTO and CNT to study their effect on the energy-harvesting behavior. The test results demonstrate that the BTO/TPU composite that has 15% BTO achieved the maximum power output of 11.15 μW, corresponding to a power density of 7 mW/m2, under a cyclic compressive load of 2100 N at a load resistance of 1200 MΩ, which was the highest power output among all the tested samples. Under a gait load profile, the same TENG sensor generated a power density of 0.8 mW/m2 at 900 MΩ. By contrast, all tested CNT/TPU-based TENG produced lower output, where the maximum generated apparent power output was around 8 μW corresponding to a power density of 4.8 mW/m2, confirming that using BTO fillers had a more significant impact on TENG performance compared with CNT fillers. Based on our earlier work, this power is sufficient to operate the ADC circuit. Furthermore, we investigated the durability and sensitivity of the 15% BTO/TPU samples, where it was tested under a compressive force of 1000 N for 15,000 cycles, confirming the potential of long-term use inside the TKR. The sensitivity analysis showed values of 37.4 mV/N for axial forces below 800 N and 5.0 mV/N for forces above 800 N. Moreover, dielectric characterization revealed that increasing the BTO concentration improves the dielectric constant while at the same time reducing the dielectric loss, with an optimal 15% BTO concentration exhibiting the most favorable dielectric properties. SEM images for BTO/TPU showed that the 10% and 15% BTO/TPU composites showed better morphological characteristics with lower fabrication defects compared with higher filler concentrations. Our BTO/TPU-based TENG sensor showed robust performance, long-term durability, and efficient energy conversion, supporting its potential for next-generation smart total knee replacements. Full article
(This article belongs to the Special Issue Wireless Sensor Networks with Energy Harvesting)
Show Figures

Figure 1

21 pages, 2596 KB  
Article
Self-Energy-Harvesting Pacemakers: An Example of Symbiotic Synthetic Biology
by Kuntal Kumar Das, Ashutosh Kumar Dubey, Bikramjit Basu and Yogendra Narain Srivastava
SynBio 2025, 3(4), 15; https://doi.org/10.3390/synbio3040015 - 4 Oct 2025
Viewed by 699
Abstract
While synthetic biology has traditionally focused on creating biological systems often through genetic engineering, emerging technologies, for example, implantable pacemakers with integrated piezo-electric and tribo-electric materials are beginning to enlarge the classical domain into what we call symbiotic synthetic biology. These devices are [...] Read more.
While synthetic biology has traditionally focused on creating biological systems often through genetic engineering, emerging technologies, for example, implantable pacemakers with integrated piezo-electric and tribo-electric materials are beginning to enlarge the classical domain into what we call symbiotic synthetic biology. These devices are permanently attached to a body, although non-living or genetically unaltered, and closely mimic biological behavior by harvesting biomechanical energy and providing functions, such as autonomous heart pacing. They form active interfaces with human tissues and operate as hybrid systems, similar to synthetic organs. In this context, the present paper first presents a short summary of previous in vivo studies on piezo-electric composites in relation to their deployment as battery-less pacemakers. This is then followed by a summary of a recent theoretical work using a damped harmonic resonance model, which is being extended to mimic the functioning of such devices. We then extend the theoretical study further to include new solutions and obtain a sum rule for the power output per cycle in such systems. In closing, we present our quantitative understanding to explore the modulation of the quantum vacuum energy (Casimir effect) by periodic body movements to power pacemakers. Taken together, the present work provides the scientific foundation of the next generation bio-integrated intelligent implementation. Full article
Show Figures

Figure 1

15 pages, 5285 KB  
Article
A Multi-Layer Triboelectric Material Deep Groove Ball Bearing Triboelectric Nanogenerator: Speed and Skidding Monitoring
by Zibao Zhou, Long Wang, Zihao Wang and Fengtao Wang
Machines 2025, 13(9), 875; https://doi.org/10.3390/machines13090875 - 19 Sep 2025
Viewed by 715
Abstract
With the ongoing advancement of triboelectric nanogenerator (TENG) technology, a novel internal integrated monitoring sensor has been introduced for traditional industrial equipment. A multilayer triboelectric material deep groove ball triboelectric nanogenerator (DGTG) device has been proposed to monitor the rotational speed and slip [...] Read more.
With the ongoing advancement of triboelectric nanogenerator (TENG) technology, a novel internal integrated monitoring sensor has been introduced for traditional industrial equipment. A multilayer triboelectric material deep groove ball triboelectric nanogenerator (DGTG) device has been proposed to monitor the rotational speed and slip state of the rolling elements. The DGTG utilizes a copper inner ring charge supplementation mechanism to maintain the maximum charge density on the rolling element, thereby ensuring a strong electrical signal output. The deviation between the output frequency of the electrical signal and the theoretical value allows for effective monitoring of the slip state during bearing operation. Experimental results demonstrate that when the inner ring speed ranges from 100 to 2000 rpm, the open-circuit voltage generally remains above 30 V. The short-circuit current signal exhibits a fitting coefficient of R2 = 0.99997 with respect to the roller’s rotational speed frequency and motor speed, while the open-circuit voltage signal shows a fitting coefficient of R2 = 0.99984, indicating a strong linear relationship and a good response to varying speeds. Compared to the traditional photoelectric sensors commonly used in industry, the measurement difference between the three signals is consistently less than 5.5%, and real-time monitoring of the slip rate is possible when compared to the theoretical value. The DGTG developed in this study occupies minimal space, offers high reliability, and fully leverages the bearing structure, enabling real-time monitoring of bearing speed and slip. Full article
Show Figures

Figure 1

26 pages, 10383 KB  
Review
Flexible and Wearable Tactile Sensors for Intelligent Interfaces
by Xu Cui, Wei Zhang, Menghui Lv, Tianci Huang, Jianguo Xi and Zuqing Yuan
Materials 2025, 18(17), 4010; https://doi.org/10.3390/ma18174010 - 27 Aug 2025
Viewed by 1900
Abstract
Rapid developments in intelligent interfaces across service, healthcare, and industry have led to unprecedented demands for advanced tactile perception systems. Traditional tactile sensors often struggle with adaptability on curved surfaces and lack sufficient feedback for delicate interactions. Flexible and wearable tactile sensors are [...] Read more.
Rapid developments in intelligent interfaces across service, healthcare, and industry have led to unprecedented demands for advanced tactile perception systems. Traditional tactile sensors often struggle with adaptability on curved surfaces and lack sufficient feedback for delicate interactions. Flexible and wearable tactile sensors are emerging as a revolutionary solution, driven by innovations in flexible electronics and micro-engineered materials. This paper reviews recent advancements in flexible tactile sensors, focusing on their mechanisms, multifunctional performance and applications in health monitoring, human–machine interactions, and robotics. The first section outlines the primary transduction mechanisms of piezoresistive (resistance changes), capacitive (capacitance changes), piezoelectric (piezoelectric effect), and triboelectric (contact electrification) sensors while examining material selection strategies for performance optimization. Next, we explore the structural design of multifunctional flexible tactile sensors and highlight potential applications in motion detection and wearable systems. Finally, a detailed discussion covers specific applications of these sensors in health monitoring, human–machine interactions, and robotics. This review examines their promising prospects across various fields, including medical care, virtual reality, precision agriculture, and ocean monitoring. Full article
(This article belongs to the Special Issue Advances in Flexible Electronics and Electronic Devices)
Show Figures

Figure 1

176 pages, 57820 KB  
Systematic Review
Sensor Arrays: A Comprehensive Systematic Review
by Sergio Domínguez-Gimeno, Raúl Igual-Catalán and Inmaculada Plaza-García
Sensors 2025, 25(16), 5089; https://doi.org/10.3390/s25165089 - 15 Aug 2025
Viewed by 4050
Abstract
Sensor arrays are arrangements of sensors that follow a certain pattern, usually in a row–column distribution. This study presents a systematic review on sensor arrays. For this purpose, several systematic searches of recent studies covering a period of 10 years were performed. As [...] Read more.
Sensor arrays are arrangements of sensors that follow a certain pattern, usually in a row–column distribution. This study presents a systematic review on sensor arrays. For this purpose, several systematic searches of recent studies covering a period of 10 years were performed. As a result of these searches, 361 papers have been analyzed in detail. The most relevant aspects for sensor array design have been studied. In relation to sensing technologies, different categories were identified: resistive/piezoresistive, capacitive, inductive, diode-based, transistor-based, triboelectric, fiber optic, Hall effect-based, piezoelectric, and bioimpedance-based. Other aspects of sensor array design have also been analyzed: applications, validation experiments, software used for sensor array data analysis, sensor array characteristics, and performance metrics. For each aspect, the studies were classified into different subcategories. As a result of this analysis, different emerging technologies and future research challenges in sensor arrays were identified. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Graphical abstract

14 pages, 4493 KB  
Article
Highly Efficient Tribocatalysis of Superhard SiC for Water Purification
by Yuanfang Wang, Zheng Wu, Siqi Hong, Ziqi Zhu, Siqi Wu, Biao Chen and Yanmin Jia
Nanomaterials 2025, 15(15), 1206; https://doi.org/10.3390/nano15151206 - 6 Aug 2025
Cited by 2 | Viewed by 587
Abstract
Mechanical friction offers a frequent approach for sustainable energy harvesting, as it can be captured and transformed into electricity by means of the triboelectric phenomenon. Theoretically, this electricity may subsequently be employed to drive electrochemical water purification processes. Herein, the experimental results confirm [...] Read more.
Mechanical friction offers a frequent approach for sustainable energy harvesting, as it can be captured and transformed into electricity by means of the triboelectric phenomenon. Theoretically, this electricity may subsequently be employed to drive electrochemical water purification processes. Herein, the experimental results confirm that the SiC particles effectively trigger the tribocatalytic decomposition of Rhodamine B (RhB). During the tribocatalytic decomposition of dye, mechanical friction is generated at the contact surface between the tribocatalyst and a custom-fabricated polytetrafluoroethylene (PTFE) rotating disk, under varying conditions of stirring speed, temperature, and pH value. Hydroxyl radicals and superoxide radicals are confirmed as the dominant reactive species participating in tribocatalytic dye decomposition, as demonstrated by reactive species inhibition experiments. Furthermore, the SiC particles demonstrate remarkable reusability, even after being subjected to five consecutive recycling processes. The exceptional tribocatalytic performance of SiC particles makes them potentially applicable in water purification by harnessing environmental friction energy. Full article
Show Figures

Figure 1

31 pages, 9769 KB  
Review
Recent Advances of Hybrid Nanogenerators for Sustainable Ocean Energy Harvesting: Performance, Applications, and Challenges
by Enrique Delgado-Alvarado, Enrique A. Morales-Gonzalez, José Amir Gonzalez-Calderon, Ma. Cristina Irma Peréz-Peréz, Jesús Delgado-Maciel, Mariana G. Peña-Juarez, José Hernandez-Hernandez, Ernesto A. Elvira-Hernandez, Maximo A. Figueroa-Navarro and Agustin L. Herrera-May
Technologies 2025, 13(8), 336; https://doi.org/10.3390/technologies13080336 - 2 Aug 2025
Cited by 2 | Viewed by 1533
Abstract
Ocean energy is an abundant, eco-friendly, and renewable energy resource that is useful for powering sensor networks connected to the maritime Internet of Things (MIoT). These sensor networks can be used to measure different marine environmental parameters that affect ocean infrastructure integrity and [...] Read more.
Ocean energy is an abundant, eco-friendly, and renewable energy resource that is useful for powering sensor networks connected to the maritime Internet of Things (MIoT). These sensor networks can be used to measure different marine environmental parameters that affect ocean infrastructure integrity and harm marine ecosystems. This ocean energy can be harnessed through hybrid nanogenerators that combine triboelectric nanogenerators, electromagnetic generators, piezoelectric nanogenerators, and pyroelectric generators. These nanogenerators have advantages such as high-power density, robust design, easy operating principle, and cost-effective fabrication. However, the performance of these nanogenerators can be affected by the wear of their main components, reduction of wave frequency and amplitude, extreme corrosion, and sea storms. To address these challenges, future research on hybrid nanogenerators must improve their mechanical strength, including materials and packages with anti-corrosion coatings. Herein, we present recent advances in the performance of different hybrid nanogenerators to harvest ocean energy, including various transduction mechanisms. Furthermore, this review reports potential applications of hybrid nanogenerators to power devices in marine infrastructure or serve as self-powered MIoT monitoring sensor networks. This review discusses key challenges that must be addressed to achieve the commercial success of these nanogenerators, regarding design strategies with advanced simulation models or digital twins. Also, these strategies must incorporate new materials that improve the performance, reliability, and integration of future nanogenerator array systems. Thus, optimized hybrid nanogenerators can represent a promising technology for ocean energy harvesting with application in the maritime industry. Full article
(This article belongs to the Special Issue Technological Advances in Science, Medicine, and Engineering 2024)
Show Figures

Graphical abstract

20 pages, 16450 KB  
Article
A Smart Textile-Based Tactile Sensing System for Multi-Channel Sign Language Recognition
by Keran Chen, Longnan Li, Qinyao Peng, Mengyuan He, Liyun Ma, Xinxin Li and Zhenyu Lu
Sensors 2025, 25(15), 4602; https://doi.org/10.3390/s25154602 - 25 Jul 2025
Viewed by 1072
Abstract
Sign language recognition plays a crucial role in enabling communication for deaf individuals, yet current methods face limitations such as sensitivity to lighting conditions, occlusions, and lack of adaptability in diverse environments. This study presents a wearable multi-channel tactile sensing system based on [...] Read more.
Sign language recognition plays a crucial role in enabling communication for deaf individuals, yet current methods face limitations such as sensitivity to lighting conditions, occlusions, and lack of adaptability in diverse environments. This study presents a wearable multi-channel tactile sensing system based on smart textiles, designed to capture subtle wrist and finger motions for static sign language recognition. The system leverages triboelectric yarns sewn into gloves and sleeves to construct a skin-conformal tactile sensor array, capable of detecting biomechanical interactions through contact and deformation. Unlike vision-based approaches, the proposed sensor platform operates independently of environmental lighting or occlusions, offering reliable performance in diverse conditions. Experimental validation on American Sign Language letter gestures demonstrates that the proposed system achieves high signal clarity after customized filtering, leading to a classification accuracy of 94.66%. Experimental results show effective recognition of complex gestures, highlighting the system’s potential for broader applications in human-computer interaction. Full article
(This article belongs to the Special Issue Advanced Tactile Sensors: Design and Applications)
Show Figures

Figure 1

29 pages, 7197 KB  
Review
Recent Advances in Electrospun Nanofiber-Based Self-Powered Triboelectric Sensors for Contact and Non-Contact Sensing
by Jinyue Tian, Jiaxun Zhang, Yujie Zhang, Jing Liu, Yun Hu, Chang Liu, Pengcheng Zhu, Lijun Lu and Yanchao Mao
Nanomaterials 2025, 15(14), 1080; https://doi.org/10.3390/nano15141080 - 11 Jul 2025
Cited by 3 | Viewed by 1611
Abstract
Electrospun nanofiber-based triboelectric nanogenerators (TENGs) have emerged as a highly promising class of self-powered sensors for a broad range of applications, particularly in intelligent sensing technologies. By combining the advantages of electrospinning and triboelectric nanogenerators, these sensors offer superior characteristics such as high [...] Read more.
Electrospun nanofiber-based triboelectric nanogenerators (TENGs) have emerged as a highly promising class of self-powered sensors for a broad range of applications, particularly in intelligent sensing technologies. By combining the advantages of electrospinning and triboelectric nanogenerators, these sensors offer superior characteristics such as high sensitivity, mechanical flexibility, lightweight structure, and biocompatibility, enabling their integration into wearable electronics and biomedical interfaces. This review presents a comprehensive overview of recent progress in electrospun nanofiber-based TENGs, covering their working principles, operating modes, and material composition. Both pure polymer and composite nanofibers are discussed, along with various electrospinning techniques that enable control over morphology and performance at the nanoscale. We explore their practical implementations in both contact-type and non-contact-type sensing, such as human–machine interaction, physiological signal monitoring, gesture recognition, and voice detection. These applications demonstrate the potential of TENGs to enable intelligent, low-power, and real-time sensing systems. Furthermore, this paper points out critical challenges and future directions, including durability under long-term operation, scalable and cost-effective fabrication, and seamless integration with wireless communication and artificial intelligence technologies. With ongoing advancements in nanomaterials, fabrication techniques, and system-level integration, electrospun nanofiber-based TENGs are expected to play a pivotal role in shaping the next generation of self-powered, intelligent sensing platforms across diverse fields such as healthcare, environmental monitoring, robotics, and smart wearable systems. Full article
(This article belongs to the Special Issue Self-Powered Flexible Sensors Based on Triboelectric Nanogenerators)
Show Figures

Figure 1

Back to TopTop