Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = trigeminal spinal nucleus caudalis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2218 KB  
Article
Systemic Administration of Docosahexaenoic Acid Suppresses Trigeminal Secondary Nociceptive Neuronal Activity in Rats
by Hanano Takahashi, Yukito Sashide and Mamoru Takeda
Int. J. Transl. Med. 2025, 5(2), 13; https://doi.org/10.3390/ijtm5020013 - 25 Mar 2025
Cited by 1 | Viewed by 959
Abstract
Background and Objectives: Docosahexaenoic acid (DHA) has been shown to modulate various voltage-gated ion channels and both excitatory and inhibitory synapses. Nonetheless, its exact effect on nociceptive signaling in the trigeminal system has yet to be elucidated. The purpose of the current investigation [...] Read more.
Background and Objectives: Docosahexaenoic acid (DHA) has been shown to modulate various voltage-gated ion channels and both excitatory and inhibitory synapses. Nonetheless, its exact effect on nociceptive signaling in the trigeminal system has yet to be elucidated. The purpose of the current investigation was to assess if acute DHA given intravenously to rats diminished the excitability of wide dynamic range spinal trigeminal nucleus caudalis (SpVc) neurons in response to mechanical stimulation in vivo. Methods: Single-unit extracellular activity was recorded from SpVc neurons in response to mechanical stimulation of the whisker pad in anesthetized rats. Responses to both non-noxious and noxious mechanical stimuli were analyzed in the present study. Results: The mean firing frequency of SpVc wide dynamic range neurons in response to both non-noxious and noxious mechanical stimuli was significantly dose-dependently inhibited by DHA, and the effect was seen within 5 min. After approximately 20 min, the inhibiting effects dissipated. Conclusions: These results suggest that, in the absence of inflammatory or neuropathic pain, the acute intravenous administration of DHA reduces the activity of trigeminal sensory neurons, including those responsible for pain, indicating that DHA could be utilized as an adjunct and alternative therapeutic agent for managing trigeminal nociceptive pain, including hyperalgesia. Full article
Show Figures

Figure 1

12 pages, 2281 KB  
Article
Systemic Administration of the Phytochemical, Myricetin, Attenuates the Excitability of Rat Nociceptive Secondary Trigeminal Neurons
by Sana Yamaguchi, Risako Chida, Syogo Utugi, Yukito Sashide and Mamoru Takeda
Molecules 2025, 30(5), 1019; https://doi.org/10.3390/molecules30051019 - 23 Feb 2025
Cited by 3 | Viewed by 617
Abstract
While the modulation of the excitatory and inhibitory neuronal transmission by the phytochemical flavonoid, myricetin (MYR), has been noted in the nervous system, the way in which MYR affects the excitability of nociceptive sensory neurons in vivo remains to be established. This study [...] Read more.
While the modulation of the excitatory and inhibitory neuronal transmission by the phytochemical flavonoid, myricetin (MYR), has been noted in the nervous system, the way in which MYR affects the excitability of nociceptive sensory neurons in vivo remains to be established. This study aimed to explore whether administering MYR intravenously, in acute doses, to rats, diminishes the excitability of SpVc wide-dynamic range (WDR) spinal trigeminal nucleus caudalis (SpVc) neurons in response to nociceptive and non-nociceptive mechanical stimulation in vivo. Recordings of extracellular single units were obtained from SpVc neurons when orofacial mechanical stimulation was applied to anesthetized rats. The average firing rate of SpVc WDR neurons, to both non-noxious and noxious mechanical stimuli, was significantly and dose-dependently inhibited by MYR (1–5 mM, intravenously), and the maximum reversible inhibition of the discharge frequency, for both non-noxious and noxious mechanical stimuli, occurred within 5–10 min. The suppressive effects of MYR continued for about 20 min. These findings indicate that an acute, intravenous administration of MYR reduces the SpVc nociceptive transmission, likely through the inhibition of the CaV channels and by activating the Kv channels. Therefore, MYR might be utilized as a treatment for trigeminal nociceptive pain, without causing side effects. Full article
(This article belongs to the Special Issue Biological Activity of Plant Extracts)
Show Figures

Figure 1

15 pages, 2579 KB  
Article
Naringenin Suppresses the Hyperexcitability of Trigeminal Nociceptive Neurons Associated with Inflammatory Hyperalgesia: Replacement of NSAIDs with Phytochemicals
by Sora Yajima, Risa Sakata, Yui Watanuki, Yukito Sashide and Mamoru Takeda
Nutrients 2024, 16(22), 3895; https://doi.org/10.3390/nu16223895 - 15 Nov 2024
Cited by 1 | Viewed by 960
Abstract
The present study examines whether the systemic application of naringenin (NRG) reduces inflammation-induced hyperexcitability in the spinal trigeminal nucleus caudalis (SpVc) related to hyperalgesia, and compares its impact with that of diclofenac (DIC). To provoke inflammation, the whisker pads of rats were injected [...] Read more.
The present study examines whether the systemic application of naringenin (NRG) reduces inflammation-induced hyperexcitability in the spinal trigeminal nucleus caudalis (SpVc) related to hyperalgesia, and compares its impact with that of diclofenac (DIC). To provoke inflammation, the whisker pads of rats were injected with complete Freund’s adjuvant, and subsequently, mechanical stimuli were administered to the orofacial region to determine the escape threshold. Compared to naïve rats, the inflamed rats showed a significantly lower mechanical threshold, and this reduced threshold returned to normal levels two days post-administration of NRG, DIC, and half-dose DIC plus half-dose NRG (1/2 DIC + 1/2 NRG). Using extracellular single-unit recordings, the activity of SpVc wide-dynamic range neurons was measured in response to mechanical stimulation of the orofacial area under anesthesia. The average firing rate of SpVc neurons when exposed to both non-painful and painful mechanical stimuli was significantly reduced in inflamed rats following NRG, DIC, and 1/2 DIC + 1/2 NRG administration. The heightened average spontaneous activity of SpVc neurons in rats with inflammation was significantly reduced following NRG, DIC, and 1/2 DIC + 1/2 NRG administration. The increased average receptive field size observed in inflamed rats reverted to normal levels after either NRG, DIC, or 1/2 DIC + 1/2 NRG treatment. These findings indicate that NRG administration can reduce inflammatory hyperalgesia linked to the heightened excitability of SpVc wide-dynamic range neurons. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

11 pages, 2556 KB  
Article
Suppression of the Excitability of Nociceptive Secondary Sensory Neurons Following Systemic Administration of Astaxanthin in Rats
by Risako Chida, Sana Yamaguchi, Syogo Utugi, Yukito Sashide and Mamoru Takeda
Anesth. Res. 2024, 1(2), 117-127; https://doi.org/10.3390/anesthres1020012 - 2 Sep 2024
Cited by 1 | Viewed by 1125
Abstract
Although astaxanthin (AST) has demonstrated a modulatory effect on voltage-gated Ca2+ (Cav) channels and excitatory glutamate neuronal transmission in vitro, particularly on the excitability of nociceptive sensory neurons, its action in vivo remains to be determined. This research sought to determine if [...] Read more.
Although astaxanthin (AST) has demonstrated a modulatory effect on voltage-gated Ca2+ (Cav) channels and excitatory glutamate neuronal transmission in vitro, particularly on the excitability of nociceptive sensory neurons, its action in vivo remains to be determined. This research sought to determine if an acute intravenous administration of AST in rats reduces the excitability of wide-dynamic range (WDR) spinal trigeminal nucleus caudalis (SpVc) neurons in response to nociceptive and non-nociceptive mechanical stimulation in vivo. In anesthetized rats, extracellular single-unit recordings were carried out on SpVc neurons following mechanical stimulation of the orofacial area. The average firing rate of SpVc WDR neurons in response to both gentle and painful mechanical stimuli significantly and dose-dependently decreased after the application of AST (1–5 mM, i.v.), and maximum suppression of discharge frequency for both non-noxious and nociceptive mechanical stimuli occurred within 10 min. These suppressive effects persisted for about 20 min. These results suggest that acute intravenous AST administration suppresses the SpVc nociceptive transmission, possibly by inhibiting Cav channels and excitatory glutamate neuronal transmission, implicating AST as a potential therapeutic agent for the treatment of trigeminal nociceptive pain without side effects. Full article
Show Figures

Figure 1

13 pages, 2616 KB  
Article
Different Involvement of ASIC and TRPA1 in Facial and Hindpaw Allodynia in Nitroglycerin-Induced Peripheral Hypersensitivities in Mice
by Sol-Ji Kim, Ji-Hee Yeo, Seo-Yeon Yoon and Dae-Hyun Roh
Life 2022, 12(9), 1294; https://doi.org/10.3390/life12091294 - 23 Aug 2022
Cited by 4 | Viewed by 2385
Abstract
The pathophysiological mechanism underlying migraine-associated peripheral hypersensitivity remains unclear. Acid-sensing ion channels (ASICs) and transient receptor potential ankyrin 1 (TRPA1) are known to be causative pathogenic factors of mechanical and cold allodynia, respectively. Here, we sought to investigate their involvement in cold and [...] Read more.
The pathophysiological mechanism underlying migraine-associated peripheral hypersensitivity remains unclear. Acid-sensing ion channels (ASICs) and transient receptor potential ankyrin 1 (TRPA1) are known to be causative pathogenic factors of mechanical and cold allodynia, respectively. Here, we sought to investigate their involvement in cold and mechanical allodynia of the face and hindpaws, respectively, in a mouse model of repetitive nitroglycerin (NTG)-induced migraine. NTG (10 mg/kg) was administered to the mice every other day for 9 days, followed 90 min later by HC-030031 (a TRPA1 blocker) or amiloride (a non-selective ASIC blocker). Mechanical or cold sensitivity of the hindpaw and facial regions was quantified using von-Frey filaments or acetone solution, respectively. Immunohistochemistry revealed that c-Fos expression was significantly increased in the trigeminal nucleus caudalis region but not in the spinal cord. Amiloride treatment only reduced NTG-induced hindpaw mechanical allodynia, whereas HC-030031 treatment only improved facial cold allodynia. Interestingly, the number of c-Fos positive cells decreased to a similar level in each drug treatment group. These findings demonstrate that facial cold allodynia and hindpaw mechanical allodynia are differentially mediated by activation of TRPA1 and ASIC, respectively, in mice with repetitive NTG-induced hypersensitivity. Full article
(This article belongs to the Section Medical Research)
Show Figures

Figure 1

19 pages, 6008 KB  
Article
Excitatory Effects of Calcitonin Gene-Related Peptide (CGRP) on Superficial Sp5C Neurons in Mouse Medullary Slices
by Fang Zheng, Barbara E. Nixdorf-Bergweiler, Johannes van Brederode, Christian Alzheimer and Karl Messlinger
Int. J. Mol. Sci. 2021, 22(7), 3794; https://doi.org/10.3390/ijms22073794 - 6 Apr 2021
Cited by 12 | Viewed by 3992
Abstract
The neuromodulator calcitonin gene-related peptide (CGRP) is known to facilitate nociceptive transmission in the superficial laminae of the spinal trigeminal nucleus caudalis (Sp5C). The central effects of CGRP in the Sp5C are very likely to contribute to the activation of central nociceptive pathways [...] Read more.
The neuromodulator calcitonin gene-related peptide (CGRP) is known to facilitate nociceptive transmission in the superficial laminae of the spinal trigeminal nucleus caudalis (Sp5C). The central effects of CGRP in the Sp5C are very likely to contribute to the activation of central nociceptive pathways leading to attacks of severe headaches like migraine. To examine the potential impacts of CGRP on laminae I/II neurons at cellular and synaptic levels, we performed whole-cell patch-clamp recordings in juvenile mouse brainstem slices. First, we tested the effect of CGRP on cell excitability, focusing on neurons with tonically firing action potentials upon depolarizing current injection. CGRP (100 nM) enhanced tonic discharges together with membrane depolarization, an excitatory effect that was significantly reduced when the fast synaptic transmissions were pharmacologically blocked. However, CGRP at 500 nM was capable of exciting the functionally isolated cells, in a nifedipine-sensitive manner, indicating its direct effect on membrane intrinsic properties. In voltage-clamped cells, 100 nM CGRP effectively increased the frequency of excitatory synaptic inputs, suggesting its preferential presynaptic effect. Both CGRP-induced changes in cell excitability and synaptic drives were prevented by the CGRP receptor inhibitor BIBN 4096BS. Our data provide evidence that CGRP increases neuronal activity in Sp5C superficial laminae by dose-dependently promoting excitatory synaptic drive and directly enhancing cell intrinsic properties. We propose that the combination of such pre- and postsynaptic actions of CGRP might underlie its facilitation in nociceptive transmission in situations like migraine with elevated CGRP levels. Full article
(This article belongs to the Special Issue Neuropeptides, Receptors, and Behavior)
Show Figures

Figure 1

13 pages, 2271 KB  
Article
Pretreatment with High Mobility Group Box-1 Monoclonal Antibody Prevents the Onset of Trigeminal Neuropathy in Mice with a Distal Infraorbital Nerve Chronic Constriction Injury
by Takahiro Kochi, Yoki Nakamura, Simeng Ma, Kazue Hisaoka-Nakashima, Dengli Wang, Keyue Liu, Hidenori Wake, Masahiro Nishibori, Masahiro Irifune and Norimitsu Morioka
Molecules 2021, 26(7), 2035; https://doi.org/10.3390/molecules26072035 - 2 Apr 2021
Cited by 21 | Viewed by 4878
Abstract
Persistent pain following orofacial surgery is not uncommon. High mobility group box 1 (HMGB1), an alarmin, is released by peripheral immune cells following nerve injury and could be related to pain associated with trigeminal nerve injury. Distal infraorbital nerve chronic constriction injury (dIoN-CCI) [...] Read more.
Persistent pain following orofacial surgery is not uncommon. High mobility group box 1 (HMGB1), an alarmin, is released by peripheral immune cells following nerve injury and could be related to pain associated with trigeminal nerve injury. Distal infraorbital nerve chronic constriction injury (dIoN-CCI) evokes pain-related behaviors including increased facial grooming and hyper-responsiveness to acetone (cutaneous cooling) after dIoN-CCI surgery in mice. In addition, dIoN-CCI mice developed conditioned place preference to mirogabalin, suggesting increased neuropathic pain-related aversion. Treatment of the infraorbital nerve with neutralizing antibody HMGB1 (anti-HMGB1 nAb) before dIoN-CCI prevented both facial grooming and hyper-responsiveness to cooling. Pretreatment with anti-HMGB1 nAb also blocked immune cell activation associated with trigeminal nerve injury including the accumulation of macrophage around the injured IoN and increased microglia activation in the ipsilateral spinal trigeminal nucleus caudalis. The current findings demonstrated that blocking of HMGB1 prior to nerve injury prevents the onset of pain-related behaviors, possibly through blocking the activation of immune cells associated with the nerve injury, both within the CNS and on peripheral nerves. The current findings further suggest that blocking HMGB1 before tissue injury could be a novel strategy to prevent the induction of chronic pain following orofacial surgeries. Full article
(This article belongs to the Special Issue Novel Antinociceptive Agent against Persistent Pain)
Show Figures

Graphical abstract

21 pages, 2965 KB  
Article
Role of CGRP in Neuroimmune Interaction via NF-κB Signaling Genes in Glial Cells of Trigeminal Ganglia
by Shaista Afroz, Rieko Arakaki, Takuma Iwasa, Arief Waskitho, Masamitsu Oshima and Yoshizo Matsuka
Int. J. Mol. Sci. 2020, 21(17), 6005; https://doi.org/10.3390/ijms21176005 - 20 Aug 2020
Cited by 15 | Viewed by 3856
Abstract
Activation of the trigeminal system causes the release of various neuropeptides, cytokines, and other immune mediators. Calcitonin gene-related peptide (CGRP), which is a potent algogenic mediator, is expressed in the peripheral sensory neurons of trigeminal ganglion (TG). It affects the inflammatory responses and [...] Read more.
Activation of the trigeminal system causes the release of various neuropeptides, cytokines, and other immune mediators. Calcitonin gene-related peptide (CGRP), which is a potent algogenic mediator, is expressed in the peripheral sensory neurons of trigeminal ganglion (TG). It affects the inflammatory responses and pain sensitivity by modulating the activity of glial cells. The primary aim of this study was to use array analysis to investigate the effect of CGRP on the glial cells of TG in regulating nuclear factor kappa B (NF-κB) signaling genes and to further check if CGRP in the TG can affect neuron-glia activation in the spinal trigeminal nucleus caudalis. The glial cells of TG were stimulated with CGRP or Minocycline (Min) + CGRP. The effect on various genes involved in NF-κB signaling pathway was analyzed compared to no treatment control condition using a PCR array analysis. CGRP, Min + CGRP or saline was directly injected inside the TG and the effect on gene expression of Egr1, Myd88 and Akt1 and protein expression of cleaved Caspase3 (cleav Casp3) in the TG, and c-Fos and glial fibrillary acidic protein (GFAP) in the spinal section containing trigeminal nucleus caudalis was analyzed. Results showed that CGRP stimulation resulted in the modulation of several genes involved in the interleukin 1 signaling pathway and some genes of the tumor necrosis factor pathway. Minocycline pre-treatment resulted in the modulation of several genes in the glial cells, including anti-inflammatory genes, and neuronal activation markers. A mild increase in cleav Casp3 expression in TG and c-Fos and GFAP in the spinal trigeminal nucleus of CGRP injected animals was observed. These data provide evidence that glial cells can participate in neuroimmune interaction due to CGRP in the TG via NF-κB signaling pathway. Full article
(This article belongs to the Special Issue Orofacial Pain: Molecular Mechanisms, Diagnosis and Treatment)
Show Figures

Figure 1

16 pages, 3151 KB  
Article
A Pre-Existing Myogenic Temporomandibular Disorder Increases Trigeminal Calcitonin Gene-Related Peptide and Enhances Nitroglycerin-Induced Hypersensitivity in Mice
by Hui Shu, Sufang Liu, Yuanyuan Tang, Brian L. Schmidt, John C. Dolan, Larry L. Bellinger, Phillip R. Kramer, Steven D. Bender and Feng Tao
Int. J. Mol. Sci. 2020, 21(11), 4049; https://doi.org/10.3390/ijms21114049 - 5 Jun 2020
Cited by 23 | Viewed by 4161
Abstract
Migraine is commonly reported among patients with temporomandibular disorders (TMDs), especially myogenic TMD. The pathophysiologic mechanisms related to the comorbidity of the two conditions remain elusive. In the present study, we combined masseter muscle tendon ligation (MMTL)-produced myogenic TMD with systemic injection of [...] Read more.
Migraine is commonly reported among patients with temporomandibular disorders (TMDs), especially myogenic TMD. The pathophysiologic mechanisms related to the comorbidity of the two conditions remain elusive. In the present study, we combined masseter muscle tendon ligation (MMTL)-produced myogenic TMD with systemic injection of nitroglycerin (NTG)-induced migraine-like hypersensitivity in mice. Facial mechanical allodynia, functional allodynia, and light-aversive behavior were evaluated. Sumatriptan, an FDA-approved medication for migraine, was used to validate migraine-like hypersensitivity. Additionally, we examined the protein level of calcitonin gene-related peptide (CGRP) in the spinal trigeminal nucleus caudalis using immunohistochemistry. We observed that mice with MMTL pretreatment have a prolonged NTG-induced migraine-like hypersensitivity, and MMTL also enabled a non-sensitizing dose of NTG to trigger migraine-like hypersensitivity. Systemic injection of sumatriptan inhibited the MMTL-enhanced migraine-like hypersensitivity. MMTL pretreatment significantly upregulated the protein level of CGRP in the spinal trigeminal nucleus caudalis after NTG injection. Our results indicate that a pre-existing myogenic TMD can upregulate NTG-induced trigeminal CGRP and enhance migraine-like hypersensitivity. Full article
(This article belongs to the Special Issue Orofacial Pain: Molecular Mechanisms, Diagnosis and Treatment)
Show Figures

Figure 1

15 pages, 1538 KB  
Article
Dopaminergic Modulation of Orofacial Mechanical Hypersensitivity Induced by Infraorbital Nerve Injury
by Hiroharu Maegawa, Nayuka Usami, Chiho Kudo, Hiroshi Hanamoto and Hitoshi Niwa
Int. J. Mol. Sci. 2020, 21(6), 1945; https://doi.org/10.3390/ijms21061945 - 12 Mar 2020
Cited by 9 | Viewed by 3219
Abstract
While the descending dopaminergic control system is not fully understood, it is reported that the hypothalamic A11 nucleus is its principle source. To better understand the impact of this system, particularly the A11 nucleus, on neuropathic pain, we created a chronic constriction injury [...] Read more.
While the descending dopaminergic control system is not fully understood, it is reported that the hypothalamic A11 nucleus is its principle source. To better understand the impact of this system, particularly the A11 nucleus, on neuropathic pain, we created a chronic constriction injury model of the infraorbital nerve (ION-CCI) in rats. ION-CCI rats received intraperitoneal administrations of quinpirole (a dopamine D2 receptor agonist). ION-CCI rats received microinjections of quinpirole, muscimol [a gamma-aminobutyric acid type A (GABAA) receptor agonist], or neurotoxin 6-hydroxydopamine (6-OHDA) into the A11 nucleus. A von Frey filament was used as a mechanical stimulus on the maxillary whisker pad skin; behavioral and immunohistochemical responses to the stimulation were assessed. After intraperitoneal administration of quinpirole and microinjection of quinpirole or muscimol, ION-CCI rats showed an increase in head-withdrawal thresholds and a decrease in the number of phosphorylated extracellular signal-regulated kinase (pERK) immunoreactive (pERK-IR) cells in the superficial layers of the trigeminal spinal subnucleus caudalis (Vc). Following 6-OHDA microinjection, ION-CCI rats showed a decrease in head-withdrawal thresholds and an increase in the number of pERK-IR cells in the Vc. Our findings suggest the descending dopaminergic control system is involved in the modulation of trigeminal neuropathic pain. Full article
(This article belongs to the Special Issue Orofacial Pain: Molecular Mechanisms, Diagnosis and Treatment)
Show Figures

Figure 1

16 pages, 4337 KB  
Article
Increase in IGF-1 Expression in the Injured Infraorbital Nerve and Possible Implications for Orofacial Neuropathic Pain
by Shiori Sugawara, Masamichi Shinoda, Yoshinori Hayashi, Hiroto Saito, Sayaka Asano, Asako Kubo, Ikuko Shibuta, Akihiko Furukawa, Akira Toyofuku and Koichi Iwata
Int. J. Mol. Sci. 2019, 20(24), 6360; https://doi.org/10.3390/ijms20246360 - 17 Dec 2019
Cited by 24 | Viewed by 4887
Abstract
Insulin-like growth factor-1 (IGF-1) is upregulated in the injured peripheral nerve bundle and controls nociceptive neuronal excitability associated with peripheral nerve injury. Here, we examined the involvement of IGF-1 signaling in orofacial neuropathic pain following infraorbital nerve injury (IONI) in rats. IONI promoted [...] Read more.
Insulin-like growth factor-1 (IGF-1) is upregulated in the injured peripheral nerve bundle and controls nociceptive neuronal excitability associated with peripheral nerve injury. Here, we examined the involvement of IGF-1 signaling in orofacial neuropathic pain following infraorbital nerve injury (IONI) in rats. IONI promoted macrophage accumulation in the injured ION, as well as in the ipsilateral trigeminal ganglion (TG), and induced mechanical allodynia of the whisker pad skin together with the enhancement of neuronal activities in the subnucleus caudalis of the spinal trigeminal nucleus and in the upper cervical spinal cord. The levels of IGF-1 released by infiltrating macrophages into the injured ION and the TG were significantly increased. The IONI-induced the number of transient receptor potential vanilloid (TRPV) subfamily type 4 (TRPV4) upregulation in TRPV subfamily type 2 (TRPV2)-positive small-sized, and medium-sized TG neurons were inhibited by peripheral TRPV2 antagonism. Furthermore, the IONI-induced mechanical allodynia was suppressed by TRPV4 antagonism in the whisker pad skin. These results suggest that IGF-1 released by macrophages accumulating in the injured ION binds to TRPV2, which increases TRPV4 expression in TG neurons innervating the whisker pad skin, ultimately resulting in mechanical allodynia of the whisker pad skin. Full article
(This article belongs to the Special Issue Orofacial Pain: Molecular Mechanisms, Diagnosis and Treatment)
Show Figures

Figure 1

21 pages, 2931 KB  
Article
Antagonism of Transient Receptor Potential Ankyrin Type-1 Channels as a Potential Target for the Treatment of Trigeminal Neuropathic Pain: Study in an Animal Model
by Chiara Demartini, Rosaria Greco, Anna Maria Zanaboni, Oscar Francesconi, Cristina Nativi, Cristina Tassorelli and Kristof Deseure
Int. J. Mol. Sci. 2018, 19(11), 3320; https://doi.org/10.3390/ijms19113320 - 25 Oct 2018
Cited by 34 | Viewed by 4597
Abstract
Transient receptor potential ankyrin type-1 (TRPA1) channels are known to actively participate in different pain conditions, including trigeminal neuropathic pain, whose clinical treatment is still unsatisfactory. The aim of this study was to evaluate the involvement of TRPA1 channels by means of the [...] Read more.
Transient receptor potential ankyrin type-1 (TRPA1) channels are known to actively participate in different pain conditions, including trigeminal neuropathic pain, whose clinical treatment is still unsatisfactory. The aim of this study was to evaluate the involvement of TRPA1 channels by means of the antagonist ADM_12 in trigeminal neuropathic pain, in order to identify possible therapeutic targets. A single treatment of ADM_12 in rats 4 weeks after the chronic constriction injury of the infraorbital nerve (IoN-CCI) significantly reduced the mechanical allodynia induced in the IoN-CCI rats. Additionally, ADM_12 was able to abolish the increased levels of TRPA1, calcitonin gene-related peptide (CGRP), substance P (SP), and cytokines gene expression in trigeminal ganglia, cervical spinal cord, and medulla induced in the IoN-CCI rats. By contrast, no significant differences between groups were seen as regards CGRP and SP protein expression in the pars caudalis of the spinal nucleus of the trigeminal nerve. ADM_12 also reduced TRP vanilloid type-1 (TRPV1) gene expression in the same areas after IoN-CCI. Our findings show the involvement of both TRPA1 and TRPV1 channels in trigeminal neuropathic pain, and in particular, in trigeminal mechanical allodynia. Furthermore, they provide grounds for the use of ADM_12 in the treatment of trigeminal neuropathic pain. Full article
(This article belongs to the Special Issue Ion Channels of Nociception)
Show Figures

Graphical abstract

Back to TopTop