Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Keywords = triptycene

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 7121 KB  
Article
Morphological Study before and after Thermal Treatment of Polymer-Polymer Mixed-Matrix Membranes for Gas Separations
by Pedro Pradanos, Cenit Soto, Francisco Javier Carmona, Ángel E. Lozano, Antonio Hernández and Laura Palacio
Polymers 2024, 16(10), 1397; https://doi.org/10.3390/polym16101397 - 14 May 2024
Cited by 1 | Viewed by 1727
Abstract
A good integration of the polymer materials that form a mixed-matrix membrane (MMM) for gas separation is essential to reaching interesting permselective properties. In this work, a porous polymer network (PPN), obtained by combining triptycene and trifluoroacetophenone, has been used as a filler, [...] Read more.
A good integration of the polymer materials that form a mixed-matrix membrane (MMM) for gas separation is essential to reaching interesting permselective properties. In this work, a porous polymer network (PPN), obtained by combining triptycene and trifluoroacetophenone, has been used as a filler, which was blended with two o-hydroxypolyamides (HPAs) that act as polymer matrices. These polymer matrices have been thermally treated to induce a thermal rearrangement (TR) of the HPAs to polybenzoxazoles (β-TR-PBOs) through a solid-state reaction. For its structural study, various techniques have been proposed that allow us to undertake a morphological investigation into the integration of these materials. To access the internal structure of the MMMs, three different methods were used: a polishing process for the material surface, the partial dissolution of the polymer matrix, or argon plasma etching. The argon plasma technique has not only revealed its potential to visualize the internal structure of these materials; it has also been proven to allow for the transformation of their permselective properties. Force modulation and phase contrast in lift-mode techniques, along with the topographic images obtained via the tapping mode using a scanning probe microscope (SPM), have allowed us to study the distribution of the filler particles and the interaction of the polymer and the filler. The morphological information obtained via SPM, along with that of other more commonly used techniques (SEM, TGA, DSC, FTIR, WASX, gas adsorption, and permeability measurements), has allowed us to postulate the most probable structural configuration in this type of system. Full article
(This article belongs to the Special Issue Advanced Polymer Membranes for Adsorption and Separation Applications)
Show Figures

Graphical abstract

11 pages, 1801 KB  
Article
Synthesis of 2,6-Diaminotriptycene Conjugates with Chiral Auxiliaries: Towards the Scalable Resolution of Crucial Triptycene Intermediates
by Giovanni Preda, Emanuele Casali, Alessio Porta and Dario Pasini
Symmetry 2024, 16(1), 116; https://doi.org/10.3390/sym16010116 - 18 Jan 2024
Cited by 3 | Viewed by 2105
Abstract
Triptycenes are tridimensional molecular scaffolds with interesting properties for applications in materials science: molecular rigidity and preorganization, tailorable chromophores, and, with an appropriate substitution pattern, chirality. The separation of the two enantiomers of chiral triptycenes has been the subject of increasing interest in [...] Read more.
Triptycenes are tridimensional molecular scaffolds with interesting properties for applications in materials science: molecular rigidity and preorganization, tailorable chromophores, and, with an appropriate substitution pattern, chirality. The separation of the two enantiomers of chiral triptycenes has been the subject of increasing interest in recent years, with limited success. Here, we report the synthesis and characterization of a series of new organic compounds, in which a chiral triptycene scaffold, derivatized in the 2 and 6 positions with amino groups, has been functionalized with different enantiopure chiral auxiliaries, forming diastereoisomeric couples. The properties of such compounds, in terms of the optimization of their chromatographic separation, are elucidated with the aid of computational calculations of preferred conformations and molecular polarities. Full article
(This article belongs to the Collection Feature Papers in Chemistry)
Show Figures

Figure 1

11 pages, 1946 KB  
Article
Rigidity with Flexibility: Porous Triptycene Networks for Enhancing Methane Storage
by Fei Guo, Hui Ma, Bin-Bin Yang, Zhen Wang, Xiang-Gao Meng, Jian-Hua Bu and Chun Zhang
Polymers 2024, 16(1), 156; https://doi.org/10.3390/polym16010156 - 4 Jan 2024
Viewed by 1907
Abstract
In the pursuit of advancing materials for methane storage, a critical consideration arises given the prominence of natural gas (NG) as a clean transportation fuel, which holds substantial potential for alleviating the strain on both energy resources and the environment in the forthcoming [...] Read more.
In the pursuit of advancing materials for methane storage, a critical consideration arises given the prominence of natural gas (NG) as a clean transportation fuel, which holds substantial potential for alleviating the strain on both energy resources and the environment in the forthcoming decade. In this context, a novel approach is undertaken, employing the rigid triptycene as a foundational building block. This strategy is coupled with the incorporation of dichloromethane and 1,3-dichloropropane, serving as rigid and flexible linkers, respectively. This combination not only enables cost-effective fabrication but also expedites the creation of two distinct triptycene-based hypercrosslinked polymers (HCPs), identified as PTN-70 and PTN-71. Surprisingly, despite PTN-71 manifesting an inferior Brunauer–Emmett–Teller (BET) surface area when compared to the rigidly linked PTN-70, it showcases remarkably enhanced methane adsorption capabilities, particularly under high-pressure conditions. At a temperature of 275 K and a pressure of 95 bars, PTN-71 demonstrates an impressive methane adsorption capacity of 329 cm3 g−1. This exceptional performance is attributed to the unique flexible network structure of PTN-71, which exhibits a pronounced swelling response when subjected to elevated pressure conditions, thus elucidating its superior methane adsorption characteristics. The development of these advanced materials not only signifies a significant stride in the realm of methane storage but also underscores the importance of tailoring the structural attributes of hypercrosslinked polymers for optimized gas adsorption performance. Full article
Show Figures

Figure 1

22 pages, 5129 KB  
Article
Mixed Matrix Membranes Using Porous Organic Polymers (POPs)—Influence of Textural Properties on CO2/CH4 Separation
by Laura Matesanz-Niño, Jorge Moranchel-Pérez, Cristina Álvarez, Ángel E. Lozano and Clara Casado-Coterillo
Polymers 2023, 15(20), 4135; https://doi.org/10.3390/polym15204135 - 18 Oct 2023
Cited by 6 | Viewed by 2949
Abstract
Mixed matrix membranes (MMMs) provide the opportunity to test new porous materials in challenging applications. A series of low-cost porous organic polymer (POPs) networks, possessing tunable porosity and high CO2 uptake, has been obtained by aromatic electrophilic substitution reactions of biphenyl, 9,10-dihydro-9,10-dimethyl-9,10-ethanoanthracene [...] Read more.
Mixed matrix membranes (MMMs) provide the opportunity to test new porous materials in challenging applications. A series of low-cost porous organic polymer (POPs) networks, possessing tunable porosity and high CO2 uptake, has been obtained by aromatic electrophilic substitution reactions of biphenyl, 9,10-dihydro-9,10-dimethyl-9,10-ethanoanthracene (DMDHA), triptycene and 1,3,5-triphenylbenzene (135TPB) with dimethoxymethane (DMM). These materials have been characterized by FTIR, 13C NMR, WAXD, TGA, SEM, and CO2 uptake. Finally, different loadings of these POPs have been introduced into Matrimid, Pebax, and chitosan:polyvinyl alcohol blends as polymeric matrices to prepare MMMs. The CO2/CH4 separation performance of these MMMs has been evaluated by single and mixed gas permeation experiments at 4 bar and room temperature. The effect of the porosity of the porous fillers on the membrane separation behavior and the compatibility between them and the different polymer matrices on membrane design and fabrication has been studied by Maxwell model equations as a function of the gas permeability of the pure polymers, porosity, and loading of the fillers in the MMMs. Although the gas transport properties showed an increasing deviation from ideal Maxwell equation prediction with increasing porosity of the POP fillers and increasing hydrophilicity of the polymer matrices, the behavior of biopolymer-based CS:PVA MMMs approached that of Pebax-based MMMs, giving scope to not only new filler materials but also sustainable polymer choices to find a place in membrane technology. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Figure 1

16 pages, 5480 KB  
Review
Triptycene Based 3D Covalent Organic Frameworks (COFs)—An Emerging Class of 3D Structures
by Monika Borkowska and Radosław Mrówczyński
Symmetry 2023, 15(9), 1803; https://doi.org/10.3390/sym15091803 - 21 Sep 2023
Cited by 10 | Viewed by 3448
Abstract
Covalent Organic Frameworks (COFs) are a newly emerged class of porous materials consisting of organic building blocks linked by strong covalent bonds. The physical and chemical properties of COFs, i.e., modularity, porosity, well-developed specific surface area, crystallinity, and chemical-thermal stability, make them a [...] Read more.
Covalent Organic Frameworks (COFs) are a newly emerged class of porous materials consisting of organic building blocks linked by strong covalent bonds. The physical and chemical properties of COFs, i.e., modularity, porosity, well-developed specific surface area, crystallinity, and chemical-thermal stability, make them a good application material, especially in the aspects of adsorption and gas separation. The organic compositions of their building blocks also render them with biocompatible properties; therefore, they also have potential in biomedical applications. Depending on the symmetry of the building blocks, COF materials form two-dimensional (2D COF) or three-dimensional (3D COF) crystal structures. 3D COF structures have a higher specific surface area, they are much lighter due to their low density, and they have a larger volume than 2D COF crystals, but, unlike the latter, 3D COF crystals are less frequently obtained and studied. Selecting and obtaining suitable building blocks to form a stable 3D COF crystal structure is challenging and therefore of interest to the chemical community. Triptycene, due to its 3D structure, is a versatile building block for the synthesis of 3D COFs. Polymeric materials containing triptycene fragments show good thermal stability parameters and have a very well-developed surface area. They often tend to be characterized by more than one type of porosity and exhibit impressive gas adsorption properties. The introduction of a triptycene backbone into the structure of 3D COFs is a relatively new procedure, the results of which only began to be published in 2020. Triptycene-based 3D COFs show interesting physicochemical properties, i.e., high physical stability and high specific surface area. In addition, they have variable porosities with different pore diameters, capable of adsorbing both gases and large biological molecules. These promising parameters, guaranteed by the addition of a triptycene backbone to the 3D structure of COFs, may create new opportunities for the application of such materials in many industrial and biomedical areas. This review aims to draw attention to the symmetry of the building blocks used for COF synthesis. In particular, we discussed triptycene as a building block for the synthesis of 3D COFs and we present the latest results in this area. Full article
Show Figures

Figure 1

19 pages, 2024 KB  
Article
A Molecular Dynamics Study of Single-Gas and Mixed-Gas N2 and CH4 Transport in Triptycene-Based Polyimide Membranes
by Ioannis Tanis, David Brown, Sylvie Neyertz, Milind Vaidya, Jean-Pierre Ballaguet, Sebastien Duval and Ahmad Bahamdan
Polymers 2023, 15(18), 3811; https://doi.org/10.3390/polym15183811 - 18 Sep 2023
Viewed by 2109
Abstract
Fluorinated polyimides incorporated with triptycene units have gained growing attention over the last decade since they present potentially interesting selectivities and a higher free volume with respect to their triptycene-free counterparts. This work examines the transport of single-gas and mixed-gas N2 and [...] Read more.
Fluorinated polyimides incorporated with triptycene units have gained growing attention over the last decade since they present potentially interesting selectivities and a higher free volume with respect to their triptycene-free counterparts. This work examines the transport of single-gas and mixed-gas N2 and CH4 in the triptycene-based 6FDA-BAPT homopolyimide and in a block 15,000 g mol−1/15,000 g mol−1 6FDA-mPDA/BAPT copolyimide by using molecular dynamics (MD) simulations. The void-space analyses reveal that, while the free volume consists of small-to-medium holes in the 6FDA-BAPT homopolyimide, there are more medium-to-large holes in the 6FDA-mPDA/BAPT copolyimide. The single-gas sorption isotherms for N2 and CH4 over the 0–70 bar range at 338.5 K show that both gases are more soluble in the block copolyimide, with a higher affinity for methane. CH4 favours sites with the most favourable energetic interactions, while N2 probes more sites in the matrices. The volume swellings remain limited since neither N2 nor CH4 plasticise penetrants. The transport of a binary-gas 2:1 CH4/N2 mixture is also examined in both polyimides under operating conditions similar to those used in current natural gas processing, i.e., at 65.5 bar and 338.5 K. In the mixed-gas simulations, the solubility selectivities in favour of CH4 are enhanced similarly in both matrices. Although diffusion is higher in 6FDA-BAPT/6FDA-mPDA, the diffusion selectivities are also close. Both triptycene-based polyimides under study favour, to a similar extent, the transport of methane over that of nitrogen under the conditions studied. Full article
Show Figures

Figure 1

14 pages, 4443 KB  
Article
Homoconjugation Mediated Spin-Spin Coupling in Triptycene Nitronyl Nitroxide Diradicals
by Chengfang Shi, Laiwei Gao, Martin Baumgarten, Dongdong Wei, Zhipeng Xu, Wenping Wang and Di Wang
Magnetochemistry 2023, 9(7), 178; https://doi.org/10.3390/magnetochemistry9070178 - 9 Jul 2023
Cited by 6 | Viewed by 2571
Abstract
In contrast to diradical linked by π-conjugation, there have been only a limited number of studies reported for those linked by homoconjugation systems. Bis(nitronyl nitroxide) diradicals and monoradical connected by a core non-rigid triptycene unit were synthesized. EPR spectroscopy and SQUID were employed [...] Read more.
In contrast to diradical linked by π-conjugation, there have been only a limited number of studies reported for those linked by homoconjugation systems. Bis(nitronyl nitroxide) diradicals and monoradical connected by a core non-rigid triptycene unit were synthesized. EPR spectroscopy and SQUID were employed to investigate the magnetic exchange interactions. The results demonstrate that the values of ΔEST are 0.19 kcal/mol (J = 34.4 cm−1) for 2,6-TP-NN and −0.21 kcal/mol (J = −36.9 cm−1) for 2,7-TP-NN, indicating ferromagnetic interaction and antiferromagnetic interaction, respectively. The spin polarization rule is not a precise predictor of the behavior of triptycene diradicals, and therefore, we improve the model. The experimental findings indicate that homoconjugation can function directly as a coupling pathway between the two spin centers, which is in qualitative agreement with the DFT theoretical calculations and the Borden rule. This research has found a special means of achieving spin coupling in non-rigid aromatics by means of homoconjugation. Full article
Show Figures

Figure 1

11 pages, 2123 KB  
Article
A Cavity-Tailored Metal-Organic Tetrahedral Nanocage and Gas Adsorption Property
by Xin Jin, Hui Jiang, Yi Chen, Xin Han, Ken Sun, Linlin Shi, Xin-Qi Hao and Mao-Ping Song
Nanomaterials 2022, 12(24), 4402; https://doi.org/10.3390/nano12244402 - 9 Dec 2022
Cited by 2 | Viewed by 2493
Abstract
Porous organometallic nanomaterials are a new class of materials based on a three-dimensional structure. They have excellent applications in different fields, but their applications in gas storage and separation have not been fully developed. CO2 adsorption storage and hydrocarbon separation has been [...] Read more.
Porous organometallic nanomaterials are a new class of materials based on a three-dimensional structure. They have excellent applications in different fields, but their applications in gas storage and separation have not been fully developed. CO2 adsorption storage and hydrocarbon separation has been a challenging industrial problem. Several typical molecular adsorbents have been used to study the separation, but the problems of long-term stability, high selectivity and synthetic complexity of these adsorbents remain to be solved. Here, we have designed and synthesized tetrahedral metal supramolecular nanocage with custom cavities based on the unique rigid structure of triptycene derivatives. Using the unique discrete porous structure of tetrahedral metal nanocages, the gas adsorption and separation performance of the metal supramolecular nanocage was investigated. By analyzing the adsorption and desorption isotherms and the multi-component competitive adsorption curves, we noticed that the tetrahedral supramolecular nanocages had good CO2 storage capacity and good separation capacity for C2H2/CO2 and C2H2/N2. All these indicate that porous organic metal nanomaterials are expected to be a new energy saving separation material. Full article
Show Figures

Graphical abstract

27 pages, 14624 KB  
Review
The Effect of Benzannulation on the Structures, Reactivity and Molecular Dynamics of Indenes, Pentalenes, Azulenes and Related Molecules
by Michael J. McGlinchey
Molecules 2022, 27(12), 3882; https://doi.org/10.3390/molecules27123882 - 17 Jun 2022
Cited by 3 | Viewed by 2306
Abstract
The stabilising effect of benzannulation on isoindenes formed in the course of sigmatropic shifts of (C5H5)Fe(CO)2 or of organo-silyl groups, and on exocyclic allyl intermediates in the course of haptotropic shifts of organometallic fragments over polycyclic skeletons (fluorene, [...] Read more.
The stabilising effect of benzannulation on isoindenes formed in the course of sigmatropic shifts of (C5H5)Fe(CO)2 or of organo-silyl groups, and on exocyclic allyl intermediates in the course of haptotropic shifts of organometallic fragments over polycyclic skeletons (fluorene, cyclopenta[def]phenanthrene, syn and anti dibenzpentalenes) is exemplified. This approach led to the development of the first organometallic molecular brake. Benzyne cycloadditions to anthracenes to form triptycenes also led to unexpected or multiple adducts that were characterised by X-ray crystallography. Synthetic routes to the previously elusive benz[cd]azulene system are presented. Finally, the complete mechanism of the stepwise assembly of dispiro- and diindenyltetracenes from fluorenylallenes is presented, whereby every intermediate has been unambiguously structurally characterised. Full article
(This article belongs to the Special Issue Benzannulations in Organic Synthesis)
Show Figures

Figure 1

14 pages, 3721 KB  
Article
Gas Permeability, Fractional Free Volume and Molecular Kinetic Diameters: The Effect of Thermal Rearrangement on ortho-hydroxy Polyamide Membranes Loaded with a Porous Polymer Network
by Cenit Soto, Edwin S. Torres-Cuevas, Laura Palacio, Pedro Prádanos, Benny D. Freeman, Ángel E. Lozano, Antonio Hernández and Bibiana Comesaña-Gándara
Membranes 2022, 12(2), 200; https://doi.org/10.3390/membranes12020200 - 9 Feb 2022
Cited by 9 | Viewed by 3874
Abstract
Mixed-matrix membranes (MMMs) consisting of an ortho-hydroxy polyamide (HPA) matrix, and variable loads of a porous polymer network (PPN) were thermally treated to induce the transformation of HPA to polybenzoxazole (β-TR-PBO). Two different HPAs were synthesized to be used as a matrix, [...] Read more.
Mixed-matrix membranes (MMMs) consisting of an ortho-hydroxy polyamide (HPA) matrix, and variable loads of a porous polymer network (PPN) were thermally treated to induce the transformation of HPA to polybenzoxazole (β-TR-PBO). Two different HPAs were synthesized to be used as a matrix, 6FCl-APAF and tBTpCl-APAF, while the PPN used as a filler was prepared by reacting triptycene and trifluoroacetophenone. The permeability of He, H2, N2, O2, CH4 and CO2 gases through these MMMs are analyzed as a function of the fraction of free volume (FFV) of the membrane and the kinetic diameter of the gas, allowing for the evaluation of the free volume. Thermal rearrangement entails an increase in the FFV. Both before and after thermal rearrangement, the free volume increases with the PPN content very similarly for both polymeric matrices. It is shown that there is a portion of free volume that is inaccessible to permeation (occluded volume), probably due to it being trapped within the filler. In fact, permeability and selectivity change below what could be expected according to densities, when the fraction of occluded volume increases. A higher filler load increases the percentage of inaccessible or trapped free volume, probably due to the increasing agglomeration of the filler. On the other hand, the phenomenon is slightly affected by thermal rearrangement. The fraction of trapped free volume seems to be lower for membranes in which the tBTpCl-APAF is used as a matrix than for those with a 6FCl-APAF matrix, possibly because tBTpCl-APAF could approach the PPN better. The application of an effective medium theory for permeability allowed us to extrapolate for a 100% filler, giving the same value for both thermally rearranged and non-rearranged MMMs. The pure filler could also be extrapolated by assuming the same tendency as in the Robeson’s plots for MMMs with low filler content. Full article
(This article belongs to the Special Issue Polymer Membranes for Gas Separation, Volume II)
Show Figures

Figure 1

25 pages, 6151 KB  
Review
Triptycene Derivatives: From Their Synthesis to Their Unique Properties
by Mateusz Woźny, Adam Mames and Tomasz Ratajczyk
Molecules 2022, 27(1), 250; https://doi.org/10.3390/molecules27010250 - 31 Dec 2021
Cited by 23 | Viewed by 8602
Abstract
Since the first preparation of triptycene, great progress has been made with respect to its synthesis and the understanding of its properties. Interest in triptycene-based systems is intense; in recent years, advances in the synthetic methodology and properties of new triptycenes have been [...] Read more.
Since the first preparation of triptycene, great progress has been made with respect to its synthesis and the understanding of its properties. Interest in triptycene-based systems is intense; in recent years, advances in the synthetic methodology and properties of new triptycenes have been reported by researchers from various fields of science. Here, an account of these new developments is given and placed in reference to earlier pivotal works that underpin the field. First, we discuss new approaches to the synthesis of new triptycenes. Progress in the regioselective synthesis of sterically demanding systems is discussed. The application of triptycenes in catalysis is also presented. Next, progress in the understanding of the relations between triptycene structures and their properties is discussed. The unique properties of triptycenes in the liquid and solid states are elaborated. Unique interactions, which involve triptycene molecular scaffolds, are presented. Molecular interactions within a triptycene unit, as well as between triptycenes or triptycenes and other molecules, are also evaluated. In particular, the summary of the synthesis and useful features will be helpful to researchers who are using triptycenes as building blocks in the chemical and materials sciences. Full article
Show Figures

Figure 1

18 pages, 7662 KB  
Article
Nanoformulation Composed of Ellagic Acid and Functionalized Zinc Oxide Nanoparticles Inactivates DNA and RNA Viruses
by Khaled AbouAitah, Abdou K. Allayh, Jacek Wojnarowicz, Yasser M. Shaker, Anna Swiderska-Sroda and Witold Lojkowski
Pharmaceutics 2021, 13(12), 2174; https://doi.org/10.3390/pharmaceutics13122174 - 16 Dec 2021
Cited by 49 | Viewed by 4447
Abstract
The COVID-19 pandemic has strongly impacted daily life across the globe and caused millions of infections and deaths. No drug therapy has yet been approved for the clinic. In the current study, we provide a novel nanoformulation against DNA and RNA viruses that [...] Read more.
The COVID-19 pandemic has strongly impacted daily life across the globe and caused millions of infections and deaths. No drug therapy has yet been approved for the clinic. In the current study, we provide a novel nanoformulation against DNA and RNA viruses that also has a potential for implementation against COVID-19. The inorganic–organic hybrid nanoformulation is composed of zinc oxide nanoparticles (ZnO NPs) functionalized with triptycene organic molecules (TRP) via EDC/NHS coupling chemistry and impregnated with a natural agent, ellagic acid (ELG), via non-covalent interactions. The physicochemical properties of prepared materials were identified with several techniques. The hybrid nanoformulation contained 9.5 wt.% TRP and was loaded with up to 33.3 wt.% ELG. ELG alone exhibited higher cytotoxicity than both the ZnO NPs and nanoformulation against host cells. The nanoformulation efficiently inhibited viruses, compared to ZnO NPs or ELG alone. For H1N1 and HCoV-229E (RNA viruses), the nanoformulation had a therapeutic index of 77.3 and 75.7, respectively. For HSV-2 and Ad-7 (DNA viruses), the nanoformulation had a therapeutic index of 57.5 and 51.7, respectively. In addition, the nanoformulation showed direct inactivation of HCoV-229E via a virucidal mechanism. The inhibition by this mechanism was > 60%. Thus, the nanoformulation is a potentially safe and low-cost hybrid agent that can be explored as a new alternative therapeutic strategy for COVID-19. Full article
Show Figures

Figure 1

17 pages, 4704 KB  
Article
Hydrogen Recovery by Mixed Matrix Membranes Made from 6FCl-APAF HPA with Different Contents of a Porous Polymer Network and Their Thermal Rearrangement
by Cenit Soto, Edwin S. Torres-Cuevas, Alfonso González-Ortega, Laura Palacio, Pedro Prádanos, Benny D. Freeman, Ángel E. Lozano and Antonio Hernandez
Polymers 2021, 13(24), 4343; https://doi.org/10.3390/polym13244343 - 11 Dec 2021
Cited by 8 | Viewed by 3484
Abstract
Mixed matrix membranes (MMMs) consisting of a blend of a hydroxypolyamide (HPA) matrix and variable loads of a porous polymer network (PPN) were thermally treated to induce the transformation of HPA to polybenzoxazole (β-TR-PBO). Here, the HPA matrix was a hydroxypolyamide having two [...] Read more.
Mixed matrix membranes (MMMs) consisting of a blend of a hydroxypolyamide (HPA) matrix and variable loads of a porous polymer network (PPN) were thermally treated to induce the transformation of HPA to polybenzoxazole (β-TR-PBO). Here, the HPA matrix was a hydroxypolyamide having two hexafluoropropyilidene moieties, 6FCl-APAF, while the PPN was prepared by reacting triptycene (TRP) and trifluoroacetophenone (TFAP) in a superacid solution. The most probable size of the PPN particles was 75 nm with quite large distributions. The resulting membranes were analyzed by SEM and AFM. Up to 30% PPN loads, both SEM and AFM images confirmed quite planar surfaces, at low scale, with limited roughness. Membranes with high hydrogen permeability and good selectivity for the gas pairs H2/CH4 and H2/N2 were obtained. For H2/CO2, selectivity almost vanished after thermal rearrangement. In all cases, their hydrogen permeability increased with increasing loads of PPN until around 30% PPN with ulterior fairly abrupt decreasing of permeability for all gases studied. Thermal rearrangement of the MMMs resulted in higher permeabilities but lower selectivities. For all the membranes and gas pairs studied, the balance of permeability vs. selectivity surpassed the 1991 Robeson’s upper bound, and approached or even exceeded the 2008 line, for MMMs having 30% PPN loads. In all cases, the HPA-MMMs before thermal rearrangement provided good selectivity versus permeability compromise, similar to their thermally rearranged counterparts but in the zone of high selectivity. For H2/CH4, H2/N2, these nonthermally rearranged MMMs approach the 2008 Robeson’s upper bound while H2/CO2 gives selective transport favoring H2 on the 1991 Robeson’s bound. Thus, attending to the energy cost of thermal rearrangement, it could be avoided in some cases especially when high selectivity is the target rather than high permeability. Full article
(This article belongs to the Special Issue Advanced Polymer Membranes)
Show Figures

Graphical abstract

18 pages, 3174 KB  
Article
Gas Separation by Mixed Matrix Membranes with Porous Organic Polymer Inclusions within o-Hydroxypolyamides Containing m-Terphenyl Moieties
by Cenit Soto, Edwin S. Torres-Cuevas, Alfonso González-Ortega, Laura Palacio, Ángel E. Lozano, Benny D. Freeman, Pedro Prádanos and Antonio Hernández
Polymers 2021, 13(6), 931; https://doi.org/10.3390/polym13060931 - 18 Mar 2021
Cited by 15 | Viewed by 4028
Abstract
A hydroxypolyamide (HPA) manufactured from 2,2-bis(3-amino-4-hydroxy phenyl)-hexafluoropropane (APAF) diamine and 5′-terbutyl-m-terphenyl-4,4′′-dicarboxylic acid chloride (tBTpCl), and a copolyimide produced by stochiometric copolymerization of APAF and 4,4′-(hexafluoroisopropylidene) diamine (6FpDA), using the same diacid chloride, were obtained and used as polymeric matrixes in mixed [...] Read more.
A hydroxypolyamide (HPA) manufactured from 2,2-bis(3-amino-4-hydroxy phenyl)-hexafluoropropane (APAF) diamine and 5′-terbutyl-m-terphenyl-4,4′′-dicarboxylic acid chloride (tBTpCl), and a copolyimide produced by stochiometric copolymerization of APAF and 4,4′-(hexafluoroisopropylidene) diamine (6FpDA), using the same diacid chloride, were obtained and used as polymeric matrixes in mixed matrix membranes (MMMs) loaded with 20% (w/w) of two porous polymer networks (triptycene-isatin, PPN-1, and triptycene-trifluoroacetophenone, PPN-2). These MMMs, and also the thermally rearranged membranes (TR-MMMs) that underwent a thermal treatment process to convert the o-hydroxypolyamide moieties to polybenzoxazole ones, were characterized, and their gas separation properties evaluated for H2, N2, O2, CH4, and CO2. Both TR process and the addition of PPN increased permeability with minor decreases in selectivity for all gases tested. Excellent results were obtained, in terms of the permeability versus selectivity compromise, for H2/CH4 and H2/N2 separations with membranes approaching the 2008 Robeson’s trade-off line. The best gas separation properties were obtained when PPN-2 was used. Finally, gas permeation was characterized in terms of chain intersegmental distance and fraction of free volume of the membrane along with the kinetic diameters of the permeated gases. The intersegmental distance increased after TR and/or the addition of PPN-2. Permeability followed an exponential dependence with free volume and a quadratic function of the kinetic diameter of the gas. Full article
(This article belongs to the Special Issue State-of-the-Art Polymer Science and Technology in Spain (2020,2021))
Show Figures

Graphical abstract

11 pages, 3429 KB  
Article
Synthesis of Chiral Helic[1]triptycene[3]arenes and Their Enantioselective Recognition towards Chiral Guests Containing Aminoindan Groups
by Jing Li, Ying Han and Chuan-Feng Chen
Molecules 2021, 26(3), 536; https://doi.org/10.3390/molecules26030536 - 20 Jan 2021
Cited by 11 | Viewed by 3376
Abstract
Starting from the enantiopure precursors, a pair of chiral macrocyclic arenes named helic[1]triptycene[3]arenes were conveniently synthesized. The circular dichroism (CD) spectra of the enantiomeric macrocyclic arenes exhibited mirror images, and the X-ray single crystal structures confirmed their absolute conformations as well. Moreover, the [...] Read more.
Starting from the enantiopure precursors, a pair of chiral macrocyclic arenes named helic[1]triptycene[3]arenes were conveniently synthesized. The circular dichroism (CD) spectra of the enantiomeric macrocyclic arenes exhibited mirror images, and the X-ray single crystal structures confirmed their absolute conformations as well. Moreover, the macrocyclic arenes showed strong complexation with secondary ammonium and primary ammonium salts containing aminoindan groups. In particular, the chiral macrocyclic arenes exhibited enantioselective recognition ability towards the chiral secondary ammonium salts containing aminoindan groups with an enantioselective ratio up to 3.89. Full article
Show Figures

Figure 1

Back to TopTop