Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (683)

Search Parameters:
Keywords = trophoblasts

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2457 KB  
Article
BthTX-II, an Asp49 PLA2 from Bothrops jararacussu, Impairs Toxoplasma gondii Infection: In Vitro and Ex Vivo Approaches
by Vinícius Queiroz Oliveira, Emanuelle Lorrayne Ferreira, Lorena Pinheiro Morais, Leonardo Alves Garcia, Gabriel de Oliveira Sousa, Marcos Paulo Oliveira Almeida, Guilherme de Souza, Joed Pires de Lima Júnior, Natália Carine Lima dos Santos, Rafael Martins de Oliveira, Tássia Rafaela Costa, Andreimar Martins Soares, Luísa Carregosa Santos, Daiana Silva Lopes, Emidio Beraldo-Neto, Angelica Oliveira Gomes, Jovita Eugênia Gazzinelli Cruz Madeira, Bellisa Freitas Barbosa, Eloisa Amália Vieira Ferro, Samuel Cota Teixeira and Veridiana de Melo Rodrigues Ávilaadd Show full author list remove Hide full author list
Pharmaceuticals 2025, 18(9), 1260; https://doi.org/10.3390/ph18091260 (registering DOI) - 25 Aug 2025
Abstract
Background/Objectives: Toxoplasma gondii, an obligate intracellular parasite, poses a major global health concern owing to its potential for congenital transmission, particularly during pregnancy. Current pharmacological treatments, including spiramycin and pyrimethamine, exhibit limitations in both efficacy and safety, underscoring the need for [...] Read more.
Background/Objectives: Toxoplasma gondii, an obligate intracellular parasite, poses a major global health concern owing to its potential for congenital transmission, particularly during pregnancy. Current pharmacological treatments, including spiramycin and pyrimethamine, exhibit limitations in both efficacy and safety, underscoring the need for novel therapeutic strategies. In this study, we investigated the antiparasitic potential of BthTX-II, an Asp49 phospholipase A2 (PLA2) isolated from Bothrops jararacussu venom, in human trophoblast cells (BeWo) and third-trimester human placental explants infected with T. gondii. Methods: In vitro assays were performed using BeWo cells infected with T. gondii tachyzoites and treated with non-cytotoxic concentrations of BthTX-II (3.125, 1.56, and 0.78 µg/mL). An ex vivo model employing third-trimester human placental villous explants was used under similar conditions. Parasite proliferation, adhesion, and invasion were assessed alongside host immune response modulation. Results: Our findings demonstrate that BthTX-II reduces T. gondii proliferation in BeWo cells at all tested non-cytotoxic concentrations. The toxin also significantly impaired parasite adhesion and invasion while modulating host immune response by upregulating interleukin (IL)-6, IL-8, and macrophage migration inhibitory factor (MIF), and downregulating vascular endothelial growth factor—potentially disrupting parasite proliferation. In placental villous explants, BthTX-II (1.56 μg/mL) reduced T. gondii proliferation and modulated IL-8, MIF, and tumour necrosis factor-alpha levels without compromising tissue viability. Conclusions: These findings highlight BthTX-II as a potential candidate in toxoplasmosis treatment. Further investigation should focus on its dual role in limiting parasite development and modulating immune responses at the maternal–fetal interface. Full article
(This article belongs to the Special Issue Recent Research in Therapeutic Potentials of Venoms)
Show Figures

Figure 1

15 pages, 1676 KB  
Article
Mitigating Oxidative Stress and Anti-Angiogenic State in an In Vitro Model of Preeclampsia by HY-12, an Organofluorine Hydrazone Antioxidant
by Zsuzsanna K. Zsengellér, Maxim Mastyugin, Adrianna R. Fusco, Bernadett Vlocskó, Maximilian Costa, Coryn Ferguson, Diana Pintye, Réka Eszter Sziva, Saira Salahuddin, Brett C. Young, Marianna Török and Béla Török
Curr. Issues Mol. Biol. 2025, 47(9), 680; https://doi.org/10.3390/cimb47090680 - 24 Aug 2025
Abstract
Preeclampsia (PE) is a hypertensive disorder impacting 5–7% of pregnancies globally. With no causative treatment available, diagnosed patients have limited therapeutic options, putting them at risk for pregnancy complications. The induction of oxidative stress by ROS—one of the major contributors in PE pathogenesis—causes [...] Read more.
Preeclampsia (PE) is a hypertensive disorder impacting 5–7% of pregnancies globally. With no causative treatment available, diagnosed patients have limited therapeutic options, putting them at risk for pregnancy complications. The induction of oxidative stress by ROS—one of the major contributors in PE pathogenesis—causes downstream signaling and production of anti-angiogenic factors, such as sFLT1 and sEng. The anti-angiogenic factors may cause endothelial and trophoblast dysfunction, contributing to the development of hypertension, proteinuria, and in severe cases, eclampsia. To target placental oxidative stress, we developed and evaluated an organofluorine hydrazone antioxidant, HY-12, in vitro. Human trophoblast (HTR8/SVneo) cells were incubated with hydrogen peroxide to induce oxidative stress and act as a model of PE. The goal of the study was to assess the efficacy of HY-12 and its ability to reduce cell injury, mitochondrial stress, and anti-angiogenic response. In our human trophoblast-based assays, pre-treatment with HY-12 reduced mitochondrial-derived ROS production in cells exposed to hydrogen peroxide, proving its ability to alleviate the oxidative stress associated with the pathogenesis of PE. HY-12 reduced HIF1A expression and sFLT1 protein expression in H2O2-exposed HTR8 cells. Furthermore, HY-12 improved the activity of the mitochondrial electron chain enzyme cytochrome C oxidase (COX) in the hydrogen-peroxide-treated HTR8/SVneo cells, which is a promising attribute of the compound. In reducing placental trophoblast oxidative stress, HY-12 shows promise as a potential treatment of preeclampsia. In vivo studies are warranted to further determine the efficacy of this compound. Full article
Show Figures

Graphical abstract

27 pages, 5513 KB  
Article
Brucella-Induced Impairment of Decidualization and Its Impact on Trophoblast Function and Inflammatory Profile
by Lucía Zavattieri, Rosario Macchi, Andrea Mercedes Canellada, Matías Arturo Pibuel, Daniela Poodts, Mariana Cristina Ferrero and Pablo Cesar Baldi
Int. J. Mol. Sci. 2025, 26(17), 8189; https://doi.org/10.3390/ijms26178189 - 23 Aug 2025
Viewed by 62
Abstract
Brucella infection is associated with an increased risk of adverse obstetric outcomes in humans and animals. Decidualization, a process involving structural and functional changes in endometrial stromal cells, is essential for proper trophoblast implantation and placental development. Trophoblasts’ migration and their ability to [...] Read more.
Brucella infection is associated with an increased risk of adverse obstetric outcomes in humans and animals. Decidualization, a process involving structural and functional changes in endometrial stromal cells, is essential for proper trophoblast implantation and placental development. Trophoblasts’ migration and their ability to invade the decidua and to undergo tubulogenesis, critical for proper implantation and placental development, are normally promoted by decidual cells. We evaluated whether Brucella infection of human endometrial stromal cells (T-HESC cell line) affects their ability to decidualize and to promote trophoblast functions. Infection of T-HESC cells with either B. abortus, B. suis, or B. melitensis resulted in deficient decidualization (as revealed by reduced prolactin levels) and an increased production of proinflammatory chemokines (C-X-C motif chemokine ligand 8 -CXCL8- and C-C motif chemokine ligand 2 -CCL2-) as compared to uninfected cells subjected to decidualization stimuli. In addition, conditioned media (CM) from infected decidualized T-HESC induced an inflammatory response (CXCL8, CCL2 and interleukin-6 -IL-6) in human trophoblasts (Swan-71 cell line) but reduced their ability to produce progesterone. Trophoblasts preincubated with this CM also had reduced migration, invasion, and tubulogenesis capacities, and this impairment was mediated, at least in part, by CXCL8 and CCL2. Moreover, infection of decidual stromal cells impaired the adhesion and spreading of blastocyst-like spheroids formed by Swan-71 cells. Brucella infection also affected the chemotactic capacity of decidual stromal cells for trophoblasts. Overall, these results suggest that Brucella infection of endometrial stromal cells impairs key processes required for successful implantation and placental development. Full article
Show Figures

Graphical abstract

25 pages, 2958 KB  
Article
Brazilian Red Propolis and Its Active Constituent 7-O-methylvestitol Impair Early and Late Stages of Toxoplasma gondii Infection in Human Placental Models
by Samuel Cota Teixeira, Guilherme de Souza, Natalia Carine Lima dos Santos, Rafael Martins de Oliveira, Nagela Bernadelli Sousa Silva, Joed Pires de Lima Junior, Alessandra Monteiro Rosini, Luana Carvalho Luz, Aryani Felixa Fajardo Martínez, Marcos Paulo Oliveira Almeida, Guilherme Vieira Faria, Rosiane Nascimento Alves, Angelica Oliveira Gomes, Maria Anita Lemos Vasconcelos Ambrosio, Rodrigo Cassio Sola Veneziani, Jairo Kenupp Bastos, José Roberto Mineo, Carlos Henrique Gomes Martins, Eloisa Amália Vieira Ferro and Bellisa Freitas Barbosa
Microorganisms 2025, 13(8), 1937; https://doi.org/10.3390/microorganisms13081937 - 20 Aug 2025
Viewed by 247
Abstract
Toxoplasma gondii is a globally distributed protozoan parasite and a major cause of congenital infections, particularly in South America. Current therapies for congenital toxoplasmosis are limited by toxicity, long treatment regimens, and suboptimal efficacy, highlighting the urgent need for safer and more effective [...] Read more.
Toxoplasma gondii is a globally distributed protozoan parasite and a major cause of congenital infections, particularly in South America. Current therapies for congenital toxoplasmosis are limited by toxicity, long treatment regimens, and suboptimal efficacy, highlighting the urgent need for safer and more effective alternatives. In this study, we evaluated the antiparasitic effects of crude ethanolic extract of Brazilian Red Propolis (BRP) and its isolated compounds, focusing on 7-O-methylvestitol, in human trophoblast (BeWo) cells and third-trimester placental explants. Both BRP and 7-O-methylvestitol significantly reduced T. gondii adhesion, invasion, and intracellular replication, without compromising host cell viability. Ultrastructural analyses revealed irreversible parasite damage, and cytokine profiling demonstrated immunomodulatory effects, with enhanced production of interleukin (IL)-6, IL-8, and macrophage migration inhibitory factor (MIF) in BeWo cells and downregulation of IL-6, MIF, and tumor Necrosis Factor (TNF) in infected placental villi. Notably, 7-O-methylvestitol reproduced and, in some assays, surpassed the antiparasitic activity of BRP, suggesting it as a key bioactive constituent responsible for the therapeutic potential of the extract. These findings support the identification of 7-O-methylvestitol as a promising lead compound for structure-based drug design and repositioning strategies, advancing the development of novel, safe, and targeted therapies against congenital toxoplasmosis. Full article
(This article belongs to the Special Issue Advances in Toxoplasma gondii and Toxoplasmosis)
Show Figures

Figure 1

13 pages, 544 KB  
Review
Ultrasound Assessment of Retained Products of Conception (RPOC): Insights from the Current Literature
by Giosuè Giordano Incognito, Carla Ettore, Orazio De Tommasi, Roberto Tozzi and Giuseppe Ettore
J. Clin. Med. 2025, 14(16), 5864; https://doi.org/10.3390/jcm14165864 - 19 Aug 2025
Viewed by 312
Abstract
Retained products of conception (RPOC) represent a significant cause of morbidity in the post-abortive and postpartum periods, potentially leading to abnormal uterine bleeding, pelvic pain, infections, and intrauterine adhesions. Accurate diagnosis is crucial to avoid unnecessary surgical interventions and to preserve future fertility. [...] Read more.
Retained products of conception (RPOC) represent a significant cause of morbidity in the post-abortive and postpartum periods, potentially leading to abnormal uterine bleeding, pelvic pain, infections, and intrauterine adhesions. Accurate diagnosis is crucial to avoid unnecessary surgical interventions and to preserve future fertility. Transvaginal ultrasound constitutes the primary imaging modality for identifying RPOC, but the lack of standardized diagnostic criteria complicates clinical decision-making. This narrative review explores the current literature on sonographic findings associated with RPOC, focusing on the diagnostic value of endometrial thickness (ET), the presence of intrauterine echogenic masses, and the use of Color Doppler imaging. Although an ET ≥15 mm is frequently used to suspect RPOC, the variability in cut-off thresholds and limited specificity reduce its diagnostic reliability. The detection of an echogenic intrauterine mass appears to be the most sensitive and specific sonographic feature. Color Doppler assessment, particularly the presence of enhanced myometrial vascularity (EMV) and classification systems like the Gutenberg score, offers further insight by stratifying hemorrhagic risk and guiding therapeutic choices. However, vascular parameters such as peak systolic velocity (PSV) and resistive index (RI) demonstrate a substantial overlap between benign and pathological conditions, limiting their stand-alone utility. The review also addresses the differential diagnosis of RPOC, including blood clots, arteriovenous malformations, placental polyps, gestational trophoblastic disease, and endometrial osseous metaplasia. The role of three-dimensional ultrasound remains limited in clinical practice, offering no significant advantage over two-dimensional imaging. Finally, the timing of follow-up ultrasound after medical treatment with misoprostol is critical: delayed assessment reduces overtreatment by allowing time for spontaneous resolution. In conclusion, despite advances in ultrasound technology, the diagnosis of RPOC remains challenging due to heterogeneity in imaging findings and inter-observer variability. A multimodal approach integrating grayscale and Doppler ultrasound with clinical evaluation is essential for optimal management. Full article
(This article belongs to the Section Obstetrics & Gynecology)
Show Figures

Figure 1

21 pages, 2906 KB  
Review
Diagnosis and Surgical Treatment of Hydatidiform Mole
by Antônio Braga, Marcela Chagas, Manisha Asrani, Juliana Pereira Soares, Sue Yazaki Sun, Edward Araujo Júnior, Rosiane Mattar, Joffre Amim Junior, Jorge Rezende-Filho, Neil S. Horowitz and Ross S. Berkowitz
Diagnostics 2025, 15(16), 2068; https://doi.org/10.3390/diagnostics15162068 - 18 Aug 2025
Viewed by 351
Abstract
Hydatidiform mole is a trophoblastic disorder resulting from abnormal fertilization. Diagnosis is established through a combination of clinical findings, elevated serum human chorionic gonadotropin (hCG) levels, and characteristic features on transvaginal ultrasound. Timely and accurate diagnosis is essential for initiating prompt treatment and [...] Read more.
Hydatidiform mole is a trophoblastic disorder resulting from abnormal fertilization. Diagnosis is established through a combination of clinical findings, elevated serum human chorionic gonadotropin (hCG) levels, and characteristic features on transvaginal ultrasound. Timely and accurate diagnosis is essential for initiating prompt treatment and preventing medical complications. Uterine evacuation, preferably via vacuum aspiration, is the treatment of choice due to its high efficacy and safety profile. Adjunctive techniques, such as hysteroscopy and intraoperative ultrasonography, enhance the safety and effectiveness of uterine evacuation and should be available to patients, especially at specialized referral centers equipped to manage this diagnosis. In selected cases, particularly in women with fulfilled reproductive goals or those at a high risk of developing post-molar gestational trophoblastic neoplasia (GTN), total abdominal hysterectomy is appropriate. Postoperative follow-up with serial measurements of hCG is essential for monitoring remission and for the early detection of post-molar GTN, which develops in approximately 20% of cases of complete molar pregnancies and 1–4% of partial molar pregnancies. This article provides a comprehensive review of the diagnosis of hydatidiform mole and the surgical techniques employed in the treatment of this condition, emphasizing individualized care and the use of appropriate surgical strategies to treat complications associated with this trophoblastic disease. Full article
Show Figures

Figure 1

15 pages, 899 KB  
Review
Liquid Biopsy and Single-Cell Technologies in Maternal–Fetal Medicine: A Scoping Review of Non-Invasive Molecular Approaches
by Irma Eloisa Monroy-Muñoz, Johnatan Torres-Torres, Lourdes Rojas-Zepeda, Jose Rafael Villafan-Bernal, Salvador Espino-y-Sosa, Deyanira Baca, Zaira Alexi Camacho-Martinez, Javier Perez-Duran, Juan Mario Solis-Paredes, Guadalupe Estrada-Gutierrez, Elsa Romelia Moreno-Verduzco and Raigam Martinez-Portilla
Diagnostics 2025, 15(16), 2056; https://doi.org/10.3390/diagnostics15162056 - 16 Aug 2025
Viewed by 304
Abstract
Background: Perinatal research faces significant challenges in understanding placental biology and maternal–fetal interactions due to limited access to human tissues and the lack of reliable models. Emerging technologies, such as liquid biopsy and single-cell analysis, offer novel, non-invasive approaches to investigate these processes. [...] Read more.
Background: Perinatal research faces significant challenges in understanding placental biology and maternal–fetal interactions due to limited access to human tissues and the lack of reliable models. Emerging technologies, such as liquid biopsy and single-cell analysis, offer novel, non-invasive approaches to investigate these processes. This scoping review explores the current applications of these technologies in placental development and the diagnosis of pregnancy complications, identifying research gaps and providing recommendations for future studies. Methods: This review adhered to PRISMA-ScR guidelines. Studies were selected based on their focus on liquid biopsy or single-cell analysis in perinatal research, particularly related to placental development and pregnancy complications such as preeclampsia, preterm birth, and fetal growth restriction. A systematic search was conducted in PubMed, Scopus, and Web of Science for studies published in the last ten years. Data extraction and thematic synthesis were performed to identify diagnostic applications, monitoring strategies, and biomarker identification. Results: Twelve studies were included, highlighting the transformative potential of liquid biopsy and single-cell analysis in perinatal research. Liquid biopsy technologies, such as cfDNA and cfRNA analysis, provided non-invasive methods for real-time monitoring of placental function and early identification of complications. Extracellular vesicles (EVs) emerged as biomarkers for conditions like preeclampsia. Single-cell RNA sequencing (scRNA-seq) revealed cellular diversity and pathways critical to placental health, offering insights into processes such as vascular remodeling and trophoblast invasion. While promising, challenges such as high costs, technical complexity, and the need for standardization limit their clinical integration. Conclusion: Liquid biopsy and single-cell analysis are revolutionizing perinatal research, offering non-invasive tools to understand and manage complications like preeclampsia. Overcoming challenges in accessibility and standardization will be key to unlocking their potential for personalized care, enabling better outcomes for mothers and children worldwide. Full article
(This article belongs to the Special Issue Advancements in Maternal–Fetal Medicine: 2nd Edition)
Show Figures

Figure 1

13 pages, 431 KB  
Systematic Review
The Role of lncRNAs in Complicated Pregnancy: A Systematic Review
by Antonio Cerillo, Rossella Molitierno, Pasquale De Franciscis, Debora Damiana Nunziata, Mario Fordellone, Carlo Capristo, Maria Maddalena Marrapodi, Andrea Etrusco, Antonio Simone Laganà and Marco La Verde
Genes 2025, 16(8), 959; https://doi.org/10.3390/genes16080959 - 14 Aug 2025
Viewed by 331
Abstract
Background/Objectives: Long non-coding RNAs (lncRNAs) play a crucial role in trophoblast invasion, immune tolerance, and placental angiogenesis. To delineate their diagnostic and pathological significance, we critically evaluated the evidence for correlations between circulating or placental lncRNA profiles with pregnancy complications. Methods: Five databases [...] Read more.
Background/Objectives: Long non-coding RNAs (lncRNAs) play a crucial role in trophoblast invasion, immune tolerance, and placental angiogenesis. To delineate their diagnostic and pathological significance, we critically evaluated the evidence for correlations between circulating or placental lncRNA profiles with pregnancy complications. Methods: Five databases were searched from inception through September 2024. We included only the studies that assessed the expression of the lncRNA-complicated pregnancies versus a control group. Results: Three single-center case–control studies fulfilled the inclusion criteria. Eight serum lncRNAs that present <20 weeks of gestation were elevated in subsequent pregnancy-induced hypertension or preeclampsia. The three lncRNAs in intrahepatic cholestasis of pregnancy were consistently decreased with a negative correlation with bile acids. Gestational diabetes was characterized by the elevation of MALAT1. Conclusions: Different lncRNAs showed a potential for use as non-invasive markers as well as for risk stratification for pregnancy-induced hypertension or preeclampsia, metabolic, and hepatobiliary pregnancy complications. There is a need for large-scale, multi-ethnic, prospective cohorts to include lncRNA as screening or therapeutic targeting in obstetric practice. Full article
(This article belongs to the Section RNA)
Show Figures

Figure 1

10 pages, 1374 KB  
Case Report
A Partial Hydatidiform Mole in an Ovarian Ectopic Pregnancy: An Exceptional Occurrence
by Maria Paola Bonasoni, Roberta Zuntini, Khush Shah, Loredana De Marco, Eleonora Zanetti, Luca Pagliai, Immacolata Blasi, Emanuela Carossino, Alice Ferretti, Vincenzo Dario Mandato and Lorenzo Aguzzoli
Diagnostics 2025, 15(16), 2024; https://doi.org/10.3390/diagnostics15162024 - 13 Aug 2025
Viewed by 319
Abstract
Background and Clinical Significance: Ovarian ectopic pregnancy (OEP) is a rare occurrence, and molar degeneration is even more exceptional. Differential diagnosis between a partial and complete hydatidiform mole is paramount as the complete type carries a higher risk of post-molar gestational trophoblastic [...] Read more.
Background and Clinical Significance: Ovarian ectopic pregnancy (OEP) is a rare occurrence, and molar degeneration is even more exceptional. Differential diagnosis between a partial and complete hydatidiform mole is paramount as the complete type carries a higher risk of post-molar gestational trophoblastic neoplasia. Herein, we describe a case of a partial mole in an OEP (OPHM) with thorough investigations. Case Presentation: A 39-year-old woman presented at 6 weeks of amenorrhea with abdominal pain and vaginal bleeding. Ultrasound showed no intrauterine pregnancy, but an ovarian cyst suspicious for OEP. The patient underwent surgical removal of the cyst. Histological diagnosis was suspicious for OPHM with only one abnormal villous. Immunohistochemistry for p57kip2 and fluorescent in situ hybridization (FISH) were not conclusive. STR-based (Short Tandem Repeat) molecular technique demonstrated the chromosomal asset of 69,XXX, confirming the diagnosis of OPHM. The patient was fully monitored for 1 year with periodic measurements of beta-hCG levels. After that period, the patient was in good health and disease-free. Conclusions: Histologically, ancillary techniques might not be sufficient to confirm the diagnosis of a hydatidiform mole, especially if the tissue available is scarce. In this case, STR has been demonstrated an effective tool in defining the chromosomal asset, even in paraffin-embedded samples. Full article
(This article belongs to the Section Pathology and Molecular Diagnostics)
Show Figures

Figure 1

16 pages, 3286 KB  
Article
Effect of EVT-Derived Small Extracellular Vesicles on Normal and Impaired Human Implantation
by Marina Alexandrova, Mariela Ivanova, Ivaylo Vangelov, Iana Hristova and Tanya Dimova
Appl. Sci. 2025, 15(16), 8866; https://doi.org/10.3390/app15168866 - 11 Aug 2025
Viewed by 349
Abstract
Uncontrolled and excessive inflammation could negatively impact embryo implantation, potentially leading to implantation failure or miscarriage. Small extracellular vesicles (sEVs) secreted by extravillous trophoblasts (EVTs) play a significant role in mediating the homeostasis at the maternal–fetal interface. In the present work we assessed [...] Read more.
Uncontrolled and excessive inflammation could negatively impact embryo implantation, potentially leading to implantation failure or miscarriage. Small extracellular vesicles (sEVs) secreted by extravillous trophoblasts (EVTs) play a significant role in mediating the homeostasis at the maternal–fetal interface. In the present work we assessed the role of EVT-derived sEVs in the protection of the human blastocyst’s integrity and function in a microenvironment with excessive Th1-induced inflammation using the Sw71 blastocyst-like surrogate (Sw71 BLS) as a model of implanting a human embryo. Conditioned media from primary trophoblast-derived EVT cells were used as the source for sEVs’ isolation by precipitation. sEVs were characterized by TEM, IEM, and protein content. To simulate Th1-induced inflammation, we performed TCR stimulation and polyclonal activation of isolated T cells, which preferentially led to Th1 cytokine production. The use of the Sw71 spheroid model allowed us to monitor directly the damaging effect of high levels of Th1 cytokines on the ability of trophoblast cells to self-organize and migrate. The addition of EVT-sEVs unlocked the absolute migration capacity of the trophoblast cells in a healthy microenvironment. However, EVT-sEV treatment could not counteract the adverse effects of excessive Th1-mediated inflammation. This study provides a platform for further elucidation of the EVT-sEV dosage and potency for trophoblast functional recovery. Full article
(This article belongs to the Special Issue Cell Biology: Latest Advances and Prospects)
Show Figures

Figure 1

11 pages, 3451 KB  
Article
Paraffin Embedding and Histological Analyses of Sw71-Spheroids as Human Blastocyst-like Surrogates
by Marina Alexandrova, Mariela Ivanova, Martina Metodieva, Antonia Terzieva and Tanya Dimova
Organoids 2025, 4(3), 19; https://doi.org/10.3390/organoids4030019 - 11 Aug 2025
Viewed by 229
Abstract
Implantation studies are extremely important to solve reproductive problems since about 60% of abortions occur around this period. The 3D in vitro models emerge as closest to the in vivo structures and processes. Here, we constructed trophoblast Sw71-spheroids as implanting human blastocyst–like surrogates [...] Read more.
Implantation studies are extremely important to solve reproductive problems since about 60% of abortions occur around this period. The 3D in vitro models emerge as closest to the in vivo structures and processes. Here, we constructed trophoblast Sw71-spheroids as implanting human blastocyst–like surrogates (BLS). The model is well-characterized, standardized, validated tool to study extravillous trophoblast (EVT) invasion/migration during implantation. A limitation is that it is a short-living 3D-culture that must be generated de novo. This study aimed to create and embed Sw71-spheroids in paraffin for permanent histological preparations. The main challenges were the micro-size and the preservation of the intact structure. The standardly generated compact and stable Sw71-spheroids were intact, with blastocyst-like morphology. Histological analysis showed preserved cell morphology, shape, and intact periphery of the embedded Sw71-spheroids. These were usable for immunohistochemistry(IHC) and expressed common EVT markers: EpCAM, HLA-C and and HLA-G. Our protocol for spheroid paraffin embedding is suitable for simultaneous histological analyses of several Sw71-spheroids. It might be further optimized to embed migrating/invading Sw71-BLS as snapshots of trophoblast implantation steps in permanent histological preparations for in depth IHC studies. Full article
Show Figures

Figure 1

13 pages, 1782 KB  
Article
The Detrimental Impact of Bisphenol S (BPS) on Trophoblastic Cells and the Ishikawa Cell Lines: An In Vitro Model of Cytotoxic Effect and Molecular Interactions
by Eirini Drakaki, Despoina Mavrogianni, Anastasios Potiris, Stavroula Xydi-Chrysafi, Panagiotis Kotrotsos, Nikolaos Thomakos, Alexandros Rodolakis, Georgios Daskalakis and Ekaterini Domali
Biomedicines 2025, 13(8), 1938; https://doi.org/10.3390/biomedicines13081938 - 8 Aug 2025
Viewed by 325
Abstract
Background/Objectives: Bisphenols (BPs) and especially bisphenol S (BPS), an analog of bisphenol A (BPA), are widely used and induce oxidative stress, resulting in the inhibition of cell proliferation and induction of apoptosis which all are crucial for reproduction, the progression of pregnancy, [...] Read more.
Background/Objectives: Bisphenols (BPs) and especially bisphenol S (BPS), an analog of bisphenol A (BPA), are widely used and induce oxidative stress, resulting in the inhibition of cell proliferation and induction of apoptosis which all are crucial for reproduction, the progression of pregnancy, and fertility. The present study integrates trophoblastic cells as an in vitro model to provide evidence and investigate the molecular interactions regarding placenta-related pregnancy complications after cytotoxic exposure to BPS. Methods: Human endometrial epithelial adenocarcinoma Ishikawa cell lines and trophoblastic cells were cultured. Cells obtained from the cultures were divided into plates and incubated for 24 h with different concentrations of bisphenol S (BPS). Cell viability was measured using the Countess Automated Cell Counter and the viability of Ishikawa cells was assessed after 48 h and for trophoblasts after 24 h. The effect of siRNA on NANOG expression was evaluated using qRT-PCR. Quantification of DNMT and NANOG was performed by qPCR and the G6PD gene was used as an internal control. Results: Real-time PCR results showed that the expression of the DNMT1 gene varies depending on the concentration of BPS in trophoblastic cells. In Ishikawa cell lines, real-time PCR results showed that DNMT1 gene expression was higher due to cell increase, but the measured fold change did not differ significantly. Data analysis indicated a statistically significant difference between CpDNMT1 in trophoblasts with and without BPS, where higher values were observed in the case of BPS presence (p = 0.019). The largest difference was observed between CpDNMT1 trophoblasts without BPS and CpDNMT1 Ishikawa with BPS (p < 0.001). Silencing the NANOG gene resulted in a reduced expression of DNMT1, while the G6PD gene was still detected. Conclusions: The results of this study highlight the cytotoxic effects of BPS and consequently its effect on trophoblast viability. The results of NANOG-DNMT1 gene expression related to BPS exposure reinforces our understanding of EDC-induced placental dysfunction. Full article
(This article belongs to the Special Issue Advances in Reproductive Medicine and Health)
Show Figures

Figure 1

16 pages, 3848 KB  
Article
Reversing Preeclampsia Pathology: AXL Inhibition Restores Mitochondrial Function and ECM Balance
by Archarlie Chou, Benjamin Davidson, Paul R. Reynolds, Brett E. Pickett and Juan A. Arroyo
Cells 2025, 14(16), 1229; https://doi.org/10.3390/cells14161229 - 8 Aug 2025
Viewed by 293
Abstract
Preeclampsia (PE) is a leading cause of maternal and fetal morbidity that affects 2–8% of pregnancies worldwide, driven by placental dysfunction and systemic inflammation. Growth arrest-specific protein 6 (Gas6) and its receptor AXL play pivotal roles in PE pathogenesis, promoting trophoblast impairment and [...] Read more.
Preeclampsia (PE) is a leading cause of maternal and fetal morbidity that affects 2–8% of pregnancies worldwide, driven by placental dysfunction and systemic inflammation. Growth arrest-specific protein 6 (Gas6) and its receptor AXL play pivotal roles in PE pathogenesis, promoting trophoblast impairment and vascular dysregulation. This study investigated the transcriptomic reversal effects of AXL Receptor Tyrosine Kinase (AXL) inhibition in a Gas6-induced rat model of PE using RNA sequencing (RNA-seq). Pregnant rats were administered Gas6 to induce PE-like symptoms such as hypertension and proteinuria; a subset also received the AXL inhibitor R428. RNA-seq of placental tissues revealed 2331 differentially expressed genes (DEGs) in Gas6-AXLi versus Gas6 (1277 upregulated, 1054 downregulated). Protein–protein interaction networks and Gene Ontology enrichment highlighted upregulated mitochondrial functions, including electron transport chain components (e.g., NDUFC2, COX5A), suggesting enhanced energy metabolism. In the secondary analysis that compared Gas6 to Control, Gas6-upregulated extracellular matrix proteins (e.g., COL4A1, LAMC1) linked to fibrosis were reversed by AXL inhibition, indicating ameliorated placental remodeling. AXL inhibition activated compensatory pathways beyond Gas6 blockade, unveiling novel mechanisms for PE resolution. These findings position AXL inhibitors as promising therapeutics, offering insights into mitochondrial and fibrotic targets to mitigate this enigmatic disorder. Full article
Show Figures

Figure 1

17 pages, 13655 KB  
Review
Molar Pregnancy: Early Diagnosis, Clinical Management, and the Role of Referral Centers
by Antônio Braga, Lohayne Coutinho, Marcela Chagas, Juliana Pereira Soares, Gustavo Yano Callado, Raphael Alevato, Consuelo Lozoya, Sue Yazaki Sun, Edward Araujo Júnior and Jorge Rezende-Filho
Diagnostics 2025, 15(15), 1953; https://doi.org/10.3390/diagnostics15151953 - 4 Aug 2025
Viewed by 514
Abstract
Molar pregnancy (MP) is a gestational disorder resulting from abnormal fertilization, leading to atypical trophoblastic proliferation and the formation of a complete or partial hydatidiform mole. This condition represents the most common form of gestational trophoblastic disease (GTD) and carries a significant risk [...] Read more.
Molar pregnancy (MP) is a gestational disorder resulting from abnormal fertilization, leading to atypical trophoblastic proliferation and the formation of a complete or partial hydatidiform mole. This condition represents the most common form of gestational trophoblastic disease (GTD) and carries a significant risk of progression to gestational trophoblastic neoplasia (GTN). Although rare in high-income countries, MP remains up to ten times more prevalent in low-income and developing countries, contributing to preventable maternal morbidity and mortality. This narrative review provides an updated, practical overview of the clinical presentation, diagnosis, treatment, and follow-up of MP. A key focus is the challenge of early diagnosis, particularly given the increasing frequency of first-trimester detection, where classical histopathological criteria may be subtle, leading to diagnostic errors. The review innovates by integrating advanced diagnostic methods—combining histopathology, immunohistochemistry using p57Kip2, Ki-67, and p53 markers, along with cytogenetic analysis—to improve diagnostic accuracy in early gestation. The central role of referral centers is also emphasized, not only in facilitating timely treatment and access to chemotherapy, but also in implementing standardized post-molar follow-up protocols that reduce progression to GTN and maternal mortality. By focusing on both advanced diagnostic strategies and the organization of care through referral centers, this review offers a comprehensive, practice-oriented perspective to optimize patient outcomes in GTD and address persistent care gaps in high-burden regions. Full article
(This article belongs to the Special Issue New Insights into the Diagnosis of Gynecological Diseases)
Show Figures

Figure 1

14 pages, 5672 KB  
Article
Multiplex Immunofluorescence Reveals Therapeutic Targets EGFR, EpCAM, Tissue Factor, and TROP2 in Triple-Negative Breast Cancer
by T. M. Mohiuddin, Wenjie Sheng, Chaoyu Zhang, Marwah Al-Rawe, Svetlana Tchaikovski, Felix Zeppernick, Ivo Meinhold-Heerlein and Ahmad Fawzi Hussain
Int. J. Mol. Sci. 2025, 26(15), 7430; https://doi.org/10.3390/ijms26157430 - 1 Aug 2025
Viewed by 463
Abstract
Triple-negative breast cancer (TNBC) is a clinically and molecularly heterogeneous subtype defined by the absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expression. In this study, tumor specimens from 104 TNBC patients were analyzed to [...] Read more.
Triple-negative breast cancer (TNBC) is a clinically and molecularly heterogeneous subtype defined by the absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expression. In this study, tumor specimens from 104 TNBC patients were analyzed to characterize molecular and clinicopathological features and to assess the expression and therapeutic potential of four key surface markers: epidermal growth factor receptor (EGFR), epithelial cell adhesion molecule (EpCAM), tissue factor (TF), and trophoblast cell surface antigen (TROP2). Multiplex immunofluorescence (mIF) demonstrated elevated EGFR and TROP2 expression in the majority of samples. Significant positive correlations were observed between EGFR and TF, as well as between TROP2 and both TF and EpCAM. Expression analyses revealed increased EGFR and TF levels with advancing tumor stage, whereas EpCAM expression declined in advanced-stage tumors. TROP2 and TF expression were significantly elevated in higher-grade tumors. Additionally, EGFR and EpCAM levels were significantly higher in patients with elevated Ki-67 indices. Binding specificity assays using single-chain variable fragment (scFv-SNAP) fusion proteins confirmed robust targeting efficacy, particularly for EGFR and TROP2. These findings underscore the therapeutic relevance of EGFR and TROP2 as potential biomarkers and targets in TNBC. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

Back to TopTop