Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (35)

Search Parameters:
Keywords = tumor-educated platelet

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 4430 KB  
Article
Interpretable Multi-Cancer Early Detection Using SHAP-Based Machine Learning on Tumor-Educated Platelet RNA
by Maryam Hajjar, Ghadah Aldabbagh and Somayah Albaradei
Diagnostics 2025, 15(17), 2216; https://doi.org/10.3390/diagnostics15172216 - 1 Sep 2025
Viewed by 209
Abstract
Background: Tumor-educated platelets (TEPs) represent a promising biosource for non-invasive multi-cancer early detection (MCED). While machine learning (ML) has been applied to TEP data, the integration of explainability to reveal gene-level contributions and regulatory associations remains underutilized. This study aims to develop [...] Read more.
Background: Tumor-educated platelets (TEPs) represent a promising biosource for non-invasive multi-cancer early detection (MCED). While machine learning (ML) has been applied to TEP data, the integration of explainability to reveal gene-level contributions and regulatory associations remains underutilized. This study aims to develop an interpretable ML framework for cancer detection using platelet RNA-sequencing data, combining predictive performance with biological insight. Methods: This study analyzed 2018 TEP RNA samples from 18 tumor types using seven machine learning classifiers. SHAP (Shapley Additive Explanations) was applied for model interpretability, including global feature ranking, local explanation, and gene-level dependence patterns. A weighted SHAP consensus was built by combining model-specific contributions scaled by Area Under the Receiver Operating Characteristic Curve (AUC). Regulatory insights were supported through network analysis using GeneMANIA. Results: Neural models, including shallow Neural Network (NN) and Deep Neural Network (DNN) achieved the best performance (AUC ~0.93), with Extreme Gradient Boosting (XGB) and Support Vector Machine (SVM) also performing well. Early-stage cancers were predicted with high accuracy. SHAP analysis revealed consistent top features (e.g., SLC38A2, DHCR7, IFITM3), while dependence plots uncovered conditional gene interactions involving USF3 (KIAA2018), ARL2, and DSTN. Multi-hop pathway tracing identified NFYC as a shared transcriptional hub across multiple modulators. Conclusions: The integration of interpretable ML with platelet RNA data revealed robust biomarkers and context-dependent regulatory patterns relevant to early cancer detection. The proposed framework supports the potential of TEPs as a non-invasive, information-rich medium for early cancer screening. Full article
(This article belongs to the Special Issue Explainable Machine Learning in Clinical Diagnostics)
Show Figures

Figure 1

24 pages, 2208 KB  
Review
Beyond the Microscope: Integrating Liquid Biopsies into the Molecular Pathology Era of Endometrial Cancer
by Miguel Perez, Luis Lorenzo Carvajal, Andres Wong, Robert Poppiti, Roberto Ruiz-Cordero, Amilcar A. Castellano-Sánchez and Hisham F. Bahmad
Int. J. Mol. Sci. 2025, 26(16), 7987; https://doi.org/10.3390/ijms26167987 - 19 Aug 2025
Viewed by 399
Abstract
Endometrial cancer (EC) is the most common gynecologic malignancy in developed countries, with a growing incidence and significant molecular heterogeneity that challenges traditional diagnostic and management paradigms. While histopathological assessment remains the gold standard for diagnosis, emerging liquid biopsy technologies provide promising non-invasive [...] Read more.
Endometrial cancer (EC) is the most common gynecologic malignancy in developed countries, with a growing incidence and significant molecular heterogeneity that challenges traditional diagnostic and management paradigms. While histopathological assessment remains the gold standard for diagnosis, emerging liquid biopsy technologies provide promising non-invasive alternatives for tumor detection, molecular profiling, and disease monitoring. This review comprehensively explores the current landscape and clinical utility of liquid biopsy analytes—including circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), cell-free DNA (cfDNA), extracellular RNAs, and exosomes—in the context of EC. We discuss the evolving role of pathologists in integrating molecular data with histomorphological features to enhance diagnostic precision, prognostic stratification, and therapeutic decision-making. Novel technologies such as methylation-based assays, tumor-informed ctDNA sequencing, and tumor-educated platelets (TEPs) are highlighted for their diagnostic accuracy and potential for early detection. Furthermore, we summarize key clinical trials and future directions aimed at validating liquid biopsy platforms for routine clinical implementation. As EC care transitions toward a precision oncology model, the integration of liquid biopsy with traditional surgical pathology offers a transformative approach to individualized and personalized patient management. Full article
Show Figures

Figure 1

38 pages, 1612 KB  
Review
Navigating the Landscape of Liquid Biopsy in Colorectal Cancer: Current Insights and Future Directions
by Pina Ziranu, Andrea Pretta, Giorgio Saba, Dario Spanu, Clelia Donisi, Paolo Albino Ferrari, Flaviana Cau, Alessandra Pia D’Agata, Monica Piras, Stefano Mariani, Marco Puzzoni, Valeria Pusceddu, Ferdinando Coghe, Gavino Faa and Mario Scartozzi
Int. J. Mol. Sci. 2025, 26(15), 7619; https://doi.org/10.3390/ijms26157619 - 6 Aug 2025
Viewed by 1114
Abstract
Liquid biopsy has emerged as a valuable tool for the detection and monitoring of colorectal cancer (CRC), providing minimally invasive insights into tumor biology through circulating biomarkers such as circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), microRNAs (miRNAs), long non-coding RNAs (lncRNAs), [...] Read more.
Liquid biopsy has emerged as a valuable tool for the detection and monitoring of colorectal cancer (CRC), providing minimally invasive insights into tumor biology through circulating biomarkers such as circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). Additional biomarkers, including tumor-educated platelets (TEPs) and exosomal RNAs, offer further potential for early detection and prognostic role, although ongoing clinical validation is still needed. This review summarizes the current evidence on the diagnostic, prognostic, and predictive capabilities of liquid biopsy in both metastatic and non-metastatic CRC. In the non-metastatic setting, liquid biopsy is gaining traction in early detection through screening and in identifying minimal residual disease (MRD), potentially guiding adjuvant treatment and reducing overtreatment. In contrast, liquid biopsy is more established in metastatic CRC for monitoring treatment responses, clonal evolution, and mechanisms of resistance. The integration of ctDNA-guided treatment algorithms into clinical practice could optimize therapeutic strategies and minimize unnecessary interventions. Despite promising advances, challenges remain in assay standardization, early-stage sensitivity, and the integration of multi-omic data for comprehensive tumor profiling. Future efforts should focus on enhancing the sensitivity of liquid biopsy platforms, validating emerging biomarkers, and expanding multi-omic approaches to support more targeted and personalized treatment strategies across CRC stages. Full article
(This article belongs to the Special Issue Cancer Biology and Epigenetic Modifications)
Show Figures

Figure 1

8 pages, 2701 KB  
Case Report
A Drop of Blood to Lead the Way
by Theodora A. M. Claushuis, Marielle J. Wondergem, Henriette B. Beverloo, Marise R. Heerma van Voss, Remco J. Molenaar, Maud Zwolsman, Fleur M. van der Valk, Hans L. Mooij, Lianne Koens and Sanne H. Tonino
Hematol. Rep. 2025, 17(4), 40; https://doi.org/10.3390/hematolrep17040040 - 5 Aug 2025
Viewed by 311
Abstract
Background and Significances: In patients with Epstein–Barr virus-driven hemophagocytic lymphohistiocytosis (EBV-HLH), identifying the underlying cause poses a significant diagnostic challenge. HLH may precede overt disease, and early directed treatment for HLH can obscure histopathological findings. A liquid biopsy enables the detection of tumor-derived [...] Read more.
Background and Significances: In patients with Epstein–Barr virus-driven hemophagocytic lymphohistiocytosis (EBV-HLH), identifying the underlying cause poses a significant diagnostic challenge. HLH may precede overt disease, and early directed treatment for HLH can obscure histopathological findings. A liquid biopsy enables the detection of tumor-derived DNA from various sources, including cell-free DNA, circulating tumor cells, extracellular vesicles, and tumor-educated platelets, and might aid in this setting. Case Presentation: This case presents a young patient with EBV-HLH, in which genomic analysis of tumor-derived DNA from circulating tumor cells led to the diagnosis of an EBV-positive NK/T-cell lymphoma—where conventional tissue biopsies had failed. Conclusions: This report underscores the potential of the liquid biopsy as a valuable diagnostic tool in complex cases of EBV-HLH. Full article
Show Figures

Figure 1

21 pages, 605 KB  
Review
Liquid Biopsy: The Challenges of a Revolutionary Approach in Oncology
by Claudio Antonio Coppola, Simona De Summa, Giuseppina Matera, Brunella Pilato, Debora Traversa and Stefania Tommasi
Int. J. Mol. Sci. 2025, 26(11), 5013; https://doi.org/10.3390/ijms26115013 - 23 May 2025
Viewed by 2591
Abstract
Liquid biopsy has gained attention in oncology as a non-invasive diagnostic tool, offering valuable insights into tumor biology through the analysis of circulating nucleic acid (cfDNA and cfRNA), circulating tumor cells (CTCs), extracellular vesicles (EVs), and tumor-educated platelets (TEPs). In this review, we [...] Read more.
Liquid biopsy has gained attention in oncology as a non-invasive diagnostic tool, offering valuable insights into tumor biology through the analysis of circulating nucleic acid (cfDNA and cfRNA), circulating tumor cells (CTCs), extracellular vesicles (EVs), and tumor-educated platelets (TEPs). In this review, we summarize the clinical use of liquid biopsies in cancer now and look forward to its future, with a particular emphasis on some the methods used to isolate the liquid biopsy analytes. This technique provides real-time information on tumor dynamics, treatment response, and disease progression, with the potential for early diagnosis and personalized treatment. Despite its advantages, liquid biopsy faces several challenges, particularly in detecting analytes in early-stage cancers and evaluating the tumor molecular fraction. Tumor burden, molecular fraction, and the presence of subclones can impact the sensitivity and specificity of the analysis. Recent advancements in artificial intelligence (AI) have enhanced the diagnostic accuracy of liquid biopsy by integrating data, and multimodal approaches that combine multiple biomarkers such as ctDNA, CTCs, EVs, and TEPs show promise in providing a more comprehensive view of tumor characteristics. Liquid biopsy has the potential to revolutionize cancer care by providing rapid, non-invasive, and cost-effective diagnostics, enabling timely interventions and personalized treatment strategies. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

19 pages, 1517 KB  
Review
Liquid Biopsy as a Diagnostic and Monitoring Tool in Glioblastoma
by Ligia Gabriela Tataranu
Medicina 2025, 61(4), 716; https://doi.org/10.3390/medicina61040716 - 13 Apr 2025
Viewed by 1455
Abstract
Glioblastoma (GBM) is the most prevalent and aggressive primary central nervous system (CNS) tumor in adults. GBMs exhibit genetic and epigenetic heterogeneity, posing difficulties in surveillance and being associated with high rates of recurrence and mortality. Nevertheless, due to the high infiltrating ability [...] Read more.
Glioblastoma (GBM) is the most prevalent and aggressive primary central nervous system (CNS) tumor in adults. GBMs exhibit genetic and epigenetic heterogeneity, posing difficulties in surveillance and being associated with high rates of recurrence and mortality. Nevertheless, due to the high infiltrating ability of glioblastoma cells, and regardless of the considerable progress made in radiotherapeutic, chemotherapeutic, and surgical protocols, the treatment of GBM is still inefficient. Conventional diagnostic approaches, such as neuroimaging techniques and tissue biopsies, which are invasive maneuvers, present certain challenges and limitations in providing real-time information, and are incapable of differentiating pseudo-progression related to treatment from real tumor progression. Liquid biopsy, the analysis of biomarkers such as nucleic acids (DNA/RNA), circulating tumor cells (CTCs), extracellular vesicles (EVs), or tumor-educated platelets (TEPs) that are present in body fluids, provides a minimally invasive and dynamic method of diagnosis and continuous monitoring for GBM. It represents a new preferred approach that enables a superior manner to obtain data on possible tumor risk, prognosis, and recurrence assessment. This article is a literature review that aims to provide updated information about GBM biomarkers in body fluids and to analyze their clinical efficiency. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

20 pages, 1765 KB  
Review
Tumor-Educated Platelets in Urological Tumors: A Novel Biosource in Liquid Biopsy
by Mariona Figols, Sviatoslav Chekhun, Maria Fernández-Saorin, Ignacio Pérez-Criado, Ana Bautista, Albert Font and Vicenç Ruiz de Porras
Int. J. Mol. Sci. 2025, 26(8), 3595; https://doi.org/10.3390/ijms26083595 - 11 Apr 2025
Cited by 1 | Viewed by 1118
Abstract
Platelets, traditionally recognized for their role in hemostasis, have emerged as pivotal players in cancer biology. They actively contribute to tumor proliferation, angiogenesis, immune evasion, and metastasis and thus play a significant role in cancer progression. Tumor-educated platelets (TEPs) acquire protumorigenic phenotypes through [...] Read more.
Platelets, traditionally recognized for their role in hemostasis, have emerged as pivotal players in cancer biology. They actively contribute to tumor proliferation, angiogenesis, immune evasion, and metastasis and thus play a significant role in cancer progression. Tumor-educated platelets (TEPs) acquire protumorigenic phenotypes through RNA, protein, and receptor profile alterations driven by interactions with tumors and their microenvironment. These modifications enable TEPs to enhance tumor growth and dissemination and to play a critical role throughout the metastatic process. Moreover, TEPs are promising biomarkers that can easily be analyzed in liquid biopsies. Since they dynamically mirror tumor activity through transcriptomic and proteomic changes, their analysis offers a non-invasive method for determining cancer detection and diagnosis, patient prognosis, therapy monitoring, and personalization of treatment. Their demonstrated accuracy in identifying cancer types and predicting treatment responses underscores their ability to provide real-time insights into tumor biology, including in urological malignancies. Their diagnostic potential and their accessibility as blood-sourced biomarkers position TEPs as transformative tools in advancing personalized oncology. Here, we focus on the role of TEPs in urological tumors, exploring their applications in early cancer detection, disease monitoring, and the design of tailored therapeutic strategies. Full article
Show Figures

Figure 1

15 pages, 2017 KB  
Article
Oncogenic KRASG12D Transfer from Platelet-like Particles Enhances Proliferation and Survival in Non-Small Cell Lung Cancer Cells
by Jorge Ceron-Hernandez, Gonzalo Martinez-Navajas, Jose Manuel Sanchez-Manas, María Pilar Molina, Jiajun Xie, Inés Aznar-Peralta, Abel Garcia-Diaz, Sonia Perales, Carolina Torres, Maria J. Serrano and Pedro J. Real
Int. J. Mol. Sci. 2025, 26(7), 3264; https://doi.org/10.3390/ijms26073264 - 1 Apr 2025
Cited by 1 | Viewed by 998
Abstract
In the tumor context, platelets play a significant role in primary tumor progression, dissemination and metastasis. Analysis of this interaction in various cancers, such as non-small cell lung cancer (NSCLC), demonstrate that platelets can both transfer and receive biomolecules (e.g. RNA and proteins) [...] Read more.
In the tumor context, platelets play a significant role in primary tumor progression, dissemination and metastasis. Analysis of this interaction in various cancers, such as non-small cell lung cancer (NSCLC), demonstrate that platelets can both transfer and receive biomolecules (e.g. RNA and proteins) to and from the tumor at different stages, becoming tumor-educated platelets. To investigate how platelets are able to transfer oncogenic material, we developed in vitro platelet-like particles (PLPs), from a differentiated MEG-01 cell line, that stably carry RNA and protein of the KRASG12D oncogene in fusion with GFP. We co-cultured these PLPs with NSCLC H1975 tumor cells to assess their ability to transfer this material. We observed that the generated platelets were capable of stably expressing the oncogene and transferring both its RNA and protein forms to tumor cells using qPCR and imaging techniques. Additionally, we found that coculturing PLPs loaded with GFP-KRASG12D with tumor cells increased their proliferative capacity at specific PLP concentrations. In conclusion, our study successfully engineered an MEG-01 cell line to produce PLPs carrying oncogenic GFP-KRASG12D simulating the tumor microenvironment, demonstrating the efficient transfer of this oncogene to tumor cells and its significant impact on enhancing proliferation. Full article
Show Figures

Figure 1

17 pages, 352 KB  
Review
Liquid Biopsy for Colorectal Cancer: Advancing Detection and Clinical Application
by Yan Li, Qiong Zhang and Shelly Cook
Int. J. Transl. Med. 2025, 5(2), 14; https://doi.org/10.3390/ijtm5020014 - 26 Mar 2025
Viewed by 3370
Abstract
Colorectal cancer (CRC) is the third most common cancer and a leading cause of cancer-related mortality worldwide, with prognosis significantly deteriorating at advanced stages. While current diagnostic methods, such as colonoscopy and tissue biopsy, are widely employed in clinical practice, they are invasive, [...] Read more.
Colorectal cancer (CRC) is the third most common cancer and a leading cause of cancer-related mortality worldwide, with prognosis significantly deteriorating at advanced stages. While current diagnostic methods, such as colonoscopy and tissue biopsy, are widely employed in clinical practice, they are invasive, expensive, and limited in assessing tumor heterogeneity and monitoring disease processes, including therapy response. Therefore, early and accurate detection, coupled with minimal invasion and cost-effective strategies, are critical for improving patient outcomes. Liquid biopsy has emerged as a promising, minimally invasive alternative, enabling the detection of tumor-derived components. This approach is increasingly utilized in clinical settings. The current key liquid biopsy modalities in CRC include circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), and RNA-based biomarkers such as long non-coding RNAs (lncRNAs), microRNAs(miRNAs), and circular RNAs (circRNAs), and tumor-educated platelets (TEPs). These methods provide valuable insights into genetic and epigenetic tumor alterations, and serve as indicators for early detection, treatment monitoring, and recurrence prediction. However, challenges such as assay standardization and variability in sensitivity persist. This review delves into the clinical applications of liquid biopsy in CRC management, highlighting the transformative roles of ctDNA, CTCs, and non-coding RNAs, TEPs in early detection, prognostic assessment, and personalized therapy. In addition, it addresses current limitations and explores potential advancements to facilitate their integration into routine clinical practice. Full article
35 pages, 2304 KB  
Review
Modernizing Neuro-Oncology: The Impact of Imaging, Liquid Biopsies, and AI on Diagnosis and Treatment
by John Rafanan, Nabih Ghani, Sarah Kazemeini, Ahmed Nadeem-Tariq, Ryan Shih and Thomas A. Vida
Int. J. Mol. Sci. 2025, 26(3), 917; https://doi.org/10.3390/ijms26030917 - 22 Jan 2025
Cited by 7 | Viewed by 4178
Abstract
Advances in neuro-oncology have transformed the diagnosis and management of brain tumors, which are among the most challenging malignancies due to their high mortality rates and complex neurological effects. Despite advancements in surgery and chemoradiotherapy, the prognosis for glioblastoma multiforme (GBM) and brain [...] Read more.
Advances in neuro-oncology have transformed the diagnosis and management of brain tumors, which are among the most challenging malignancies due to their high mortality rates and complex neurological effects. Despite advancements in surgery and chemoradiotherapy, the prognosis for glioblastoma multiforme (GBM) and brain metastases remains poor, underscoring the need for innovative diagnostic strategies. This review highlights recent advancements in imaging techniques, liquid biopsies, and artificial intelligence (AI) applications addressing current diagnostic challenges. Advanced imaging techniques, including diffusion tensor imaging (DTI) and magnetic resonance spectroscopy (MRS), improve the differentiation of tumor progression from treatment-related changes. Additionally, novel positron emission tomography (PET) radiotracers, such as 18F-fluoropivalate, 18F-fluoroethyltyrosine, and 18F-fluluciclovine, facilitate metabolic profiling of high-grade gliomas. Liquid biopsy, a minimally invasive technique, enables real-time monitoring of biomarkers such as circulating tumor DNA (ctDNA), extracellular vesicles (EVs), circulating tumor cells (CTCs), and tumor-educated platelets (TEPs), enhancing diagnostic precision. AI-driven algorithms, such as convolutional neural networks, integrate diagnostic tools to improve accuracy, reduce interobserver variability, and accelerate clinical decision-making. These innovations advance personalized neuro-oncological care, offering new opportunities to improve outcomes for patients with central nervous system tumors. We advocate for future research integrating these tools into clinical workflows, addressing accessibility challenges, and standardizing methodologies to ensure broad applicability in neuro-oncology. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

24 pages, 766 KB  
Review
Melanoma’s New Frontier: Exploring the Latest Advances in Blood-Based Biomarkers for Melanoma
by Ivana Prkačin, Mislav Mokos, Nikola Ferara and Mirna Šitum
Cancers 2024, 16(24), 4219; https://doi.org/10.3390/cancers16244219 - 18 Dec 2024
Cited by 5 | Viewed by 2774
Abstract
Melanoma is one of the most malignant cancers, and the global incidence of cutaneous melanoma is increasing. While melanomas are highly prone to metastasize if diagnosed late, early detection and treatment significantly reduce the risk of mortality. Identifying patients at higher risk of [...] Read more.
Melanoma is one of the most malignant cancers, and the global incidence of cutaneous melanoma is increasing. While melanomas are highly prone to metastasize if diagnosed late, early detection and treatment significantly reduce the risk of mortality. Identifying patients at higher risk of metastasis, who might benefit from early adjuvant therapies, is particularly important, especially with the advent of new melanoma treatments. Therefore, there is a pressing need to develop additional prognostic biomarkers for melanoma to improve early stratification of patients and accurately identify high-risk subgroups, ultimately enabling more effective personalized treatments. Recent advances in melanoma therapy, including targeted treatments and immunotherapy, have underscored the importance of biomarkers in determining prognosis and predicting treatment response. The clinical application of these markers holds the potential for significant advancements in melanoma management. Various tumor-derived genetic, proteomic, and cellular components are continuously released into the bloodstream of cancer patients. These molecules, including circulating tumor DNA and RNA, proteins, tumor cells, and immune cells, are emerging as practical and precise liquid biomarkers for cancer. In the current era of effective molecular-targeted therapies and immunotherapies, there is an urgent need to integrate these circulating biomarkers into clinical practice to facilitate personalized treatment. This review highlights recent discoveries in circulating melanoma biomarkers, explores the challenges and potentials of emerging technologies for liquid biomarker discovery, and discusses future directions in melanoma biomarker research. Full article
(This article belongs to the Section Cancer Biomarkers)
Show Figures

Figure 1

35 pages, 958 KB  
Review
Impact of Molecular Profiling on Therapy Management in Breast Cancer
by Flavia Ultimescu, Ariana Hudita, Daniela Elena Popa, Maria Olinca, Horatiu Alin Muresean, Mihail Ceausu, Diana Iuliana Stanciu, Octav Ginghina and Bianca Galateanu
J. Clin. Med. 2024, 13(17), 4995; https://doi.org/10.3390/jcm13174995 - 23 Aug 2024
Cited by 7 | Viewed by 3388
Abstract
Breast cancer (BC) remains the most prevalent cancer among women and the leading cause of cancer-related mortality worldwide. The heterogeneity of BC in terms of histopathological features, genetic polymorphisms, and response to therapies necessitates a personalized approach to treatment. This review focuses on [...] Read more.
Breast cancer (BC) remains the most prevalent cancer among women and the leading cause of cancer-related mortality worldwide. The heterogeneity of BC in terms of histopathological features, genetic polymorphisms, and response to therapies necessitates a personalized approach to treatment. This review focuses on the impact of molecular profiling on therapy management in breast cancer, emphasizing recent advancements in next-generation sequencing (NGS) and liquid biopsies. These technologies enable the identification of specific molecular subtypes and the detection of blood-based biomarkers such as circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), and tumor-educated platelets (TEPs). The integration of molecular profiling with traditional clinical and pathological data allows for more tailored and effective treatment strategies, improving patient outcomes. This review also discusses the current challenges and prospects of implementing personalized cancer therapy, highlighting the potential of molecular profiling to revolutionize BC management through more precise prognostic and therapeutic interventions. Full article
(This article belongs to the Topic From Basic Research to a Clinical Perspective in Oncology)
Show Figures

Figure 1

16 pages, 8504 KB  
Article
Immunological Signatures for Early Detection of Human Head and Neck Squamous Cell Carcinoma through RNA Transcriptome Analysis of Blood Platelets
by Jappreet Singh Gill, Benu Bansal, Rayansh Poojary, Harpreet Singh, Fang Huang, Jett Weis, Kristian Herman, Brock Schultz, Emre Coban, Kai Guo and Ramkumar Mathur
Cancers 2024, 16(13), 2399; https://doi.org/10.3390/cancers16132399 - 29 Jun 2024
Cited by 1 | Viewed by 2403
Abstract
Although there has been a reduction in head and neck squamous cell carcinoma occurrence, it continues to be a serious global health concern. The lack of precise early diagnostic biomarkers and postponed diagnosis in the later stages are notable constraints that contribute to [...] Read more.
Although there has been a reduction in head and neck squamous cell carcinoma occurrence, it continues to be a serious global health concern. The lack of precise early diagnostic biomarkers and postponed diagnosis in the later stages are notable constraints that contribute to poor survival rates and emphasize the need for innovative diagnostic methods. In this study, we employed machine learning alongside weighted gene co-expression network analysis (WGCNA) and network biology to investigate the gene expression patterns of blood platelets, identifying transcriptomic markers for HNSCC diagnosis. Our comprehensive examination of publicly available gene expression datasets revealed nine genes with significantly elevated expression in samples from individuals diagnosed with HNSCC. These potential diagnostic markers were further assessed using TCGA and GTEx datasets, demonstrating high accuracy in distinguishing between HNSCC and non-cancerous samples. The findings indicate that these gene signatures could revolutionize early HNSCC identification. Additionally, the study highlights the significance of tumor-educated platelets (TEPs), which carry RNA signatures indicative of tumor-derived material, offering a non-invasive source for early-detection biomarkers. Despite using platelet and tumor samples from different individuals, our results suggest that TEPs reflect the transcriptomic and epigenetic landscape of tumors. Future research should aim to directly correlate tumor and platelet samples from the same patients to further elucidate this relationship. This study underscores the potential of these biomarkers in transforming early diagnosis and personalized treatment strategies for HNSCC, advocating for further research to validate their predictive and therapeutic potential. Full article
(This article belongs to the Special Issue Emerging Biomarkers and Therapeutic Targets in Cancer Immunotherapy)
Show Figures

Figure 1

27 pages, 845 KB  
Review
Clinical Application of Different Liquid Biopsy Components in Hepatocellular Carcinoma
by Jing Xu, Yuanyuan Zhao, Zhishui Chen and Lai Wei
J. Pers. Med. 2024, 14(4), 420; https://doi.org/10.3390/jpm14040420 - 15 Apr 2024
Cited by 3 | Viewed by 2487
Abstract
Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer, usually occurring in the background of chronic liver disease. HCC lethality rate is in the third highest place in the world. Patients with HCC have concealed early symptoms and possess a [...] Read more.
Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer, usually occurring in the background of chronic liver disease. HCC lethality rate is in the third highest place in the world. Patients with HCC have concealed early symptoms and possess a high-level of heterogeneity. Once diagnosed, most of the tumors are in advanced stages and have a poor prognosis. The sensitivity and specificity of existing detection modalities and protocols are suboptimal. HCC calls for more sophisticated and individualized therapeutic regimens. Liquid biopsy is non-invasive, repeatable, unaffected by location, and can be monitored dynamically. It has emerged as a useable aid in achieving precision malignant tumor treatment. Circulating tumor cells (CTCs), circulating nucleic acids, exosomes and tumor-educated platelets are the commonest components of a liquid biopsy. It possesses the theoretical ability to conquer the high heterogeneity and the difficulty of early detection for HCC patients. In this review, we summarize the common enrichment techniques and the clinical applications in HCC for different liquid biopsy components. Tumor recurrence after HCC-related liver transplantation is more insidious and difficult to treat. The clinical use of liquid biopsy in HCC-related liver transplantation is also summarized in this review. Full article
(This article belongs to the Special Issue Cancer Biomarkers: Promises and Challenges)
Show Figures

Figure 1

23 pages, 5273 KB  
Article
Gene Expression Behavior of a Set of Genes in Platelet and Tissue Samples from Patients with Breast Cancer
by Luis A. Burciaga-Hernandez, Cecilia F. Cueto-Villalobos, Nancy Ortega-Piñon, Irma E. Gonzalez-Curiel, Susana Godina-Gonzalez, Gwendolyne Mendez-Frausto, Anna P. Aguilar-Esquivel, Vilma Maldonado-Lagunas, Luis E. Guerrero-de la Torre, Jorge Melendez-Zajgla, Erika K. Sanchez-Garcia, Irma B. Mitre-Aguilar and Gretel Mendoza-Almanza
Int. J. Mol. Sci. 2023, 24(9), 8348; https://doi.org/10.3390/ijms24098348 - 6 May 2023
Cited by 4 | Viewed by 3134
Abstract
The tumor microenvironment (TME) is constituted by a great diversity of highly dynamic cell populations, each of which contributes ligands, receptors, soluble proteins, mRNAs, and miRNAs, in order to regulate cellular activities within the TME and even promote processes such as angiogenesis or [...] Read more.
The tumor microenvironment (TME) is constituted by a great diversity of highly dynamic cell populations, each of which contributes ligands, receptors, soluble proteins, mRNAs, and miRNAs, in order to regulate cellular activities within the TME and even promote processes such as angiogenesis or metastasis. Intravasated platelets (PLT) undergo changes in the TME that convert them into tumor-educated platelets (TEP), which supports the development of cancer, angiogenesis, and metastasis through the degranulation and release of biomolecules. Several authors have reported that the deregulation of PF4, VEGF, PDGF, ANG-1, WASF3, LAPTM4B, TPM3, and TAC1 genes participates in breast cancer progression, angiogenesis, and metastasis. The present work aimed to analyze the expression levels of this set of genes in tumor tissues and platelets derived from breast cancer patients by reverse transcription-quantitative polymerase chain reaction (RTqPCR) assays, in order to determine if there was an expression correlation between these sources and to take advantage of the new information to be used in possible diagnosis by liquid biopsy. Data from these assays showed that platelets and breast cancer tumors present similar expression levels of a subset of these genes’ mRNAs, depending on the molecular subtype, comorbidities, and metastasis presence. Full article
(This article belongs to the Special Issue Advances in Platelet Biology and Functions)
Show Figures

Figure 1

Back to TopTop