Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (162)

Search Parameters:
Keywords = typhoon wind field

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4602 KB  
Article
Typhoon-Induced Wave–Current Coupling Dynamics in Intertidal Zones: Impacts on Protective Device of Ancient Forest Relics
by Lihong Zhao, Dele Guo, Chaoyang Li, Zhengfeng Bi, Yi Hu, Hongqin Liu and Tongju Han
J. Mar. Sci. Eng. 2025, 13(9), 1831; https://doi.org/10.3390/jmse13091831 - 22 Sep 2025
Viewed by 274
Abstract
Extreme weather events, such as typhoons, induce strong wave–current interactions that significantly alter nearshore hydrodynamic conditions, particularly in shallow intertidal zones. This study investigates the influence of wind speed and water depth on wave–current coupling under typhoon conditions in Shenhu Bay, southeastern China—a [...] Read more.
Extreme weather events, such as typhoons, induce strong wave–current interactions that significantly alter nearshore hydrodynamic conditions, particularly in shallow intertidal zones. This study investigates the influence of wind speed and water depth on wave–current coupling under typhoon conditions in Shenhu Bay, southeastern China—a semi-enclosed bay that hosts multiple ancient forest relics within its intertidal zone. A two-tier numerical modeling framework was developed, comprising a regional-scale hydrodynamic model and a localized high-resolution model centered on a protective structure. Validation data were obtained from in situ field observations. Three structural scenarios were tested: fully intact, bottom-blocked, and damaged. Results indicate that wave-induced radiation stress plays a dominant role in enhancing flow velocities when wind speeds exceed 6 m/s, with wave contributions approaching 100% across all water depths. However, the linear relationship between water depth and wave contribution observed under non-typhoon conditions breaks down under typhoon forcing. A critical depth range was identified, within which wave contribution peaked before declining with further increases in depth—highlighting its potential sensitivity to storm energy. Moreover, structural simulations revealed that bottom-blocked devices, although seemingly more enclosed, may be vulnerable to vertical pressure loading due to insufficient water exchange. In contrast, perforated designs facilitate an internal–external hydrodynamic balance, thereby enhancing protective effect. This study provides both theoretical and practical insights into intertidal structure design and paleo-heritage conservation under extreme hydrodynamic stress. Full article
(This article belongs to the Special Issue Advances in Storm Tide and Wave Simulations and Assessment)
Show Figures

Figure 1

26 pages, 20545 KB  
Article
Impact of Assimilating FY-4B/GIIRS Radiances on Typhoon “Doksuri” and Typhoon “Gaemi” Forecasts
by Shiyuan Tao, Yi Yu, Haokun Bai, Weimin Zhang, Yanlai Zhao, Hongze Leng and Pinqiang Wang
Remote Sens. 2025, 17(17), 3105; https://doi.org/10.3390/rs17173105 - 6 Sep 2025
Viewed by 861
Abstract
The Geostationary Interferometric Infrared Sounder (GIIRS) on board FengYun-4B (FY-4B), a Chinese second-generation hyperspectral infrared, enables the provision of critical data for forecasting high-impact weather events such as typhoons. To evaluate the reliability of FY-4B/GIIRS data, this study conducted three comparative assimilation trials [...] Read more.
The Geostationary Interferometric Infrared Sounder (GIIRS) on board FengYun-4B (FY-4B), a Chinese second-generation hyperspectral infrared, enables the provision of critical data for forecasting high-impact weather events such as typhoons. To evaluate the reliability of FY-4B/GIIRS data, this study conducted three comparative assimilation trials for both Typhoon Gaemi and Typhoon Doksuri, assimilating observations from the Infrared Atmospheric Sounding Interferometer (IASI), Advanced Microwave Sounding Unit-A (AMSU-A), and FY-4B/GIIRS, respectively. Results demonstrate that the assimilation of GIIRS observations yields more stable forecasts of the wind field at 300 hPa and 500 hPa compared to AMSU-A and IASI, with biases within ±6 m/s relative to NCEP FNL data. However, GIIRS assimilation produces systematic underprediction of vertical velocity, whereas AMSU-A forecasts align more closely with reanalysis. For track forecasts, the GIIRS-assimilated trajectory exhibits closer alignment with observations than AMSU-A and IASI experiments, maintaining biases below 50 km throughout 48 h forecast period of Gaemi. This study provides valuable experience for the application of FY-4B/GIIRS data assimilation. Full article
Show Figures

Figure 1

23 pages, 9439 KB  
Article
Compressive Sensing Convolution Improves Long Short-Term Memory for Ocean Wave Spatiotemporal Prediction
by Lingxiao Zhao, Yijia Kuang, Junsheng Zhang and Bin Teng
J. Mar. Sci. Eng. 2025, 13(9), 1712; https://doi.org/10.3390/jmse13091712 - 4 Sep 2025
Viewed by 461
Abstract
This study proposes a Compressive Sensing Convolutional Long Short-Term Memory (CSCL) model that aims to improve short-term (12–24 h) forecast accuracy compared to standard ConvLSTM. It is especially useful when subtle spatiotemporal variations complicate feature extraction. CSCL uses uniform sampling to partially mask [...] Read more.
This study proposes a Compressive Sensing Convolutional Long Short-Term Memory (CSCL) model that aims to improve short-term (12–24 h) forecast accuracy compared to standard ConvLSTM. It is especially useful when subtle spatiotemporal variations complicate feature extraction. CSCL uses uniform sampling to partially mask spatiotemporal wave fields. The model training strategy integrates both complete and masked samples from pre- and post-sampling. This design encourages the network to learn and amplify subtle distributional differences. Consequently, small variations in convolutional responses become more informative for feature extraction. We considered the theoretical explanations for why this sampling-augmented training enhances sensitivity to minor signals and validated the approach experimentally. For the region 120–140° E and 20–40° N, a four-layer CSCL model using the first five moments as inputs achieved the best prediction performance. Compared to ConvLSTM, the R2 for significant wave height improved by 2.2–43.8% and for mean wave period by 3.7–22.3%. A wave-energy case study confirmed the model’s practicality. CSCL may be extended to the prediction of extreme events (e.g., typhoons, tsunamis) and other oceanic variables such as wind, sea-surface pressure, and temperature. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

23 pages, 9775 KB  
Article
Observational and Numerical Study of the Vertical Structure of Anticyclonic Eddy in Northern South China Sea and Its Response to Typhoon
by Weijie Ma, Wenjing Zhang and Shouxian Zhu
J. Mar. Sci. Eng. 2025, 13(9), 1646; https://doi.org/10.3390/jmse13091646 - 28 Aug 2025
Viewed by 458
Abstract
This study investigated the vertical structure of an anticyclonic eddy (AE) in the northern South China Sea (SCS) in August 2017 and its response to Typhoon Hato using underwater glider and satellite altimeter data. Additionally, comparative experiments with and without typhoon forcing were [...] Read more.
This study investigated the vertical structure of an anticyclonic eddy (AE) in the northern South China Sea (SCS) in August 2017 and its response to Typhoon Hato using underwater glider and satellite altimeter data. Additionally, comparative experiments with and without typhoon forcing were conducted using the Regional Ocean Modeling System (ROMS) for supplementary analysis. The observational results reveal that the maximum temperature and salinity differences between the center and edge of the AE did not occur at the sea surface but near the 100 m depth. The typhoon caused a significant temperature decrease above 200 m, with the maximum cooling (~2 °C) occurring near 50 m. Near this depth, salinity initially increased due to upwelling but later decreased due to surface mixing. The most pronounced cooling and salinity changes occurred one day after the typhoon passage, followed by a gradual deepening of the mixed layer over the next four days, with conditions below the mixed layer largely returning to pre-typhoon states. Numerical modeling quantitatively assessed the typhoon’s impacts. Upwelling rapidly intensified during the typhoon’s passage, the typhoon’s wind stress decreased kinetic energy at the AE site, and the input of positive vorticity reduced absolute vorticity, disrupting the surface AE structure. The flow field adjusted faster than temperature and salinity, with surface currents and the AE structure largely recovering within two days after the typhoon’s passage. These findings highlight the multifaceted impacts of typhoons on AEs and provide critical insights for predicting the evolution of mesoscale oceanic structures under extreme weather events. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

21 pages, 2914 KB  
Article
Machine Learning-Based Short-Term Forecasting of Significant Wave Height During Typhoons Using SWAN Data: A Case Study in the Pearl River Estuary
by Mengdi Ma, Guoliang Chen, Sudong Xu, Weikai Tan and Kai Yin
J. Mar. Sci. Eng. 2025, 13(9), 1612; https://doi.org/10.3390/jmse13091612 - 23 Aug 2025
Viewed by 966
Abstract
Accurate wave forecasting under typhoon conditions is essential for coastal safety in the Pearl River Estuary. This study explores the use of Random Forest (RF) and Long Short-Term Memory (LSTM) models to predict significant wave heights, using SWAN-simulated data from 87 historical typhoon [...] Read more.
Accurate wave forecasting under typhoon conditions is essential for coastal safety in the Pearl River Estuary. This study explores the use of Random Forest (RF) and Long Short-Term Memory (LSTM) models to predict significant wave heights, using SWAN-simulated data from 87 historical typhoon events. Ten representative typhoons were reserved for independent testing. Results show that the LSTM model outperforms RF in 3 h forecasts, achieving a lower mean RMSE and higher R2, particularly in capturing wave peaks under highly dynamic conditions. For 6 h forecasts, both models exhibit decreased accuracy, with RF performing slightly better in stable scenarios, while LSTM remains more responsive in complex wave evolution. Generalization tests at three nearby stations demonstrate that both models, especially LSTM, retain strong predictive skill beyond the training location. These findings highlight the potential of combining numerical wave models with machine learning for short-term, data-driven wave forecasting in typhoon-prone and observation-sparse regions. The study also points to future improvements through integration of wind field predictors, model updating strategies, and ensemble meteorological data. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

20 pages, 10486 KB  
Article
Improving the Assimilation of T-TREC-Retrieved Wind Fields with Iterative Smoothing Constraints During Typhoon Linfa
by Huimin Bian, Haiyan Fei, Yuqing Mao, Cong Li, Aiqing Shu and Jiajun Chen
Remote Sens. 2025, 17(16), 2821; https://doi.org/10.3390/rs17162821 - 14 Aug 2025
Viewed by 395
Abstract
Enhancing radar data assimilation at cloud-resolving scales is essential for advancing typhoon analysis and forecasting. This study focuses on Typhoon Linfa, the 10th Pacific Typhoon of 2015, and proposes T-TREC-IS (Typhoon Circulation Tracking Radar Echo by Correlations with Iterative Smoothing), an enhanced version [...] Read more.
Enhancing radar data assimilation at cloud-resolving scales is essential for advancing typhoon analysis and forecasting. This study focuses on Typhoon Linfa, the 10th Pacific Typhoon of 2015, and proposes T-TREC-IS (Typhoon Circulation Tracking Radar Echo by Correlations with Iterative Smoothing), an enhanced version of the T-TREC algorithm. The enhancement incorporates an iterative smoothing constraint into the T-TREC algorithm, which improves the continuity of the retrieved wind field and mitigates the effects of velocity aliasing in radar data, thereby increasing the operational feasibility of the method. Building on this improvement, we evaluate the effectiveness of assimilating the T-TREC-IS-retrieved wind field for analyzing and forecasting Typhoon Linfa. The results demonstrate that the iterative smoothing constraint effectively filters out velocity de-aliasing errors during radar data quality control, enhances wind field intensity near the typhoon core, and retrieves the typhoon circulation more accurately. The refined wind field exhibits improved consistency and continuity, resulting in superior performance in subsequent assimilation analyses and forecasts. Full article
Show Figures

Graphical abstract

18 pages, 1738 KB  
Article
Extreme Wind Speed Prediction Based on a Typhoon Straight-Line Path Model and the Monte Carlo Simulation Method: A Case for Guangzhou
by Zhike Lu, Xinrui Zhang, Junling Hong and Wanhai Xu
Appl. Sci. 2025, 15(15), 8486; https://doi.org/10.3390/app15158486 - 31 Jul 2025
Viewed by 643
Abstract
The southeastern coastal region of China has long been affected by typhoon disasters, which pose significant threats to the safety of offshore structures. Therefore, predicting extreme wind speeds corresponding to various return periods on the basis of limited typhoon samples is particularly important [...] Read more.
The southeastern coastal region of China has long been affected by typhoon disasters, which pose significant threats to the safety of offshore structures. Therefore, predicting extreme wind speeds corresponding to various return periods on the basis of limited typhoon samples is particularly important for wind-resistant design. This study systematically predicts extreme typhoon wind speeds for various return periods and quantitatively assesses the sensitivity of key parameters by employing a Monte Carlo stochastic simulation framework integrated with a typhoon straight-line trajectory model and the Yan Meng wind field model. Focusing on Guangzhou (23.13° N, 113.28 °E), a representative coastal city in southeastern China, this research establishes a modular analytical framework that provides generalizable solutions for typhoon disaster assessment in coastal regions. The probabilistic wind load data generated by this framework significantly increases the cost-effectiveness and safety of wind-resistant structural design. Full article
(This article belongs to the Special Issue Transportation and Infrastructures Under Extreme Weather Conditions)
Show Figures

Figure 1

29 pages, 16630 KB  
Article
Impact of Radar Data Assimilation on the Simulation of Typhoon Morakot
by Lingkun Ran and Cangrui Wu
Atmosphere 2025, 16(8), 910; https://doi.org/10.3390/atmos16080910 - 28 Jul 2025
Viewed by 459
Abstract
The high spatial resolution of radar data enables the detailed resolution of typhoon vortices and their embedded structures; the assimilation of radar data in the initialization of numerical weather prediction exerts an important influence on the forecasting of typhoon track, intensity, and structures [...] Read more.
The high spatial resolution of radar data enables the detailed resolution of typhoon vortices and their embedded structures; the assimilation of radar data in the initialization of numerical weather prediction exerts an important influence on the forecasting of typhoon track, intensity, and structures up to at least 12 h. For the case of typhoon Morakot (2009), Taiwan radar data was assimilated to adjust the dynamic and thermodynamic structures of the vortex in the model initialization by the three-dimensional variation data assimilation system in the Advanced Region Prediction System (ARPS). The radial wind was directly assimilated to tune the original unbalanced velocity fields through a 3-dimensional variation method, and complex cloud analysis was conducted by using the reflectivity data. The influence of radar data assimilation on typhoon prediction was examined at the stages of Morakot landing on Taiwan Island and subsequently going inland. The results showed that the assimilation made some improvement in the prediction of vortex intensity, track, and structures in the initialization and subsequent forecast. For example, besides deepening the central sea level pressure and enhancing the maximum surface wind speed, the radar data assimilation corrected the typhoon center movement to the best track and adjusted the size and inner-core structure of the vortex to be close to the observations. It was also shown that the specific humidity adjustment in the cloud analysis procedure during the assimilation time window played an important role, producing more hydrometeors and tuning the unbalanced moisture and temperature fields. The neighborhood-based ETS revealed that the assimilation with the specific humidity adjustment was propitious in improving forecast skill, specifically for smaller-scale reflectivity at the stage of Morakot landing, and for larger-scale reflectivity at the stage of Morakot going inland. The calculation of the intensity-scale skill score of the hourly precipitation forecast showed the assimilation with the specific humidity adjustment performed skillful forecasting for the spatial forecast-error scales of 30–160 km. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

14 pages, 3647 KB  
Article
The Characteristics of the Aeolian Environment in the Coastal Sandy Land of Boao Jade Belt Beach, Hainan Island
by Shuai Zhong, Jianjun Qu, Zhizhong Zhao and Penghua Qiu
Atmosphere 2025, 16(7), 845; https://doi.org/10.3390/atmos16070845 - 11 Jul 2025
Viewed by 359
Abstract
Boao Jade Beach, on the east coast of Hainan Island, is a typical sandy beach and is one of the areas where typhoons frequently land in Hainan. This study examined wind speed, wind direction, and sediment transport data obtained from field meteorological stations [...] Read more.
Boao Jade Beach, on the east coast of Hainan Island, is a typical sandy beach and is one of the areas where typhoons frequently land in Hainan. This study examined wind speed, wind direction, and sediment transport data obtained from field meteorological stations and omnidirectional sand accumulation instruments from 2020 to 2024 to study the coastal aeolian environment and sediment transport distribution characteristics in the region. The findings provide a theoretical basis for comprehensive analyses of the evolution of coastal aeolian landforms and the evaluation and control of coastal aeolian hazards. The research results showed the following: (1) The annual average threshold wind velocity for sand movement in the study area was 6.13 m/s, and the wind speed frequency was 20.97%, mainly dominated by easterly winds (NNE, NE) and southerly winds (S). (2) The annual drift potential (DP) and resultant drift potential (RDP) of Boao Jade Belt Beach from 2020 to 2024 were 125.99 VU and 29.59 VU, respectively, indicating a low-energy wind environment. The yearly index of directional wind variability (RDP/DP) was 0.23, which is classified as a small ratio and indicates blunt bimodal wind conditions. The yearly resultant drift direction (RDD) was 329.41°, corresponding to the NNW direction, indicating that the sand on Boao Jade Belt Beach is generally transported in the southwest direction. (3) When the measured data from the sand accumulation instrument in the study area from 2020 to 2024 were used for a statistical analysis, the results showed that the total sediment transport rate in the study area was 39.97 kg/m·a, with the maximum sediment transport rate in the S direction being 17.74 kg/m·a. These results suggest that, when sand fixation systems are constructed for relevant infrastructure in the region, the direction of protective forests and other engineering measures should be perpendicular to the net direction of sand transport. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

22 pages, 3989 KB  
Article
Enhancing Typhoon Doksuri (2023) Forecasts via Radar Data Assimilation: Evaluation of Momentum Control Variable Schemes with Background-Dependent Hydrometeor Retrieval in WRF-3DVAR
by Xinyi Wang, Feifei Shen, Shen Wan, Jing Liu, Haiyan Fei, Changliang Shao, Song Yuan, Jiajun Chen and Xiaolin Yuan
Atmosphere 2025, 16(7), 797; https://doi.org/10.3390/atmos16070797 - 30 Jun 2025
Viewed by 513
Abstract
This research investigates how incorporating both radar radial velocity (Vr) and radar reflectivity influences the accuracy of tropical cyclone (TC) prediction. Different control variables are introduced to analyze their roles in Vr data assimilation, while background-dependent radar reflectivity assimilation [...] Read more.
This research investigates how incorporating both radar radial velocity (Vr) and radar reflectivity influences the accuracy of tropical cyclone (TC) prediction. Different control variables are introduced to analyze their roles in Vr data assimilation, while background-dependent radar reflectivity assimilation methods are also applied. Using Typhoon “Doksuri” (2023) as a primary case study and Typhoon “Kompasu” (2021) as a supplementary case, the Weather Research and Forecasting (WRF) model’s three-dimensional variational assimilation (3DVAR) is utilized to assimilate Vr and reflectivity observations to improve TC track, intensity, and precipitation forecasts. Three experiments were conducted for each typhoon: one with no assimilation, one with Vr assimilation using ψχ control variables and background-dependent radar reflectivity assimilation, and one with Vr assimilation using UV control variables and background-dependent radar reflectivity assimilation. The results show that assimilating Vr enhances small-scale dynamics in the TC core, leading to a more organized and stronger wind field. The experiment involving UV control variables consistently showed advantages over the ψχ scheme in aspects such as overall track prediction, initial intensity representation, and producing more stable or physically plausible intensity trends, particularly evident when comparing both typhoon events. These findings highlight the importance of optimizing control variables and assimilation methods to enhance the prediction of TCs. Full article
Show Figures

Figure 1

21 pages, 5785 KB  
Article
Impacts of the Assimilation of Radar Radial Velocity Data Using the Ensemble Kalman Filter (EnKF) on the Analysis and Forecast of Typhoon Lekima (2019)
by Jiping Guan, Jiajun Chen, Xinya Li, Mengting Liu and Mingyang Zhang
Remote Sens. 2025, 17(13), 2258; https://doi.org/10.3390/rs17132258 - 30 Jun 2025
Viewed by 573
Abstract
High-resolution radar observations are essential to improving the numerical predictions of high-impact weather systems with data assimilation techniques. The numerical simulations of the landfall of Typhoon Lekima (2019) are conducted in the framework of the WRF model, investigating the impact of assimilating radar [...] Read more.
High-resolution radar observations are essential to improving the numerical predictions of high-impact weather systems with data assimilation techniques. The numerical simulations of the landfall of Typhoon Lekima (2019) are conducted in the framework of the WRF model, investigating the impact of assimilating radar radial velocity observations via the Ensemble Kalman Filter (EnKF) on the typhoon’s analysis and forecast performance. The results demonstrate that the EnKF method significantly improves forecast accuracy for Typhoon Lekima, including track, intensity and the 24 h cumulative precipitation. To be specific, the control experiment significantly underestimated typhoon intensity, while EnKF-based radar radial velocity assimilation markedly improved near-surface winds (>48 m/s) in the typhoon core, refined vortex structure and reduced track forecast errors by 50–60%. Compared with the control and 3DVAR experiments, EnKF assimilation better captured typhoon precipitation patterns, with the highest ETS scores, especially for moderate-to-high precipitation intensities. Moreover, the detailed analysis and diagnostics of Lekima show that the warm core structure is better captured in the assimilation experiment. The typhoon system is also improved, as reflected by enhanced potential temperature and a more robust wind field analysis. Full article
Show Figures

Figure 1

25 pages, 6409 KB  
Article
Dynamic Response Mitigation of Offshore Jacket Platform Using Tuned Mass Damper Under Misaligned Typhoon and Typhoon Wave
by Kaien Jiang, Guangyi Zhu, Guoer Lv, Huafeng Yu, Lizhong Wang, Mingfeng Huang and Lilin Wang
Appl. Sci. 2025, 15(13), 7321; https://doi.org/10.3390/app15137321 - 29 Jun 2025
Viewed by 625
Abstract
This study addresses the dynamic response control of deep-water jacket offshore platforms under typhoon and misaligned wave loads by proposing a Tuned Mass Damper (TMD)-based vibration suppression strategy. Typhoon loading is predicted using the Weather Research and Forecasting (WRF) model to simulate maximum [...] Read more.
This study addresses the dynamic response control of deep-water jacket offshore platforms under typhoon and misaligned wave loads by proposing a Tuned Mass Damper (TMD)-based vibration suppression strategy. Typhoon loading is predicted using the Weather Research and Forecasting (WRF) model to simulate maximum wind speed and direction, a customized exponential wind profile fitted to WRF results, and a spectral model calibrated with field-measured data. Correspondingly, typhoon wave loading is calculated using stochastic wave theory with the Joint North Sea Wave Project (JONSWAP) spectrum. A rigorous Finite Element Model (FEM) incorporating soil–structure interaction (SSI) and water-pile interaction is implemented in the Opensees platform. The SSI is modeled using nonlinear Beam on Nonlinear Winkler Foundation (BNWF) elements (PySimple1, TzSimple1, QzSimple1). Numerical simulations demonstrate that the TMD effectively mitigates dynamic platform responses under aligned typhoon and wave conditions. Specifically, the maximum deck acceleration in the X-direction is reduced by 26.19% and 31.58% under these aligned loads, with a 17.7% peak attenuation in base shear. For misaligned conditions, the TMD exhibits pronounced control over displacements in both X- and Y-directions, achieving reductions of up to 29.4%. Sensitivity studies indicated that the TMD’s effectiveness is more significantly impacted by stiffness detuning than mass detuning. It should be emphasized that the effectiveness verification of linear TMD is limited to the load levels within the design limits; for the load conditions that trigger extreme structural nonlinearity, its performance remains to be studied. This research provides theoretical and practical references for multi-directional coupled vibration control of deep-water jacket platforms in extreme marine environments. Full article
Show Figures

Figure 1

21 pages, 8446 KB  
Article
Regional Wave Analysis in the East China Sea Based on the SWAN Model
by Songnan Ma, Fuwu Ji, Qunhui Yang, Zhinan Mi and Wenhui Cao
J. Mar. Sci. Eng. 2025, 13(6), 1196; https://doi.org/10.3390/jmse13061196 - 19 Jun 2025
Viewed by 1186
Abstract
High-precision wave data serve as a foundation for investigating the wave characteristics of the East China Sea (ECS) and wave energy development. Based on the simulating waves nearshore (SWAN) model, this study uses the ERA5 (ECMWF Reanalysis v5) reanalysis wind field data and [...] Read more.
High-precision wave data serve as a foundation for investigating the wave characteristics of the East China Sea (ECS) and wave energy development. Based on the simulating waves nearshore (SWAN) model, this study uses the ERA5 (ECMWF Reanalysis v5) reanalysis wind field data and ETOPO1 bathymetric data to perform high-precision simulations at a resolution of 0.05° × 0.05° for the waves in the area of 25–35° N and 120–130° E in the ECS from 2009 to 2023. The simulation results indicate that the application of the whitecapping dissipation parameter Komen and the bottom friction parameter Collins yields an average RMSE of 0.374 m and 0.369 m when compared to satellite-measured data, demonstrating its superior suitability for wave simulation in shallow waters such as the ESC over the other whitecapping dissipation parameter, Westhuysen, and the other two bottom friction parameters, Jonswap and Madsen, in the SWAN model. The monthly average significant wave height (SWH) ranges from 0 to 3 m, exhibiting a trend that it is more important in autumn and winter than in spring and summer and gradually increases from the northwest to the southeast. Due to the influence of the Kuroshio current, topography, and events such as typhoons, areas with significant wave heights are found in the northwest of the Ryukyu Islands and north of the Taiwan Strait. The wave energy flux density in most areas of the ECS is >2 kW/m, particularly in the north of the Ryukyu Islands, where the annual average value remains above 8 kW/m. Because of the influence of climate events such as El Niño and extreme heatwaves, the wave energy flux density decreased significantly in some years (a 21% decrease in 2015). The coefficient of variation of wave energy in the East China Sea exhibits pronounced regional heterogeneity, which can be categorized into four distinct patterns: high mean wave energy with high variation coefficient, high mean wave energy with low variation coefficient, low mean wave energy with high variation coefficient, and low mean wave energy with low variation coefficient. This classification fundamentally reflects the intrinsic differences in dynamic environments across various maritime regions. These high-precision numerical simulation results provide methodological and theoretical support for exploring the spatiotemporal variation laws of waves in the ECS region, the development and utilization of wave resources, and marine engineering construction. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

21 pages, 19457 KB  
Article
Comparative Analysis of Hydrodynamic Characteristics off Shandong Under the Influence of Two Types of Storm Surges
by Wenwen Liu, Qingdan Zheng, Zhizu Wang and Juncheng Zuo
J. Mar. Sci. Eng. 2025, 13(6), 1054; https://doi.org/10.3390/jmse13061054 - 27 May 2025
Viewed by 511
Abstract
As China’s largest peninsula, the Shandong Peninsula faces recurrent threats from both tropical and extratropical cyclone-induced storm surges. Understanding the distinct mechanisms governing these surge types is critical for developing targeted coastal hazard mitigation strategies. This investigation employs the FVCOM-SWAVE coupled wave–current model [...] Read more.
As China’s largest peninsula, the Shandong Peninsula faces recurrent threats from both tropical and extratropical cyclone-induced storm surges. Understanding the distinct mechanisms governing these surge types is critical for developing targeted coastal hazard mitigation strategies. This investigation employs the FVCOM-SWAVE coupled wave–current model to conduct numerical simulations and comparative analyses of two 2022 surge events, Typhoon Muifa (tropical) and the “221003” extratropical surge. The results demonstrate that hydrodynamic responses exhibit strong dependence on surge-generating meteorological regimes. Tropical surge dynamics correlate closely with typhoon track geometry, intensity gradients, and asymmetric wind field structures, manifesting rightward-biased energy intensification relative to storm motion. Conversely, extratropical surge variations align with evolving wind-pressure configurations during cold air advection, driven by synoptic-scale atmospheric reorganization. The hydrodynamic environmental response in the sea areas surrounding Jiaodong and Laizhou Bay is particularly pronounced, influenced by the intensity of wind stress on the sea surface, as well as the bathymetry and coastal geometry. Full article
(This article belongs to the Topic Wind, Wave and Tidal Energy Technologies in China)
Show Figures

Figure 1

34 pages, 7328 KB  
Article
Typhoon and Storm Surge Hazard Analysis Along the Coast of Zhejiang Province in China Using TCRM and Machine Learning
by Yong Fang, Xiangyu Li, Yanhua Sun, Ailian Li and Yunxia Guo
J. Mar. Sci. Eng. 2025, 13(6), 1017; https://doi.org/10.3390/jmse13061017 - 23 May 2025
Viewed by 999
Abstract
Zhejiang Province in China is one of the most typhoon-prone regions globally, making typhoon and storm surge hazard analysis critically important for disaster mitigation. This study integrates the Tropical Cyclone Risk Model (TCRM) with a machine learning-based storm surge forecasting model to analyze [...] Read more.
Zhejiang Province in China is one of the most typhoon-prone regions globally, making typhoon and storm surge hazard analysis critically important for disaster mitigation. This study integrates the Tropical Cyclone Risk Model (TCRM) with a machine learning-based storm surge forecasting model to analyze typhoon hazards and storm surge risks at four representative coastal sites in Zhejiang Province: Haimen, Ruian, Wenzhou, and Zhapu. Firstly, the input database of the TCRM has been updated and subsequently used to generate a 1000-year synthetic typhoon event catalog for the Northwest Pacific region. Secondly, four machine learning models—Long Short-Term Memory (LSTM), Back Propagation (BP), Support Vector Regression (SVR), and Random Forest (RF)—were developed to forecast storm surge component at the four sites, with sensitivity analysis conducted on the input parameters. Among the four models, RF consistently outperformed the others across all four sites. Thirdly, by integrating the storm surge forecasting model with the Yan Meng (YM) typhoon wind field model, extreme wind speed sequences and extreme surge component sequences were derived for the four coastal sites. Finally, four extreme value distribution models—empirical distribution, Weibull, Gumbel, and Generalized Pareto Distribution (GPD)—were applied to fit the extreme wind and surge sequences. Goodness-of-fit tests indicated that the GPD best captured extreme wind speeds at all four sites and extreme surge levels at Haimen, Ruian, and Wenzhou. Using the optimal distributions, return periods (10-, 50-, 100-, and 200-year) for extreme wind speeds and surge components were calculated, providing actionable references for disaster risk management authorities. Full article
(This article belongs to the Section Ocean and Global Climate)
Show Figures

Figure 1

Back to TopTop