Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (506)

Search Parameters:
Keywords = underwater sensor networks

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1147 KB  
Article
A Channel-Aware AUV-Aided Data Collection Scheme Based on Deep Reinforcement Learning
by Lizheng Wei, Minghui Sun, Zheng Peng, Jingqian Guo, Jiankuo Cui, Bo Qin and Jun-Hong Cui
J. Mar. Sci. Eng. 2025, 13(8), 1460; https://doi.org/10.3390/jmse13081460 - 30 Jul 2025
Viewed by 246
Abstract
Underwater sensor networks (UWSNs) play a crucial role in subsea operations like marine exploration and environmental monitoring. A major challenge for UWSNs is achieving effective and energy-efficient data collection, particularly in deep-sea mining, where energy limitations and long-term deployment are key concerns. This [...] Read more.
Underwater sensor networks (UWSNs) play a crucial role in subsea operations like marine exploration and environmental monitoring. A major challenge for UWSNs is achieving effective and energy-efficient data collection, particularly in deep-sea mining, where energy limitations and long-term deployment are key concerns. This study introduces a Channel-Aware AUV-Aided Data Collection Scheme (CADC) that utilizes deep reinforcement learning (DRL) to improve data collection efficiency. It features an innovative underwater node traversal algorithm that accounts for unique underwater signal propagation characteristics, along with a DRL-based path planning approach to mitigate propagation losses and enhance data energy efficiency. CADC achieves a 71.2% increase in energy efficiency compared to existing clustering methods and shows a 0.08% improvement over the Deep Deterministic Policy Gradient (DDPG), with a 2.3% faster convergence than the Twin Delayed DDPG (TD3), and reduces energy cost to only 22.2% of that required by the TSP-based baseline. By combining a channel-aware traversal with adaptive DRL navigation, CADC effectively optimizes data collection and energy consumption in underwater environments. Full article
Show Figures

Figure 1

19 pages, 3997 KB  
Article
Adaptive Power-Controlled Energy-Efficient Depth-Based Routing Protocol for Underwater Wireless Sensor Networks
by Hongling Chu, Biao Wang, Tao Fang and Biao Liu
J. Mar. Sci. Eng. 2025, 13(8), 1418; https://doi.org/10.3390/jmse13081418 - 25 Jul 2025
Viewed by 312
Abstract
In this paper, we propose the Adaptive Power-Controlled Energy-Efficient Depth-Based Routing (APC-EEDBR) protocol. This protocol is designed to address the challenges posed by complex environments and limited resources in underwater-sensor networks. Employing a dual-weight adjustment mechanism and adaptive power control enables the protocol [...] Read more.
In this paper, we propose the Adaptive Power-Controlled Energy-Efficient Depth-Based Routing (APC-EEDBR) protocol. This protocol is designed to address the challenges posed by complex environments and limited resources in underwater-sensor networks. Employing a dual-weight adjustment mechanism and adaptive power control enables the protocol to achieve energy-efficient relay selection and enhance the link stability. The protocol adopts a cluster-free, hop-by-hop communication strategy and a cross-layer design to improve path stability and forwarding efficiency while mitigating hotspot issues in data aggregation areas. The simulation results demonstrate that the APC-EEDBR protocol effectively reduces energy consumption and communication overhead by approximately 16%, and significantly prolongs the network lifetime by about 39% compared with EEDBR. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

15 pages, 2628 KB  
Article
High Anti-Swelling Zwitterion-Based Hydrogel with Merit Stretchability and Conductivity for Motion Detection and Information Transmission
by Qingyun Zheng, Jingyuan Liu, Rongrong Chen, Qi Liu, Jing Yu, Jiahui Zhu and Peili Liu
Nanomaterials 2025, 15(13), 1027; https://doi.org/10.3390/nano15131027 - 2 Jul 2025
Viewed by 576
Abstract
Hydrogel sensors show unique advantages in underwater detection, ocean monitoring, and human–computer interaction because of their excellent flexibility, biocompatibility, high sensitivity, and environmental adaptability. However, due to the water environment, hydrogels will dissolve to a certain extent, resulting in insufficient mechanical strength, poor [...] Read more.
Hydrogel sensors show unique advantages in underwater detection, ocean monitoring, and human–computer interaction because of their excellent flexibility, biocompatibility, high sensitivity, and environmental adaptability. However, due to the water environment, hydrogels will dissolve to a certain extent, resulting in insufficient mechanical strength, poor long-term stability, and signal interference. In this paper, a double-network structure was constructed by polyvinyl alcohol (PVA) and poly([2-(methacryloyloxy) ethyl]7 dimethyl-(3-sulfopropyl) ammonium hydroxide) (PSBMA). The resultant PVA/PSBMA-PA hydrogel demonstrated notable swelling resistance, a property attributable to the incorporation of non-covalent interactions (electrostatic interactions and hydrogen bonding) through the addition of phytic acid (PA). The hydrogel exhibited high stretchability (maximum tensile strength up to 304 kPa), high conductivity (5.8 mS/cm), and anti-swelling (only 1.8% swelling occurred after 14 days of immersion in artificial seawater). Assembled as a sensor, it exhibited high strain sensitivity (0.77), a low detection limit (1%), and stable electrical properties after multiple tensile cycles. The utilization of PVA/PSBMA-PA hydrogel as a wearable sensor shows promise for detecting human joint movements, including those of the fingers, wrists, elbows, and knees. Due to the excellent resistance to swelling, the PVA/PSBMA-PA-based sensors are also suitable for underwater applications, enabling the detection of underwater mannequin motion. This study proposes an uncomplicated and pragmatic methodology for producing hydrogel sensors suitable for use within subaquatic environments, thereby concomitantly broadening the scope of applications for wearable electronic devices. Full article
(This article belongs to the Special Issue Nanomaterials in Flexible Sensing and Devices)
Show Figures

Figure 1

22 pages, 5161 KB  
Article
AUV Trajectory Planning for Optimized Sensor Data Collection in Internet of Underwater Things
by Talal S. Almuzaini and Andrey V. Savkin
Future Internet 2025, 17(7), 293; https://doi.org/10.3390/fi17070293 - 30 Jun 2025
Viewed by 347
Abstract
Efficient and timely data collection in Underwater Acoustic Sensor Networks (UASNs) for Internet of Underwater Things (IoUT) applications remains a significant challenge due to the inherent limitations of the underwater environment. This paper presents a Value of Information (VoI)-based trajectory planning framework for [...] Read more.
Efficient and timely data collection in Underwater Acoustic Sensor Networks (UASNs) for Internet of Underwater Things (IoUT) applications remains a significant challenge due to the inherent limitations of the underwater environment. This paper presents a Value of Information (VoI)-based trajectory planning framework for a single Autonomous Underwater Vehicle (AUV) operating in coordination with an Unmanned Surface Vehicle (USV) to collect data from multiple Cluster Heads (CHs) deployed across an uneven seafloor. The proposed approach employs a VoI model that captures both the importance and timeliness of sensed data, guiding the AUV to collect and deliver critical information before its value significantly degrades. A forward Dynamic Programming (DP) algorithm is used to jointly optimize the AUV’s trajectory and the USV’s start and end positions, with the objective of maximizing the total residual VoI upon mission completion. The trajectory design incorporates the AUV’s kinematic constraints into travel time estimation, enabling accurate VoI evaluation throughout the mission. Simulation results show that the proposed strategy consistently outperforms conventional baselines in terms of residual VoI and overall system efficiency. These findings highlight the advantages of VoI-aware planning and AUV–USV collaboration for effective data collection in challenging underwater environments. Full article
Show Figures

Figure 1

20 pages, 3108 KB  
Article
Energy-Efficient MAC Protocol for Underwater Sensor Networks Using CSMA/CA, TDMA, and Actor–Critic Reinforcement Learning (AC-RL) Fusion
by Wazir Ur Rahman, Qiao Gang, Feng Zhou, Muhammad Tahir, Wasiq Ali, Muhammad Adil, Sun Zong Xin and Muhammad Ilyas Khattak
Acoustics 2025, 7(3), 39; https://doi.org/10.3390/acoustics7030039 - 25 Jun 2025
Viewed by 785
Abstract
Due to the dynamic and harsh underwater environment, which involves a long propagation delay, high bit error rate, and limited bandwidth, it is challenging to achieve reliable communication in underwater wireless sensor networks (UWSNs) and network support applications, like environmental monitoring and natural [...] Read more.
Due to the dynamic and harsh underwater environment, which involves a long propagation delay, high bit error rate, and limited bandwidth, it is challenging to achieve reliable communication in underwater wireless sensor networks (UWSNs) and network support applications, like environmental monitoring and natural disaster prediction, which require energy efficiency and low latency. To tackle these challenges, we introduce AC-RL-based power control (ACRLPC), a novel hybrid MAC protocol that can efficiently integrate Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA)-based MAC and Time Division Multiple Access (TDMA) with Actor–Critic Reinforcement Learning (AC-RL). The proposed framework employs adaptive strategies, utilizing adaptive power control and intelligent access methods, which adjust to fluctuating conditions on the network. Harsh and dynamic underwater environment performance evaluations of the proposed scheme confirm a significant outperformance of ACRLPC compared to the current protocols of FDU-MAC, TCH-MAC, and UW-ALOHA-QM in all major performance measures, like energy consumption, throughput, accuracy, latency, and computational complexity. The ACRLPC is an ultra-energy-efficient protocol since it provides higher-grade power efficiency by maximizing the throughput and limiting the latency. Its overcoming of computational complexity makes it an approach that greatly relaxes the processing requirement, especially in the case of large, scalable underwater deployments. The unique hybrid architecture that is proposed effectively combines the best of both worlds, leveraging TDMA for reliable access, and the flexibility of CSMA/CA serves as a robust and holistic mechanism that meets the desired enablers of the system. Full article
Show Figures

Figure 1

21 pages, 2793 KB  
Article
Enhancing Fault Detection in AUV-Integrated Navigation Systems: Analytical Models and Deep Learning Methods
by Huibao Yang, Bangshuai Li, Xiujing Gao, Bo Xiao and Hongwu Huang
J. Mar. Sci. Eng. 2025, 13(7), 1198; https://doi.org/10.3390/jmse13071198 - 20 Jun 2025
Viewed by 470
Abstract
In complex underwater environments, the stability of navigation for autonomous underwater vehicles (AUVs) is critical for mission success. To enhance the reliability of the AUV-integrated navigation system, fault detection technology was investigated. Initially, the causes and classifications of faults within the integrated navigation [...] Read more.
In complex underwater environments, the stability of navigation for autonomous underwater vehicles (AUVs) is critical for mission success. To enhance the reliability of the AUV-integrated navigation system, fault detection technology was investigated. Initially, the causes and classifications of faults within the integrated navigation system were analyzed in detail, and these faults were categorized as either abrupt or gradual, based on variations in sensor output characteristics under fault conditions. To overcome the limitations of the residual chi-square method in detecting gradual faults, a cumulative residual detection approach with error coefficient amplification was proposed. The algorithm enhances gradual fault detection by using eigenvalue analysis and constructing fault-frequency-based error amplification coefficients with non-parametric techniques. Furthermore, to improve the detection of gradual faults, artificial intelligence-based fault detection methods were also explored. Specifically, the particle swarm optimization (PSO) algorithm was employed to optimize the hyperparameters of a long short-term memory (LSTM) neural network, leading to the development of a PSO-LSTM fault detection model. In this model, the fault detection function was formulated by comparing the predictions generated by the PSO-LSTM model with those derived from the Kalman filter. The experimental results demonstrated that the fault detection function formulated by PSO-LSTM exhibited enhanced sensitivity to gradual faults and enabled the timely isolation of faulty sensors. In unfamiliar marine regions, the PSO-LSTM method demonstrates greater stability and avoids the need to recalibrate detection thresholds for each sea area—an important advantage for AUV autonomous navigation in complex environments. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

17 pages, 1538 KB  
Article
AI-Driven Adaptive Communications for Energy-Efficient Underwater Acoustic Sensor Networks
by A. Ur Rehman, Laura Galluccio and Giacomo Morabito
Sensors 2025, 25(12), 3729; https://doi.org/10.3390/s25123729 - 14 Jun 2025
Viewed by 970
Abstract
Underwater acoustic sensor networks, crucial for marine monitoring, face significant challenges, including limited bandwidth, high delay, and severe energy constraints. Addressing these limitations requires an energy-efficient design to ensure network survivability, reliability, and reduced operational costs. This paper proposes an artificial intelligence-driven framework [...] Read more.
Underwater acoustic sensor networks, crucial for marine monitoring, face significant challenges, including limited bandwidth, high delay, and severe energy constraints. Addressing these limitations requires an energy-efficient design to ensure network survivability, reliability, and reduced operational costs. This paper proposes an artificial intelligence-driven framework aimed at enhancing energy efficiency and sustainability in applications of marine wildlife monitoring in underwater sensor networks, according to the vision of implementing an underwater acoustic sensor network. The framework integrates intelligent computing directly into underwater sensor nodes, employing lightweight AI models to locally classify marine species. Transmitting only classification results, instead of raw data, significantly reduces data volume, thus conserving energy. Additionally, a software-defined radio methodology dynamically adapts transmission parameters such as modulation schemes, packet length, and transmission power to further minimize energy consumption and environmental disruption. GNU Radio simulations evaluate the framework effectiveness using metrics like energy consumption, bit error rate, throughput, and delay. Adaptive transmission strategies implicitly ensure reduced energy usage as compared to non-adaptive transmission solutions employing fixed communication parameters. The results illustrate the framework ability to effectively balance energy efficiency, performance, and ecological impact. This research contributes directly to ongoing development in sustainable and energy-efficient underwater wireless sensor network design and deployment. Full article
(This article belongs to the Special Issue Energy Efficient Design in Wireless Ad Hoc and Sensor Networks)
Show Figures

Figure 1

29 pages, 1412 KB  
Review
Cryptography-Based Secure Underwater Acoustic Communication for UUVs: A Review
by Qian Zhou, Qing Ye, Chengzhe Lai and Guangyue Kou
Electronics 2025, 14(12), 2415; https://doi.org/10.3390/electronics14122415 - 13 Jun 2025
Viewed by 999
Abstract
Unmanned Underwater Vehicles (UUVs) play an irreplaceable role in marine exploration, environmental monitoring, and national defense. The UUV depends on underwater acoustic communication (UAC) technology to enable reliable data transmission and support efficient collaboration. As the complexity of UUV missions has increased, secure [...] Read more.
Unmanned Underwater Vehicles (UUVs) play an irreplaceable role in marine exploration, environmental monitoring, and national defense. The UUV depends on underwater acoustic communication (UAC) technology to enable reliable data transmission and support efficient collaboration. As the complexity of UUV missions has increased, secure UAC has become a critical element in ensuring successful mission execution. However, underwater channels are inherently characterized by high error rates, limited bandwidth, and signal interference. These problems severely limit the efficacy of traditional security methods and expose UUVs to the risk of data theft and signaling attacks. Cryptography-based security methods are important means to protect data, effectively balancing security requirements and resource constraints. They provide technical support for UUVs to build secure communication. This paper systematically reviews key advances in cryptography-based secure UAC technologies, focusing on three main areas: (1) efficient authentication protocols, (2) lightweight cryptographic algorithms, and (3) fast cryptographic synchronization algorithms. By comparing the performance boundaries and application scenarios of various technologies, we discuss the current challenges and critical issues in underwater secure communication. Finally, we explore future research directions, aiming to provide theoretical references and technical insights for the further development of secure UAC technologies for UUVs. Full article
Show Figures

Figure 1

20 pages, 3177 KB  
Article
Smart Underwater Sensor Network GPRS Architecture for Marine Environments
by Blanca Esther Carvajal-Gámez, Uriel Cedeño-Antunez and Abigail Elizabeth Pallares-Calvo
Sensors 2025, 25(11), 3439; https://doi.org/10.3390/s25113439 - 30 May 2025
Viewed by 618
Abstract
The rise of the Internet of Things (IoT) has made it possible to explore different types of communication, such as underwater IoT (UIoT). This new paradigm allows the interconnection of ships, boats, coasts, objects in the sea, cameras, and animals that require constant [...] Read more.
The rise of the Internet of Things (IoT) has made it possible to explore different types of communication, such as underwater IoT (UIoT). This new paradigm allows the interconnection of ships, boats, coasts, objects in the sea, cameras, and animals that require constant monitoring. The use of sensors for environmental monitoring, tracking marine fauna and flora, and monitoring the health of aquifers requires the integration of heterogeneous technologies as well as wireless communication technologies. Aquatic mobile sensor nodes face various limitations, such as bandwidth, propagation distance, and data transmission delay issues. Owing to their versatility, wireless sensor networks support remote monitoring and surveillance. In this work, an architecture for a general packet radio service (GPRS) wireless sensor network is presented. The network is used to monitor the geographic position over the coastal area of the Gulf of Mexico. The proposed architecture integrates cellular technology and some ad hoc network configurations in a single device such that coverage is improved without significantly affecting the energy consumption, as shown in the results. The network coverage and energy consumption are evaluated by analyzing the attenuation in a proposed channel model and the autonomy of the electronic system, respectively. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

13 pages, 2180 KB  
Article
Wide Field-of-View Air-to-Water Rolling Shutter-Based Optical Camera Communication (OCC) Using CUDA Deep-Neural-Network Long-Short-Term-Memory (CuDNNLSTM)
by Yung-Jie Chen, Yu-Han Lin, Guo-Liang Shih, Chi-Wai Chow and Chien-Hung Yeh
Appl. Sci. 2025, 15(11), 5971; https://doi.org/10.3390/app15115971 - 26 May 2025
Viewed by 491
Abstract
Nowadays, underwater activities are becoming more and more important. As the number of underwater sensing devices grows rapidly, the amount of bandwidth needed also increases very quickly. Apart from underwater communication, direct communication across the water–air interface is also highly desirable. Air-to-water wireless [...] Read more.
Nowadays, underwater activities are becoming more and more important. As the number of underwater sensing devices grows rapidly, the amount of bandwidth needed also increases very quickly. Apart from underwater communication, direct communication across the water–air interface is also highly desirable. Air-to-water wireless transmission is crucial for sending control information or instructions from unmanned aerial vehicles (UAVs) or ground stations above the sea surface to autonomous underwater vehicles (AUVs). On the other hand, water-to-air wireless transmission is also required to transmit real-time information from AUVs or underwater sensor nodes to UAVs above the water surface. Previously, we successfully demonstrated a water-to-air optical camera-based OWC system, which is also known as optical camera communication (OCC). However, the reverse transmission (i.e., air-to-water) using OCC has not been analyzed. It is worth noting that in the water-to-air OCC system, since the camera is located in the air, the image of the light source is magnified due to diffraction. Hence, the pixel-per-symbol (PPS) decoding of the OCC pattern is easier. In the proposed air-to-water OCC system reported here, since the camera is located in the water, the image of the light source in the air will be diminished in size due to diffraction. Hence, the PPS decoding of the OCC pattern becomes more difficult. In this work, we propose and experimentally demonstrate a wide field-of-view (FOV) air-to-water OCC system using CUDA Deep-Neural-Network Long-Short-Term-Memory (CuDNNLSTM). Due to water turbulence and air turbulence affecting the AUV and UAV, a precise line-of-sight (LOS) between the AUV and the UAV is difficult to achieve. OCC can provide wide FOV without the need for precise optical alignment. Results revealed that the proposed air-to-water OCC system can support a transmission rate of 7.2 kbit/s through a still water surface, and 6.6 kbit/s through a wavy water surface; this satisfies the hard-decision forward error correction (HD-FEC) bit-error-rate (BER). Full article
(This article belongs to the Special Issue Screen-Based Visible Light Communication)
Show Figures

Figure 1

52 pages, 18012 KB  
Review
Underwater SLAM Meets Deep Learning: Challenges, Multi-Sensor Integration, and Future Directions
by Mohamed Heshmat, Lyes Saad Saoud, Muayad Abujabal, Atif Sultan, Mahmoud Elmezain, Lakmal Seneviratne and Irfan Hussain
Sensors 2025, 25(11), 3258; https://doi.org/10.3390/s25113258 - 22 May 2025
Cited by 1 | Viewed by 3039
Abstract
The underwater domain presents unique challenges and opportunities for scientific exploration, resource extraction, and environmental monitoring. Autonomous underwater vehicles (AUVs) rely on simultaneous localization and mapping (SLAM) for real-time navigation and mapping in these complex environments. However, traditional SLAM techniques face significant obstacles, [...] Read more.
The underwater domain presents unique challenges and opportunities for scientific exploration, resource extraction, and environmental monitoring. Autonomous underwater vehicles (AUVs) rely on simultaneous localization and mapping (SLAM) for real-time navigation and mapping in these complex environments. However, traditional SLAM techniques face significant obstacles, including poor visibility, dynamic lighting conditions, sensor noise, and water-induced distortions, all of which degrade the accuracy and robustness of underwater navigation systems. Recent advances in deep learning (DL) have introduced powerful solutions to overcome these challenges. DL techniques enhance underwater SLAM by improving feature extraction, image denoising, distortion correction, and sensor fusion. This survey provides a comprehensive analysis of the latest developments in DL-enhanced SLAM for underwater applications, categorizing approaches based on their methodologies, sensor dependencies, and integration with deep learning models. We critically evaluate the benefits and limitations of existing techniques, highlighting key innovations and unresolved challenges. In addition, we introduce a novel classification framework for underwater SLAM based on its integration with underwater wireless sensor networks (UWSNs). UWSNs offer a collaborative framework that enhances localization, mapping, and real-time data sharing among AUVs by leveraging acoustic communication and distributed sensing. Our proposed taxonomy provides new insights into how communication-aware SLAM methodologies can improve navigation accuracy and operational efficiency in underwater environments. Furthermore, we discuss emerging research trends, including the use of transformer-based architectures, multi-modal sensor fusion, lightweight neural networks for real-time deployment, and self-supervised learning techniques. By identifying gaps in current research and outlining potential directions for future work, this survey serves as a valuable reference for researchers and engineers striving to develop robust and adaptive underwater SLAM solutions. Our findings aim to inspire further advancements in autonomous underwater exploration, supporting critical applications in marine science, deep-sea resource management, and environmental conservation. Full article
(This article belongs to the Special Issue Multi-Sensor Data Fusion)
Show Figures

Figure 1

18 pages, 1986 KB  
Article
Underwater Time Delay Estimation Based on Meta-DnCNN with Frequency-Sliding Generalized Cross-Correlation
by Meiqi Ji, Xuerong Cui, Juan Li, Lei Li and Bin Jiang
J. Mar. Sci. Eng. 2025, 13(5), 919; https://doi.org/10.3390/jmse13050919 - 7 May 2025
Viewed by 2412
Abstract
In underwater signal processing, accurate time delay estimation (TDE) is of crucial importance for ensuring the reliability of data transmission. However, the complex propagation of sound waves and strong noise interference in the underwater environment make this task extremely challenging. Especially under the [...] Read more.
In underwater signal processing, accurate time delay estimation (TDE) is of crucial importance for ensuring the reliability of data transmission. However, the complex propagation of sound waves and strong noise interference in the underwater environment make this task extremely challenging. Especially under the condition of low signal-to-noise ratio (SNR), the existing methods based on cross-correlation and deep learning struggle to meet requirements. Aiming at this core issue, this paper proposed an innovative solution. Firstly, a multi-sub-window reconstruction is performed on the frequency-sliding generalized colorboxpinkcross-correlation (FS-GCC) matrix between signals to capture the time delay characteristics from different frequency bands and conduct the enhancement and extraction of features. Then, the grayscale image corresponding to the generated FS-GCC matrix is used, and the multi-level noise features are extracted by the multi-layer convolution of denoising convolutional neural network (DnCNN), effectively suppressing the noise and improving the estimation accuracy. Finally, the model-agnostic meta-learning (MAML) framework is introduced. Through training tasks under various SNR conditions, the model is enabled to possess the ability to quickly adapt to new environments, and it can achieve the desired estimation accuracy even when the number of underwater training samples is limited. Simulation validation was conducted under the NOF and NCS underwater acoustic channels, and results demonstrate that our proposed approach exhibits lower estimation errors and greater stability compared with existing methods under the same conditions. This method enhances the practicality and robustness of the model in complex underwater environments, providing strong support for the efficient and stable operation of underwater sensor networks. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

27 pages, 2910 KB  
Article
Underwater Digital Twin Sensor Network-Based Maritime Communication and Monitoring Using Exponential Hyperbolic Crisp Adaptive Network-Based Fuzzy Inference System
by Bala Anand Muthu and Claudia Cherubini
Water 2025, 17(9), 1324; https://doi.org/10.3390/w17091324 - 28 Apr 2025
Viewed by 897
Abstract
The underwater conditions of the coastal ecosystem require careful monitoring to anticipate potential environmental hazards. Moreover, the unique characteristics of the marine underwater environment have presented numerous challenges for the advancement of underwater sensor networks. Current studies have not extensively integrated Digital Twins [...] Read more.
The underwater conditions of the coastal ecosystem require careful monitoring to anticipate potential environmental hazards. Moreover, the unique characteristics of the marine underwater environment have presented numerous challenges for the advancement of underwater sensor networks. Current studies have not extensively integrated Digital Twins with underwater sensor networks aimed at monitoring the marine ecosystem. Consequently, this study proposes a decision-making framework based on Underwater Digital Twins (UDTs) utilizing the Exponential Hyperbolic Crisp Adaptive Network-based Fuzzy Inference System (EHC-ANFIS). The process begins with the initialization and registration of an Underwater Autonomous Vehicle (UAV). Subsequently, data are collected from the sensor network and relayed to the UDT model. The optimal path is determined using Adaptive Pheromone Ant Colony Optimization (AP-ACO) to ensure efficient data transmission. Following this, data compression is achieved through the Sliding–Huffman Coding (SHC) algorithm. The Twisted Koblitz Curve Cryptography (TKCC) method is employed to enhance data security. Additionally, an Anomaly Detection System (ADS) is trained, which involves collecting and pre-processing sensor network data. A Radial Chart is then utilized for effective visualization. Anomalies are detected using the CosLU-Variational Shake-Long Short-Term Memory (CosLU-VS-LSTM) approach. For standard data, decision-making based on the UDT model is conducted using EHC-ANFIS, with a fuzzification duration of 21,045 milliseconds. Finally, alerts are dispatched to the Maritime Alert Command Centre (MACC). This approach enhances maritime communication and monitoring along coastal areas, with specific reference to the Coromandel Coast, thereby contributing to the protection of the coastal ecosystem. Full article
(This article belongs to the Section Oceans and Coastal Zones)
Show Figures

Figure 1

14 pages, 2809 KB  
Article
Underwater Magnetic Sensors Network
by Arkadiusz Adamczyk, Maciej Klebba, Mariusz Wąż and Ivan Pavić
Sensors 2025, 25(8), 2493; https://doi.org/10.3390/s25082493 - 15 Apr 2025
Viewed by 718
Abstract
This study explores the design and performance of an underwater magnetic sensor network (UMSN) tailored for intrusion detection in complex environments such as riverbeds and areas with dense vegetation. The system utilizes wireless sensor network (WSN) principles and integrates AMR-based magnetic sensors (e.g., [...] Read more.
This study explores the design and performance of an underwater magnetic sensor network (UMSN) tailored for intrusion detection in complex environments such as riverbeds and areas with dense vegetation. The system utilizes wireless sensor network (WSN) principles and integrates AMR-based magnetic sensors (e.g., LSM303AGR) with MEMS-based accelerometers to provide accurate and high-resolution magnetic field measurements. Extensive calibration techniques were employed to correct hard-iron and soft-iron distortions, ensuring reliable performance in fluctuating environmental conditions. Field tests included both controlled setups and real-world scenarios, such as detecting intrusions across river sections, shorelines, and coordinated land-water activities. The results showed detection rates consistently above 90%, with response times averaging 2.5 s and a maximum detection range of 5 m. The system also performed well under adverse weather conditions, including fog and rain, demonstrating its adaptability. The findings underline the potential of UMSN as a scalable and cost-efficient solution for monitoring sensitive areas. By addressing the limitations of traditional surveillance systems, this research offers a practical framework for enhancing security in critical regions, laying the groundwork for future developments in magnetic sensor technology. Full article
Show Figures

Figure 1

20 pages, 2857 KB  
Article
An Experimental Comparison of Basic Device Localization Systems in Wireless Sensor Networks
by Maurizio D’Arienzo
Network 2025, 5(2), 11; https://doi.org/10.3390/network5020011 - 14 Apr 2025
Cited by 1 | Viewed by 497
Abstract
Localization plays a crucial role in wireless sensor networks (WSNs) and it has sparked significant research interest. GPSs provide quite accurate positioning estimations, but they are ineffective indoors and in environments like underwater. Power usage and cost are further disadvantages, and so many [...] Read more.
Localization plays a crucial role in wireless sensor networks (WSNs) and it has sparked significant research interest. GPSs provide quite accurate positioning estimations, but they are ineffective indoors and in environments like underwater. Power usage and cost are further disadvantages, and so many alternatives have been proposed. Many works in the literature still base localization on RSSI measurements and often rely on methods to mitigate the effects of fluctuations in values, so it is important to know real values of RSSIs measured using common devices. This work presents the main localization techniques and exploits a real testbed to collect and evaluate RSSI measurements. An accuracy evaluation and a comparison among several localization techniques are also provided. Full article
Show Figures

Figure 1

Back to TopTop