Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (91)

Search Parameters:
Keywords = variable frequency microwaves

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3353 KB  
Article
Computational Analysis of the Effects of Power on the Electromagnetic Characteristics of Microwave Systems with Plasma
by Kamal Hadidi, Camille E. Williams and Vadim V. Yakovlev
Energies 2025, 18(19), 5128; https://doi.org/10.3390/en18195128 - 26 Sep 2025
Abstract
The scaling of microwave plasma technologies from successful laboratory demonstrations to larger industrial applications usually involves an increase in microwave power. This upgrade is accompanied by a higher electron density (and electric conductivity) of the plasma that often limits the power efficiency of [...] Read more.
The scaling of microwave plasma technologies from successful laboratory demonstrations to larger industrial applications usually involves an increase in microwave power. This upgrade is accompanied by a higher electron density (and electric conductivity) of the plasma that often limits the power efficiency of the device. In this paper, we address this issue through a focused computational study of electromagnetic characteristics of a microwave system containing plasma. Our approach employs finite-different time-domain analysis supported by a simple model which characterizes the plasma medium using plasma frequency and the frequency of electron-neutral collisions. Based on experimental data for electron density with respect to power, the plasma frequency is generated as a linear function of power, thus enabling a direct understanding of how frequency characteristics of the reflection coefficient and patterns of the electric field may vary for different power levels in a variety of plasma scenarios. For a cavity modeled after conventional plasma applicators, computational results illustrate complex behavior of the field with respect to power. When the power is increased, energy efficiency may decrease, remain low, or increase depending on where the operating frequency stands with respect to the system’s resonances. The proposed modeling approach identifies the system parameters which are most impactful in tuning the system to resonance, thus informing the design variables for subsequent computer-aided design of the scaled system. Full article
(This article belongs to the Special Issue Progress in Electromagnetic Analysis and Modeling of Heating Systems)
Show Figures

Figure 1

28 pages, 6366 KB  
Article
Integrated Ultra-Wideband Microwave System to Measure Composition Ratio Between Fat and Muscle in Multi-Species Tissue Types
by Lixiao Zhou, Van Doi Truong and Jonghun Yoon
Sensors 2025, 25(17), 5547; https://doi.org/10.3390/s25175547 - 5 Sep 2025
Viewed by 980
Abstract
Accurate and non-invasive assessment of fat and muscle composition is crucial for biomedical monitoring to track health conditions in humans and pets, as well as for classifying meats in the meat industry. This study introduces a cost-effective, multifunctional ultra-wideband microwave system operating from [...] Read more.
Accurate and non-invasive assessment of fat and muscle composition is crucial for biomedical monitoring to track health conditions in humans and pets, as well as for classifying meats in the meat industry. This study introduces a cost-effective, multifunctional ultra-wideband microwave system operating from 2.4 to 4.4 GHz, designed for rapid and non-destructive quantification of fat thickness, muscle thickness, and fat-to-muscle ratio in diverse ex vivo samples, including pork, beef, and oil–water mixtures. The compact handheld device integrates essential RF components such as a frequency synthesizer, directional coupler, logarithmic power detector, and a dual-polarized Vivaldi antenna. Bluetooth telemetry enables seamless real-time data transmission to mobile- or PC-based platforms, with each measurement completed in a few seconds. To enhance signal quality, a two-stage denoising pipeline combining low-pass filtering and Savitzky–Golay smoothing was applied, effectively suppressing noise while preserving key spectral features. Using a random forest regression model trained on resonance frequency and signal-loss features, the system demonstrates high predictive performance even under limited sample conditions. Correlation coefficients for fat thickness, muscle thickness, and fat-to-muscle ratio consistently exceeded 0.90 across all sample types, while mean absolute errors remained below 3.5 mm. The highest prediction accuracy was achieved in homogeneous oil–water samples, whereas biologically complex tissues like pork and beef introduced greater variability, particularly in muscle-related measurements. The proposed microwave system is highlighted as a highly portable and time-efficient solution, with measurements completed within seconds. Its low cost, ability to analyze multiple tissue types using a single device, and non-invasive nature without the need for sample pre-treatment or anesthesia make it well suited for applications in agri-food quality control, point-of-care diagnostics, and broader biomedical fields. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

21 pages, 6275 KB  
Article
Design of a Low-Cost Flat E-Band Down-Converter with Variable Conversion Gain
by Mehrdad Harifi-Mood, Mansoor Dashti Ardakani, Djilali Hammou, Emilia Moldovan, Bryan Hosein and Serioja O. Tatu
Sensors 2025, 25(17), 5492; https://doi.org/10.3390/s25175492 - 3 Sep 2025
Viewed by 874
Abstract
This paper presents the design and implementation of a wideband diode-based down-converter operating from 60 to 90 GHz with a variable flat conversion gain. The proposed down-converter is implemented utilizing the Miniature Hybrid-Microwave Integrated Circuit (MHMIC) technology. It is composed of a wideband [...] Read more.
This paper presents the design and implementation of a wideband diode-based down-converter operating from 60 to 90 GHz with a variable flat conversion gain. The proposed down-converter is implemented utilizing the Miniature Hybrid-Microwave Integrated Circuit (MHMIC) technology. It is composed of a wideband double-balanced mixer, a Local Oscillator (LO) chain, and a differential TransImpedance Amplifier (TIA) with a variable gain. The designed mixer uses a novel topology exhibiting minimum reflection and high isolation between the RF and LO ports across a wide operating frequency of 30 GHz. In this topology, two balanced detectors generate the differential IF signal with minimum reflection. The characteristic impedance (Z0) of the mixer is set to be 70.7Ω, to minimize trace widths to reduce the mutual coupling and increasing the bandwidth. The OPA 657 is the core of the designed differential TIA with a variable gain. In addition, the LO chain of the down-converter utilized a combination of an active (×2) and a passive (×3) multiplier to generate enough RF power in the desired frequency range. Also, a WR-12 waveguide to Substrate Integrated Waveguide (SIW) transition is designed for the RF and LO ports that operates through the E-band. The proposed down-converter demonstrates excellent performance, with a high isolation between RF and LO ports exceeding 22 dB and a maximum conversion gain of 5 dB, and a response with a variation of ±5 dB across the band. The proposed mixer exhibits a return loss of better than 10 dB at both RF and LO ports, and it consumes a power of 560 mW. Full article
(This article belongs to the Special Issue Recent Development of Millimeter-Wave Technologies)
Show Figures

Figure 1

60 pages, 2063 KB  
Systematic Review
Advancements in Antenna and Rectifier Systems for RF Energy Harvesting: A Systematic Review and Meta-Analysis
by Luis Fernando Guerrero-Vásquez, Nathalia Alexandra Chacón-Reino, Segundo Darío Tenezaca-Angamarca, Paúl Andrés Chasi-Pesantez and Jorge Osmani Ordoñez-Ordoñez
Appl. Sci. 2025, 15(14), 7773; https://doi.org/10.3390/app15147773 - 10 Jul 2025
Viewed by 2015
Abstract
This systematic review explores recent advancements in antenna and rectifier systems for radio frequency (RF) energy harvesting within the gigahertz frequency range, aiming to support the development of sustainable and efficient low-power electronic applications. Conducted under the PRISMA methodology, our review filtered 2465 [...] Read more.
This systematic review explores recent advancements in antenna and rectifier systems for radio frequency (RF) energy harvesting within the gigahertz frequency range, aiming to support the development of sustainable and efficient low-power electronic applications. Conducted under the PRISMA methodology, our review filtered 2465 initial records down to 80 relevant studies, addressing three research questions focused on antenna design, operating frequency bands, and rectifier configurations. Key variables such as antenna type, resonant frequency, gain, efficiency, bandwidth, and physical dimensions were examined. Antenna designs including fractal, spiral, bow-tie, slot, and rectangular structures were analyzed, with fractal antennas showing the highest efficiency, while array antennas exhibited lower performance despite their compact dimensions. Frequency band analysis indicated a predominance of 2.4 GHz and 5.8 GHz applications. Evaluation of substrate materials such as FR4, Rogers, RT Duroid, textiles, and unconventional composites highlighted their impact on performance optimization. Rectifier systems including Schottky, full-wave, half-wave, microwave, multi-step, and single-step designs were assessed, with Schottky rectifiers demonstrating the highest energy conversion efficiency. Additionally, correlation analyses using boxplots explored the relationships among antenna area, efficiency, operating frequency, and gain across design variables. The findings identify current trends and design considerations crucial for enhancing RF energy harvesting technologies. Full article
Show Figures

Figure 1

24 pages, 5386 KB  
Article
Study of the Electrical Conduction Mechanism in Low-Frequency Field for CuMnO2 Crednerite-Type Materials Obtained by Microwave-Assisted Hydrothermal Synthesis
by Catalin N. Marin, Maria Poienar, Antoanetta Lungu, Cristian Casut, Paula Sfirloaga and Iosif Malaescu
Crystals 2025, 15(6), 497; https://doi.org/10.3390/cryst15060497 - 23 May 2025
Viewed by 490
Abstract
The electrical conductivity of nanocrystalline CuMnO2 samples, obtained by microwave-assisted hydrothermal synthesis (MWH), is studied by impedance spectroscopy over a frequency range of 30 Hz to 2 MHz and a temperature range from 30 to 120 °C. Three samples are prepared to [...] Read more.
The electrical conductivity of nanocrystalline CuMnO2 samples, obtained by microwave-assisted hydrothermal synthesis (MWH), is studied by impedance spectroscopy over a frequency range of 30 Hz to 2 MHz and a temperature range from 30 to 120 °C. Three samples are prepared to start from a mixture of sulphate reactants, at two synthesis temperatures and different reaction times (of applying microwaves): sample S1 at 80 °C for 5 min; sample S2 at 120 °C for 5 min and sample S3 at 120 °C for one hour. The static conductivity values, σDC of samples S2 and S3, are approximately equal but larger than those of sample S1. This result suggests that using MWH synthesis at 120 °C, with different reaction times (samples S2 and S3), is sufficient for microwaves to be applied for at least 5 min to obtain samples with similar electrical properties. The experimental data were analysed based on three theoretical models, demonstrating that the most appropriate theoretical model to explain the electrical conduction mechanism in the samples is Mott’s variable range hopping (VRH) model. Using this model, the activation energy of conduction, (EA,cond), the density of localized states near the Fermi level, N(EF), the hopping distance, Rh(T), the hopping energy, Wh(T) and the charge carrier mobility (μ) were determined for the first time, for microwave-assisted hydrothermally synthesized crednerite. Additionally, the band gap energy (Wm) and hopping frequency (ωh) were evaluated at various temperatures T. Understanding the electrical conduction mechanism in the polycrystalline CuMnO2 materials is important for their use in photo-electrochemical and photocatalytic applications, photovoltaic devices, and, more recently, in environmental protection. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

21 pages, 5602 KB  
Article
Retrieval of Cloud Ice Water Path from FY-3F MWTS and MWHS
by Fuxiang Chen, Hao Hu, Fuzhong Weng, Changjiao Dong, Xiang Fang and Jun Yang
Remote Sens. 2025, 17(10), 1798; https://doi.org/10.3390/rs17101798 - 21 May 2025
Viewed by 442
Abstract
Microwave sounding observations obtained from the National Oceanic and Atmospheric Administration (NOAA) and the European Meteorological Operational Satellite Program (METOP) satellites have been used for retrieving the cloud ice water path (IWP). However, the IWP algorithms developed in the past cannot be applied [...] Read more.
Microwave sounding observations obtained from the National Oceanic and Atmospheric Administration (NOAA) and the European Meteorological Operational Satellite Program (METOP) satellites have been used for retrieving the cloud ice water path (IWP). However, the IWP algorithms developed in the past cannot be applied to the Fengyun-3F (FY-3F) microwave radiometers due to the differences in frequency of the primary channels and the fields of view. In this study, the IWP algorithm was tailored for the FY-3F satellite, and the retrieved IWP was compared with the fifth generation of reanalysis data from the European Centre for Medium-Range Weather Forecasts (ERA5) and the Meteorological Operational Satellite-C (METOP-C) products. The results indicate that the IWP distribution retrieved from FY-3F observations demonstrates strong consistency with the cloud ice distributions in ERA5 data and METOP-C products in low-latitude regions. However, discrepancies are observed among the three datasets in mid- to high-latitude regions. ERA5 data underestimate the frequency of high IWP values and overestimate the frequency of low IWP values. The IWP retrieval results from satellite datasets demonstrate a high level of consistency. Furthermore, an analysis of the IWP time series reveals that the retrieval algorithm used in this study better captures variability and seasonal characteristics of IWP compared to ERA5 data. Additionally, a comparison of FY-3F retrieval results with METOP-C products shows a high correlation and generally consistent distribution characteristics across latitude bands. These findings confirm the high accuracy of IWP retrieval from FY-3F data, which holds significant value for advancing IWP research in China. Full article
Show Figures

Figure 1

25 pages, 9156 KB  
Article
A GNSS-IR Soil Moisture Inversion Method Considering Multi-Factor Influences Under Different Vegetation Covers
by Yadong Yao, Jixuan Yan, Guang Li, Weiwei Ma, Xiangdong Yao, Miao Song, Qiang Li and Jie Li
Agriculture 2025, 15(8), 837; https://doi.org/10.3390/agriculture15080837 - 13 Apr 2025
Cited by 3 | Viewed by 724
Abstract
The Global Navigation Satellite System Interferometric Reflectometry (GNSS-IR) has demonstrated significant potential for soil moisture content (SMC) monitoring due to its high spatiotemporal resolution. However, GNSS-IR inversion experiments are notably influenced by vegetation and meteorological factors. To address these challenges, this study proposes [...] Read more.
The Global Navigation Satellite System Interferometric Reflectometry (GNSS-IR) has demonstrated significant potential for soil moisture content (SMC) monitoring due to its high spatiotemporal resolution. However, GNSS-IR inversion experiments are notably influenced by vegetation and meteorological factors. To address these challenges, this study proposes a multi-factor SMC inversion method. Six GNSS stations from the Plate Boundary Observatory (PBO) were selected as study sites. A low-order polynomial was applied to separate the reflected signals, extracting parameters such as phase, frequency, amplitude, and effective reflector height. Auxiliary variables, including the Normalized Microwave Reflection Index (NMRI), cumulative rainfall, and daily average evaporation, were used to further improve inversion accuracy. A multi-factor SMC inversion dataset was constructed, and three machine learning models were selected to develop the SMC prediction model: Support Vector Regression (SVR), suitable for small and medium-sized regression tasks; Convolutional Neural Networks (CNN), with robust feature extraction capabilities; and NRBO-XGBoost, which supports automatic optimization. The multi-factor SMC inversion method achieved remarkable results. For instance, at the P038 station, the model attained an R2 of 0.98, with an RMSE of 0.0074 and an MAE of 0.0038. Experimental results indicate that the multi-factor inversion model significantly outperformed the traditional univariate model, whose R2 (RMSE, MAE) was only 0.88 (0.0179, 0.0136). Further analysis revealed that NRBO-XGBoost surpassed the other models, with its average R2 outperforming SVR by 0.11 and CNN by 0.03. Additionally, the analysis of different surface types showed that the method achieved higher accuracy in grassland and open shrubland areas, with all models reaching R2 values above 0.9. Therefore, the accuracy of the multi-factor SMC inversion model was validated, supporting the practical application of GNSS-IR technology in SMC inversion. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

15 pages, 4186 KB  
Article
Structural Optimization Design of Spaceborne Microwave Probe Antenna
by Damiao Wang, Chang Yan, Peiyuan Kan, Jieying He, Shengwei Zhang and Wenjie Fan
Appl. Sci. 2025, 15(5), 2493; https://doi.org/10.3390/app15052493 - 26 Feb 2025
Viewed by 643
Abstract
The scanning drive mechanism of the spaceborne microwave-sounding antenna has two working modes of constant speed and variable speed, and the special structural form and layout of the reflecting surface lead to a large perturbation moment in the constant speed and variable speed [...] Read more.
The scanning drive mechanism of the spaceborne microwave-sounding antenna has two working modes of constant speed and variable speed, and the special structural form and layout of the reflecting surface lead to a large perturbation moment in the constant speed and variable speed scanning modes. The optimized design of the reflecting surface reinforcement structure of the antenna’s scanning drive mechanism is of great significance for the adjustment of the dynamic stiffness and rotational moment of inertia of the system, which helps to reduce the influence of the moment perturbation. In this paper, a design method combining topology optimization and size optimization is adopted to optimize the design of the reflecting surface reinforcement structure of the planar antenna. The topology optimization constrains the volume, and the objective function is the first-order frequency maximum. The topology optimization results show that the reinforcement is arranged along the center in a “palm” shape. The size optimization is based on the objective of minimizing the rotational inertia of the structure, and the constraints are the dynamic stiffness and the RMS of the structural stress values. The dynamic stiffness of the structure is improved after size optimization, the mass of the reinforcing bar is reduced by 26% compared with the original structure, the rotational inertia of the planar antenna is reduced by 39% compared with the original structure, and the perturbation moments are decreased by 52% at uniform speeds and by 39% at variable speeds. Full article
Show Figures

Figure 1

19 pages, 1782 KB  
Article
Frequency-Constrained QR: Signal and Image Reconstruction
by Harrison Garrett and David G. Long
Remote Sens. 2025, 17(3), 464; https://doi.org/10.3390/rs17030464 - 29 Jan 2025
Cited by 1 | Viewed by 824
Abstract
Because a finite set of measurements is limited in the amount of spectral content it can represent, the reconstruction process from discrete samples is inherently band-limited. In the case of 1D sampling using ideal measurements, the maximum bandwidth of regular and irregular sampling [...] Read more.
Because a finite set of measurements is limited in the amount of spectral content it can represent, the reconstruction process from discrete samples is inherently band-limited. In the case of 1D sampling using ideal measurements, the maximum bandwidth of regular and irregular sampling is well known using Nyquist and Gröchenig sampling theorems and lemmas, respectively. However, determining the appropriate reconstruction bandwidth becomes difficult when considering 2D sampling geometries, samples with variable apertures, or signal to noise ratio limitations. Instead of determining the maximum bandwidth a priori, we derive an inverse method to simultaneously reconstruct a signal and determine its effective bandwidth. This inverse method is equivalent to incrementally computing a band-limited inverse using a frequency-constrained QR decomposition (FQR). Comparisons between reconstruction results using FQR and QR decompositions illustrate how FQR is less sensitive to noisy measurement errors, but it is more sensitive to high-frequency components. These methods are particularly useful in the reconstruction of remote sensing images from such as microwave radiometers and scatterometers. Full article
Show Figures

Graphical abstract

15 pages, 1133 KB  
Systematic Review
Time to Form a Habit: A Systematic Review and Meta-Analysis of Health Behaviour Habit Formation and Its Determinants
by Ben Singh, Andrew Murphy, Carol Maher and Ashleigh E. Smith
Healthcare 2024, 12(23), 2488; https://doi.org/10.3390/healthcare12232488 - 9 Dec 2024
Cited by 8 | Viewed by 35095
Abstract
Background: Healthy lifestyles depend on forming crucial habits through the process of habit formation, emphasising the need to establish positive habits and break negative ones for lasting behaviour changes. This systematic review aims to explore the time required for developing health-related habits. Methods: [...] Read more.
Background: Healthy lifestyles depend on forming crucial habits through the process of habit formation, emphasising the need to establish positive habits and break negative ones for lasting behaviour changes. This systematic review aims to explore the time required for developing health-related habits. Methods: Six databases (Scopus, PsychINFO, CINAHL, EMBASE, Medline and PubMed) were searched to identify experimental intervention studies assessing self-report habit or automaticity questionnaires (e.g., the self-report habit index (SRHI) or the self-report behavioural automaticity index (SRBAI)), or the duration to reach automaticity in health-related behaviours. Habit formation determinants were also evaluated. Meta-analysis was performed to assess the change in the SRHI or SRBAI habit scores between pre- and post-intervention, and the study quality was assessed using the PEDro scale. Results: A total of 20 studies involving 2601 participants (mean age range: 21.5–73.5 years) were included. Most studies had a high risk of bias rating (n = 11). Health behaviours included physical activity (n = 8), drinking water (n = 2), vitamin consumption (n = 1), flossing (n = 3), healthy diet (n = 8), microwaving a dishcloth (for foodborne disease reduction, n = 2) and sedentary behaviour reduction (n = 1). Four studies reported the median or mean times to reach habit formation, ranging from 59–66 days (median) and 106–154 days (means), with substantial individual variability (4–335 days). The meta-analysis showed significant improvements in habit scores pre- to post-intervention across different habits (standardised mean difference: 0.69, 95% CI: 0.49–0.88). Frequency, timing, type of habit, individual choice, affective judgements, behavioural regulation and preparatory habits significantly influence habit strength, with morning practices and self-selected habits generally exhibiting greater strength. Conclusions: Emerging evidence on health-related habit formation indicates that while habits can start forming within about two months, the time required varies significantly across individuals. A limitation of this meta-analysis is the relatively small number of studies included, with flossing and diet having the most evidence among the behaviours examined. Despite this, improvements in habit strength post-intervention are evident across various behaviours, suggesting that targeted interventions can be effective. Future research should aim to expand the evidence base with well-designed studies to better understand and enhance the process of establishing beneficial health habits. Full article
Show Figures

Figure 1

16 pages, 5705 KB  
Article
Performance and Characterization of Additively Manufactured BST Varactor Enhanced by Photonic Thermal Processing
by Carlos Molina, Ugur Guneroglu, Adnan Zaman, Liguan Li and Jing Wang
Crystals 2024, 14(11), 990; https://doi.org/10.3390/cryst14110990 - 16 Nov 2024
Viewed by 1682
Abstract
The demand for reconfigurable devices for emerging RF and microwave applications has been growing in recent years, with additive manufacturing and photonic thermal treatment presenting new possibilities to supplement conventional fabrication processes to meet this demand. In this paper, we present the realization [...] Read more.
The demand for reconfigurable devices for emerging RF and microwave applications has been growing in recent years, with additive manufacturing and photonic thermal treatment presenting new possibilities to supplement conventional fabrication processes to meet this demand. In this paper, we present the realization and analysis of barium–strontium–titanate-(Ba0.5Sr0.5TiO3)-based ferroelectric variable capacitors (varactors), which are additively deposited on top of conventionally fabricated interdigitated capacitors and enhanced by photonic thermal processing. The ferroelectric solution with suspended BST nanoparticles is deposited on the device using an ambient spray pyrolysis method and is sintered at low temperatures using photonic thermal processing by leveraging the high surface-to-volume ratio of the BST nanoparticles. The deposited film is qualitatively characterized using SEM imaging and XRD measurements, while the varactor devices are quantitatively characterized by using high-frequency RF measurements from 300 MHz to 10 GHz under an applied DC bias voltage ranging from 0 V to 50 V. We observe a maximum tunability of 60.6% at 1 GHz under an applied electric field of 25 kV/mm (25 V/μm). These results show promise for the implementation of photonic thermal processing and additive manufacturing as a means to integrate reconfigurable ferroelectric varactors in flexible electronics or tightly packaged on-chip applications, where a limited thermal budget hinders the conventional thermal processing. Full article
(This article belongs to the Special Issue Ceramics: Processes, Microstructures, and Properties)
Show Figures

Figure 1

15 pages, 3616 KB  
Article
Polarizing Magnetic Field Effect on Some Electrical Properties of a Ferrofluid in Microwave Field
by Catalin N. Marin, Paul C. Fannin and Iosif Malaescu
Magnetochemistry 2024, 10(11), 88; https://doi.org/10.3390/magnetochemistry10110088 - 9 Nov 2024
Cited by 1 | Viewed by 1436
Abstract
The complex dielectric permittivity, ε (f, H) = ε′ (f, H) − i ε″ (f, H), in the microwave frequency range f, of (0.1–3) GHz and polarizing field values H, [...] Read more.
The complex dielectric permittivity, ε (f, H) = ε′ (f, H) − i ε″ (f, H), in the microwave frequency range f, of (0.1–3) GHz and polarizing field values H, in the range of (0–135) kA/m, was measured for a kerosene-based ferrofluid with magnetite particles. A relaxation process attributed to interfacial type relaxation was highlighted, determining for the first time in the microwave field, the activation energy of the dielectric relaxation process in the presence of the magnetic field, EA(H), in relation to the activation energy in zero field, EA(H = 0). Based on the complex permittivity measurements and the Claussius–Mossotti equation, the dependencies on frequency (f), and magnetic field (H), of the polarizability (α) and electrical conductivity (σ), were determined. From the dependence of α(f,H), the electric dipolar moment, p, of the particles in the ferrofluid, was determined. The conductivity spectrum, σ(f,H), was found to be in agreement with Jonscher’s universal law and the electrical conduction mechanism in the ferrofluid was explained using both Mott’s VRH (variable range hopping) model and CBH (correlated barrier hopping) model. Based on these models and conductivity measurements, the hopping distance, Rh, of the charge carriers and the maximum barrier height, Wm, for the investigated ferrofluid was determined for the first time in the microwave field. Knowledge of these electrical properties of the ferrofluid in the microwave field is useful for explaining the mechanisms of polarization and control of electrical conductivity with an external magnetic field, in order to use ferrofluids in various technological applications in microwave field. Full article
(This article belongs to the Special Issue Ferrofluids - Electromagnetic Properties and Applications)
Show Figures

Figure 1

16 pages, 3084 KB  
Review
Microwave-Assisted Enzymatic Reactions toward Medicinally Active Heterocycles
by Aparna Das and Bimal Krishna Banik
Drugs Drug Candidates 2024, 3(4), 638-653; https://doi.org/10.3390/ddc3040036 - 26 Sep 2024
Cited by 1 | Viewed by 2107
Abstract
Microwaves in the presence of enzymes can contribute to the preparation of a variety of medicinally active compounds. Microwave-induced enzymatic reactions are influenced by variables such as frequency, field strength, waveform, duration, and modulation. The activation of enzymes under microwave irradiation allows the [...] Read more.
Microwaves in the presence of enzymes can contribute to the preparation of a variety of medicinally active compounds. Microwave-induced enzymatic reactions are influenced by variables such as frequency, field strength, waveform, duration, and modulation. The activation of enzymes under microwave irradiation allows the study of simple and complex reactions that have never before been reported under these conditions. By combining enzyme catalysis with microwave technology and solvent-free chemical reactions, it is possible to prepare drug-related molecules. This review presents the most interesting microwave reactions performed by enzymes toward medicinally active molecules. Full article
Show Figures

Figure 1

19 pages, 6453 KB  
Article
A Versatile, Machine-Learning-Enhanced RF Spectral Sensor for Developing a Trunk Hydration Monitoring System in Smart Agriculture
by Oumaima Afif, Leonardo Franceschelli, Eleonora Iaccheri, Simone Trovarello, Alessandra Di Florio Di Renzo, Luigi Ragni, Alessandra Costanzo and Marco Tartagni
Sensors 2024, 24(19), 6199; https://doi.org/10.3390/s24196199 - 25 Sep 2024
Cited by 4 | Viewed by 4334
Abstract
This paper comprehensively explores the development of a standalone and compact microwave sensing system tailored for automated radio frequency (RF) scattered parameter acquisitions. Coupled with an emitting RF device (antenna, resonator, open waveguide), the system could be used for non-invasive monitoring of external [...] Read more.
This paper comprehensively explores the development of a standalone and compact microwave sensing system tailored for automated radio frequency (RF) scattered parameter acquisitions. Coupled with an emitting RF device (antenna, resonator, open waveguide), the system could be used for non-invasive monitoring of external matter or latent environmental variables. Central to this design is the integration of a NanoVNA and a Raspberry Pi Zero W platform, allowing easy recording of S-parameters (scattering parameters) in the range of the 50 kHz–4.4 GHz frequency band. Noteworthy features include dual recording modes, manual for on-demand acquisitions and automatic for scheduled data collection, powered seamlessly by a single battery source. Thanks to the flexibility of the system’s architecture, which embeds a Linux operating system, we can easily embed machine learning (ML) algorithms and predictive models for information detection. As a case study, the potential application of the integrated sensor system with an RF patch antenna is explored in the context of greenwood hydration detection within the field of smart agriculture. This innovative system enables non-invasive monitoring of wood hydration levels by analyzing scattering parameters (S-parameters). These S-parameters are then processed using ML techniques to automate the monitoring process, enabling real-time and predictive analysis of moisture levels. Full article
(This article belongs to the Special Issue AI, IoT and Smart Sensors for Precision Agriculture)
Show Figures

Figure 1

27 pages, 22292 KB  
Article
RFSoC Softwarisation of a 2.45 GHz Doppler Microwave Radar Motion Sensor
by Peter Hobden, Edmond Nurellari and Saket Srivastava
J. Sens. Actuator Netw. 2024, 13(5), 58; https://doi.org/10.3390/jsan13050058 - 23 Sep 2024
Viewed by 2846
Abstract
Microwave Doppler sensors are used extensively in motion detection as they are energy-efficient, small-size and relatively low-cost sensors. Common applications of microwave Doppler sensors are for detecting intrusion behind a car roof liner inside an automotive vehicle and to detect moving objects. These [...] Read more.
Microwave Doppler sensors are used extensively in motion detection as they are energy-efficient, small-size and relatively low-cost sensors. Common applications of microwave Doppler sensors are for detecting intrusion behind a car roof liner inside an automotive vehicle and to detect moving objects. These applications require a millisecond response from the target for effective detection. A Doppler microwave sensor is ideally suited to the task, as we are only interested in movement of a large water-based mass (i.e., a person) (FMCW Radar also detect static objects). Although microwave components at 2.45 GHz are now relatively cheap due to mass production of other Industrial Scientific and Medical application (ISM) devices, they do require tuning for temperature compensation, dielectric, and manufacturing variability. A digital solution would be ideal, as chip solutions are known to be more repeatable, but Application-Specific Integrated Circuits (ASICs) are expensive to initially prototype. This paper presents the first completely digital Doppler motion sensor solution at 2.45 GHz, implemented on the new RFSoC from Xilinx without the need to up/downconvert the frequency externally. Our proposed system uses a completely digital approach bringing the benefits of product repeatability, better overtemperature performance and softwarisation, without compromising any performance metric associated with a comparable analogue motion sensor. The RFSoC shows to give superior distance versus false detection, as the Signal-to-Noise Ratio (SNR) is better than a typical analogue system. This is mainly due to the high gain amplification requirement of an analogue system, making it susceptible to electrical noise appearing in the intermediate-frequency (IF) baseband. The proposed RFSoC-based Doppler sensor shows how digital technology can replace traditional analogue radio frequency (RF). A case study is presented showing how we can use a novel method of using multiple Doppler channels to provide range discrimination, which can be performed in both analogue and in a digital implementation (RFSoC). Full article
Show Figures

Figure 1

Back to TopTop