Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (78)

Search Parameters:
Keywords = variable stiffness composite structures

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 17502 KB  
Article
Multiscale Compressive Failure Analysis of Wrinkled Laminates Based on Multiaxial Damage Model
by Jian Shi, Guang Yang, Nan Sun, Jie Zheng, Jingjing Qian, Wenjia Wang and Kun Song
Materials 2025, 18(19), 4503; https://doi.org/10.3390/ma18194503 - 27 Sep 2025
Viewed by 345
Abstract
The waviness defect, a common manufacturing flaw in composite structures, can significantly impact the mechanical performance. This study investigates the effects of wrinkles on the ultimate load and failure modes of two Carbon Fiber Reinforced Composite (CFRC) laminates through compressive experiments and simulation [...] Read more.
The waviness defect, a common manufacturing flaw in composite structures, can significantly impact the mechanical performance. This study investigates the effects of wrinkles on the ultimate load and failure modes of two Carbon Fiber Reinforced Composite (CFRC) laminates through compressive experiments and simulation analyses. The laminates have stacking sequences of [0]10S and [45/0/−45/90/45/0/−45/0/45/0]S. Each laminate includes four different waviness ratios (the ratio of wrinkle amplitude to laminate thickness) of 0%, 10%, 20% and 30%. In the simulation, a novel multiaxial progressive damage model is implemented via the user material (UMAT) subroutine to predict the compressive failure behavior of wrinkled composite laminates. This multiscale analysis framework innovatively features a 7 × 7 generalized method of cells coupled with stress-based multiaxial Hashin failure criteria to accurately analyze the impact of wrinkle defects on structural performance and efficiently transfer macro-microscopic damage variables. When any microscopic subcell within the representative unit cell (RUC) satisfies a failure criterion, its stiffness matrix is reduced to a nominal value, and the corresponding failure modes are tracked through state variables. When more than 50% fiber subcells fail in the fiber direction or more than 50% matrix subcells fail in the transverse or thickness direction, it indicates that the RUC has experienced the corresponding failure modes, which are the tensile or compressive failure of fibers, matrix, or delamination in the three axial directions. This multiscale model accurately predicted the load–displacement curves and failure modes of wrinkled composites under compressive load, showing good agreement with experimental results. The analysis results indicate that wrinkle defects can reduce the ultimate load-carrying capacity and promote local buckling deformation at the wrinkled region, leading to changes in damage distribution and failure modes. Full article
Show Figures

Figure 1

27 pages, 6795 KB  
Article
Dynamic Analysis of Variable-Stiffness Laminated Composite Plates with an Arbitrary Damaged Area in Supersonic Airflow
by Pingan Zou, Dong Shao, Ningze Sun and Weige Liang
Aerospace 2025, 12(9), 802; https://doi.org/10.3390/aerospace12090802 - 5 Sep 2025
Viewed by 453
Abstract
In response to the urgent need for performance predictions of damaged aerospace structures, this study undertakes a comprehensive investigation into the flutter characteristics of damaged variable-stiffness composite laminate (VSCL) plates. The governing boundary value problem for the dynamics of damaged VSCL plates is [...] Read more.
In response to the urgent need for performance predictions of damaged aerospace structures, this study undertakes a comprehensive investigation into the flutter characteristics of damaged variable-stiffness composite laminate (VSCL) plates. The governing boundary value problem for the dynamics of damaged VSCL plates is formulated using first-order shear deformation theory (FSDT). Additionally, the first-order piston theory is utilized to model the aerodynamic pressure in supersonic airflow. A novel coupling methodology is developed through the integration of penalty function methods and irregular mapping techniques, which effectively establishes the interaction between damaged and undamaged plate elements. The vibration characteristics and aeroelastic responses are systematically analyzed using the Chebyshev differential quadrature method (CDQM). The validity of the proposed model is thoroughly demonstrated through comparative analyses with the existing literature and finite element simulations, confirming its computational accuracy and broad applicability. A notable characteristic of this research is its ability to accommodate arbitrary geometric configurations within damaged regions. The numerical results unequivocally demonstrate that accurately predicting the flutter characteristics of damaged VSCL plates constitutes an effective strategy for mitigating structural stability degradation. This approach provides valuable insights for aerospace structural design and maintenance. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

25 pages, 8643 KB  
Article
2D to 3D Modification of Chang–Chang Criterion Considering Multiaxial Coupling Effects in Fiber and Inter-Fiber Directions for Continuous Fiber-Reinforced Composites
by Yingchi Chen, Junhua Guo and Wantao Guo
Polymers 2025, 17(17), 2416; https://doi.org/10.3390/polym17172416 - 5 Sep 2025
Viewed by 739
Abstract
Fiber-reinforced composites are widely used in aerospace and other fields due to their excellent specific strength, specific stiffness, and corrosion resistance, and further study of their failure criteria is essential to improve the accuracy and reliability of failure behavior prediction under complex loads. [...] Read more.
Fiber-reinforced composites are widely used in aerospace and other fields due to their excellent specific strength, specific stiffness, and corrosion resistance, and further study of their failure criteria is essential to improve the accuracy and reliability of failure behavior prediction under complex loads. There are still some limitations in the current composite failure criterion research, mainly reflected in the lack of promotion of three-dimensional stress state, lack of sufficient consideration of multi-modal coupling effects, and the applicability of the criteria under multiaxial stress and complex loading conditions, which limit the wider application of composites in the leading-edge fields to a certain degree. In this work, a generalized Mohr failure envelope function approach is adopted to obtain the stress on the failure surface as a power series form of independent variable, and the unknown coefficients are determined according to the damage conditions, to extend the Chang–Chang criterion to the three-dimensional stress state, and to consider the coupling effect between the fiber and matrix failure modes. The modified Chang–Chang criterion significantly enhances the failure prediction accuracy of composite materials under complex stress states, especially in the range of multi-axial loading and small off-axis angles, which provides a more reliable theoretical basis and practical guidance for the safe design and performance optimization of composite structures in aerospace and other engineering fields. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

28 pages, 44995 KB  
Article
Constitutive Modeling of Coal Gangue Concrete with Integrated Global–Local Explainable AI and Finite Element Validation
by Xuehong Dong, Guanghong Xiong, Xiao Guan and Chenghua Zhang
Buildings 2025, 15(17), 3007; https://doi.org/10.3390/buildings15173007 - 24 Aug 2025
Viewed by 609
Abstract
Coal gangue concrete (CGC), a recycled cementitious material derived from industrial solid waste, presents both opportunities and challenges for structural applications due to its heterogeneous composition and variable mechanical behavior. This study develops an ensemble learning framework—incorporating XGBoost, LightGBM, and CatBoost—to predict four [...] Read more.
Coal gangue concrete (CGC), a recycled cementitious material derived from industrial solid waste, presents both opportunities and challenges for structural applications due to its heterogeneous composition and variable mechanical behavior. This study develops an ensemble learning framework—incorporating XGBoost, LightGBM, and CatBoost—to predict four key constitutive parameters based on experimental data. The predicted parameters are subsequently incorporated into an ABAQUS finite element model to simulate the compressive–bending response of CGC columns, with simulation results aligning well with experimental observations in terms of failure mode, load development, and deformation characteristics. To enhance model interpretability, a hybrid approach is adopted, combining permutation-based global feature importance analysis with SHAP (SHapley Additive exPlanations)-derived local explanations. This joint framework captures both the overall influence of each feature and its context-dependent effects, revealing a three-stage stiffness evolution pattern—brittle, quasi-ductile, and re-brittle—governed by gangue replacement levels and consistent with micromechanical mechanisms and numerical responses. Coupled feature interactions, such as between gangue content and crush index, are shown to exacerbate stiffness loss through interfacial weakening and pore development. This integrated approach delivers both predictive accuracy and mechanistic transparency, providing a reference for developing physically interpretable, data-driven constitutive models and offering guidance for tailoring CGC toward ductile, energy-absorbing structural materials in seismic and sustainability-focused engineering. Full article
Show Figures

Figure 1

28 pages, 28825 KB  
Article
CFRCTop: An Efficient MATLAB Implementation for Topology Optimization of Continuous Fiber-Reinforced Composite Structures
by Junpeng Zhao
Appl. Sci. 2025, 15(17), 9242; https://doi.org/10.3390/app15179242 - 22 Aug 2025
Viewed by 800
Abstract
We present CFRCTop, a MATLAB implementation for topology optimization of continuous fiber-reinforced composite structures. The implementation includes density and fiber-orientation filtering, finite element analysis, sensitivity analysis, design variable updating, verification of optimality of fiber orientations, and visualization of results. This code is built [...] Read more.
We present CFRCTop, a MATLAB implementation for topology optimization of continuous fiber-reinforced composite structures. The implementation includes density and fiber-orientation filtering, finite element analysis, sensitivity analysis, design variable updating, verification of optimality of fiber orientations, and visualization of results. This code is built upon the well-known topology optimization code top88. The template stiffness matrices (TSMs)-based method is employed for efficient finite element analysis and sensitivity analysis. The density and fiber-orientation variables are updated separately. Visualization of spatially varying fiber orientations is provided. Extensions to solving various problems are also discussed. Computational performance and scalability are studied to showcase the high efficiency of this implementation. CFRCTop is intended for students and newcomers in the field of topology optimization. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

25 pages, 16276 KB  
Article
Localized Compression Behavior of GFRP Grid Web–Concrete Composite Beams: Experimental, Numerical, and Analytical Studies
by Yunde Li, Hai Cao, Yang Zhou, Weibo Kong, Kun Yu, Haoting Jiang and Zhongya Zhang
Buildings 2025, 15(15), 2693; https://doi.org/10.3390/buildings15152693 - 30 Jul 2025
Viewed by 501
Abstract
Glass fiber-reinforced polymer (GFRP) composites exhibit significant advantages over conventional structural webbing materials, including lightweight and corrosion resistance. This study investigates the localized compression performance of the proposed GFRP grid web–concrete composite beam through experimental and numerical analyses. Three specimen groups with variable [...] Read more.
Glass fiber-reinforced polymer (GFRP) composites exhibit significant advantages over conventional structural webbing materials, including lightweight and corrosion resistance. This study investigates the localized compression performance of the proposed GFRP grid web–concrete composite beam through experimental and numerical analyses. Three specimen groups with variable shear-span ratios (λ = 1.43, 1.77) and local stiffener specimens were designed to assess their localized compressive behavior. Experimental results reveal that a 19.2% reduction in shear-span ratio enhances ultimate load capacity by 22.93% and improves stiffness by 66.85%, with additional performance gains of 77.53% in strength and 94.29% in stiffness achieved through local stiffener implementation. In addition, finite element (FE) analysis demonstrated a strong correlation with experimental results, showing less than 5% deviation in ultimate load predictions while accurately predicting stress distributions and failure modes. FE parametric analysis showed that increasing the grid thickness and decreasing the grid spacing within a reasonable range can considerably enhance the localized compression performance. The proposed analytical model, based on Winkler elastic foundation theory, predicts ultimate compression capacities within 10% of both the experimental and numerical results. However, the GFRP grid strength adjustment factor βg should be further refined through additional experiments and numerical analyses to improve reliability. Full article
Show Figures

Figure 1

18 pages, 1519 KB  
Article
Static and Vibration Analysis of Imperfect Thermoelastic Laminated Plates on a Winkler Foundation
by Jiahuan Liu, Yunying Zhou, Yipei Meng, Hong Mei, Zhijie Yue and Yan Liu
Materials 2025, 18(15), 3514; https://doi.org/10.3390/ma18153514 - 26 Jul 2025
Viewed by 444
Abstract
This study introduces an analytical framework that integrates the state-space method with generalized thermoelasticity theory to obtain exact solutions for the static and dynamic behaviors of laminated plates featuring imperfect interfaces and resting on a Winkler foundation. The model comprehensively accounts for the [...] Read more.
This study introduces an analytical framework that integrates the state-space method with generalized thermoelasticity theory to obtain exact solutions for the static and dynamic behaviors of laminated plates featuring imperfect interfaces and resting on a Winkler foundation. The model comprehensively accounts for the foundation-structure interaction, interfacial imperfection, and the coupling between the thermal and mechanical fields. A parametric analysis explores the impact of the dimensionless foundation coefficient, interface flexibility coefficient, and thermal conductivity on the static and dynamic behaviors of the laminated plates. The results indicate that a lower foundation stiffness results in higher sensitivity of structural deformation with respect to the foundation parameter. Furthermore, an increase in interfacial flexibility significantly reduces the global stiffness and induces discontinuities in the distribution of stress and temperature. Additionally, thermal conductivity governs the continuity of interfacial heat flux, while thermo-mechanical coupling amplifies the variations in specific field variables. The findings offer valuable insights into the design and reliability evaluation of composite structures operating in thermally coupled environments. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

19 pages, 3945 KB  
Article
Static Analysis of a Composite Box Plate with Functionally Graded Foam Core
by Andrejs Kovalovs
J. Manuf. Mater. Process. 2025, 9(7), 209; https://doi.org/10.3390/jmmp9070209 - 22 Jun 2025
Viewed by 763
Abstract
In functionally graded polymer foam, mechanical properties and chemical composition vary in a prescribed direction according to a power law distribution. However, most manufacturing methods lack precise control over pore size, limiting their application. In this case, the graded foam structure can be [...] Read more.
In functionally graded polymer foam, mechanical properties and chemical composition vary in a prescribed direction according to a power law distribution. However, most manufacturing methods lack precise control over pore size, limiting their application. In this case, the graded foam structure can be formed from separate layers, with each layer assigned unique values in terms of mechanical properties or chemical composition based on the power law distribution. The hypothesis of the work is that the application of functionally graded (FG) foam materials inside the rotor blades or wings of an unmanned aerial vehicle can provide the ability to vary their stiffness properties. The aim of this work is to conduct an investigation of the static behaviour of a composite box plate with constant and variable heights that simulate the dimensions and changing profile of a helicopter rotor blade. In the numerical analysis, two models of composite box plate are considered and the material properties of graded polymeric foam core are assumed to vary continuously by the power law along the width of cross-sectional structures. It is not possible to model the continuous flow of graded properties through the foam in construction; therefore, the layers of foam are modelled using discontinuous gradients, where the gradient factor changes step by step. The numerical results are obtained using ANSYS software. The results of the numerical calculation showed that the use of graded foam affects the parameters under study. The stiffness of a structure significantly decreases with an increase in the power law index. Full article
Show Figures

Figure 1

27 pages, 8872 KB  
Article
Drilling Machinability of Glass, Basalt, and Hybrid Epoxy Composites: Thrust Force, Thermal Load, and Hole Quality
by Eser Yarar, Mehmet İskender Özsoy, Sinan Fidan, Satılmış Ürgün and Mustafa Özgür Bora
Polymers 2025, 17(12), 1643; https://doi.org/10.3390/polym17121643 - 13 Jun 2025
Cited by 1 | Viewed by 860
Abstract
The drilling machinability of glass fiber G14, basalt fiber B14, and two hybrid laminates (B4G6B4, G4B6G4) was evaluated through 36 full-factorial experiments employing an HSS-G drill, three [...] Read more.
The drilling machinability of glass fiber G14, basalt fiber B14, and two hybrid laminates (B4G6B4, G4B6G4) was evaluated through 36 full-factorial experiments employing an HSS-G drill, three spindle speeds (715, 1520, 3030 rpm), and three feed rates (0.1–0.3 mm rev−1). Peak thrust force varied from 65.8 N for B14 at 0.1 mm rev−1 to 174.3 N for G14 at 0.3 mm rev−1; hybrids occupied the intermediate range of 101–163 N. Infra-red thermography recorded maximum drill temperatures of 110–120 °C for G14, almost double those of B14, while both hybrids attenuated hotspots to below 90 °C. ANOVA attributed 73.4% of thrust force variance to feed rate, with material type and spindle speed contributing 15.5% and 1.7%, respectively; for temperature, material type governed 41.5% of variability versus 17.0% for speed. Dimensional quality tests revealed that the symmetric hybrid G4B6G4 maintained entrance and exit diameters within ±2% of the nominal 6 mm, whereas B4G6B4 over-expansion exceeded 8% at the lowest feed and G14 exit diameters grew to 6.1 mm at 0.3 mm rev−1. Integrating basalt compliance with glass stiffness, therefore, halves thrust force relative to G14, suppresses delamination and overheating, and offers a practical strategy to prolong tool life and improve hole quality in multi-material composite structures. These insights guide parameter selection for lightweight hybrid composites in aerospace, renewable-energy installations, and marine components worldwide. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

24 pages, 7946 KB  
Article
Design of Variable-Stiffness Bistable Composite Laminates and Their Application in Variable-Camber Wings
by Hanqi Xie, Shujie Zhang, Yizhang Yang, Yang Zhou and Hongxiao Zhao
Aerospace 2025, 12(6), 525; https://doi.org/10.3390/aerospace12060525 - 10 Jun 2025
Viewed by 702
Abstract
The bistable laminated structure is widely used in many fields due to its unique deformation characteristics. In practical engineering, laminates under different structural constraints will exhibit different steady-state deformation characteristics. This study proposes a novel bistable laminated structure based on applying a variable-stiffness [...] Read more.
The bistable laminated structure is widely used in many fields due to its unique deformation characteristics. In practical engineering, laminates under different structural constraints will exhibit different steady-state deformation characteristics. This study proposes a novel bistable laminated structure based on applying a variable-stiffness design to the deformation element. By adjusting the laying area of the metal layer in the variable-stiffness zone, the out-of-plane deformation and local curvature distribution can be changed to better meet application requirements. This study adopts the finite element numerical simulation method to systematically investigate the influence of geometric parameters, the proportion of metal layer edge length, and the number of layers on the deformation performance of bistable laminates. Considering the design of a flexible bistable variable-camber wing, the variable-stiffness design proposed in this study was adopted to coordinate the curvature distribution of laminates, making the cambered airfoil of the wing more uniform and smoother and improving aerodynamic efficiency. The research results not only provide new ideas for designing bistable laminates under complex constraints but also offer design references for the lightweight optimization and aerodynamic performance improvement of bistable morphing wings. Full article
(This article belongs to the Special Issue Advanced Composite Materials in Aerospace)
Show Figures

Graphical abstract

15 pages, 1856 KB  
Article
Optimal Design of Variable-Stiffness Fiber-Reinforced Composites
by Evangelos P. Hadjigeorgiou, Christos A. Patsouras and Vassilios K. Kalpakides
Mathematics 2025, 13(12), 1909; https://doi.org/10.3390/math13121909 - 7 Jun 2025
Viewed by 541
Abstract
The concept of variable-stiffness composites allows the stiffness properties to vary spatially in the material. In the case of fiber-reinforced composites, the mechanical properties of the composite can be improved by tailoring the fiber orientations in a spatially optimal manner. In this paper, [...] Read more.
The concept of variable-stiffness composites allows the stiffness properties to vary spatially in the material. In the case of fiber-reinforced composites, the mechanical properties of the composite can be improved by tailoring the fiber orientations in a spatially optimal manner. In this paper, the problem of optimal spatial orientation of fibers in a two-dimensional composite structure under in-plane loading is studied, using the strain energy-minimizing method. The fiber orientation is assumed to be constant within each element of the model but varies from element to element. The optimal design problem is solved numerically using a global optimization method based on a genetic algorithm. Some numerical examples illustrate the efficiency and applicability of the method. Full article
(This article belongs to the Special Issue Numerical Analysis and Finite Element Method with Applications)
Show Figures

Figure 1

24 pages, 15831 KB  
Article
Experimental Investigation on Static Performance of Novel Precast Concrete Composite Slab–Composite Shear Wall Connections
by Xiaozhen Shang, Ming Zheng, Yutao Guo, Liangdong Zhuang and Huqing Liang
Buildings 2025, 15(11), 1935; https://doi.org/10.3390/buildings15111935 - 3 Jun 2025
Viewed by 892
Abstract
The connection zones between precast concrete composite slabs and composite walls commonly experience severe reinforcement conflicts due to protruding rebars, significantly reducing construction efficiency. To address this, a novel slotted concrete composite slab–composite shear wall (SCS-CW) connection without protruding rebars is proposed in [...] Read more.
The connection zones between precast concrete composite slabs and composite walls commonly experience severe reinforcement conflicts due to protruding rebars, significantly reducing construction efficiency. To address this, a novel slotted concrete composite slab–composite shear wall (SCS-CW) connection without protruding rebars is proposed in this study. In this novel connection, rectangular slots are introduced at the ends of the precast slabs, and lap-spliced reinforcement is placed within the slots to enable force transfer across the joint region. To investigate the static performance of SCS-CW connections, four groups of connection specimens were designed and fabricated. Using the structural detailing of the connection zone as the variable parameter, the mechanical performance of each specimen group was analyzed. The results show that the specimens demonstrated bending failure behavior. The key failure modes were yielding of the longitudinal reinforcement in the post-cast layer, yielding of the lap-spliced reinforcement, and concrete crushing at the precast slab ends within the plastic hinge zone. Compared to composite slab–composite wall connections with protruding rebars, the SCS-CW connections demonstrated superior ductility and a higher load-carrying capacity, satisfying the design requirements. Additionally, it was revealed that the anchorage length of lap-spliced reinforcement significantly affected the ultimate load-carrying capacity and ductility of SCS-CW connections, thus highlighting anchorage length as a critical design parameter for these connections. This study also presents methods for calculating the flexural bearing capacity and flexural stiffness of SCS-CW connections. Finally, finite element modeling was conducted on the connections to further investigate the influences of the lap-spliced reinforcement quantity, diameter, and anchorage length on the mechanical performance of the connections, and corresponding design recommendations are provided. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

33 pages, 3066 KB  
Article
Multidisciplinary Design Optimization of the NASA Metallic and Composite Common Research Model Wingbox: Addressing Static Strength, Stiffness, Aeroelastic, and Manufacturing Constraints
by Odeh Dababneh, Timoleon Kipouros and James F. Whidborne
Aerospace 2025, 12(6), 476; https://doi.org/10.3390/aerospace12060476 - 28 May 2025
Cited by 1 | Viewed by 1282
Abstract
This study explores the multidisciplinary design optimization (MDO) of the NASA Common Research Model (CRM) wingbox, utilizing both metallic and composite materials while addressing various constraints, including static strength, stiffness, aeroelasticity, and manufacturing considerations. The primary load-bearing wing structure is designed with high [...] Read more.
This study explores the multidisciplinary design optimization (MDO) of the NASA Common Research Model (CRM) wingbox, utilizing both metallic and composite materials while addressing various constraints, including static strength, stiffness, aeroelasticity, and manufacturing considerations. The primary load-bearing wing structure is designed with high structural fidelity, resulting in a higher number of structural elements representing the wingbox model. This increased complexity expands the design space due to a greater number of design variables, thereby enhancing the potential for identifying optimal design alternatives and improving mass estimation accuracy. Finite element analysis (FEA) combined with gradient-based design optimization techniques was employed to assess the mass of the metallic and composite wingbox configurations. The results demonstrate that the incorporation of composite materials into the CRM wingbox design achieves a structural mass reduction of approximately 17.4% compared to the metallic wingbox when flutter constraints are considered and a 23.4% reduction when flutter constraints are excluded. When considering flutter constraints, the composite wingbox exhibits a 5.6% reduction in structural mass and a 5.3% decrease in critical flutter speed. Despite the reduction in flutter speed, the design remains free from flutter instabilities within the operational flight envelope. Flutter analysis, conducted using the p-k method, confirmed that both the optimized metallic and composite wingboxes are free from flutter instabilities, with flutter speeds exceeding the critical threshold of 256 m/s. Additionally, free vibration and aeroelastic stability analyses reveal that the composite wingbox demonstrates higher natural frequencies compared to the metallic version, indicating that composite materials enhance dynamic response and reduce susceptibility to aeroelastic phenomena. Fuel mass was also found to significantly influence both natural frequencies and flutter characteristics, with the presence of fuel leading to a reduction in structural frequencies associated with wing bending. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

19 pages, 3278 KB  
Article
Study on Flexural Performance of Recycled Aggregate Concrete Beams Incorporating Glazed Hollow Beads
by Jingguang Hou, Yuanzhen Liu, Xiangzheng Li and Zhaoxu Wang
Materials 2025, 18(11), 2435; https://doi.org/10.3390/ma18112435 - 23 May 2025
Cited by 1 | Viewed by 550
Abstract
Recycled aggregate concrete incorporating glazed hollow beads (GHBRC) achieves the dual objectives of energy conservation and emission reduction by combining recycled coarse aggregate with glazed hollow bead aggregate, aligning with the construction industry’s “dual-carbon” goals for the development of low-carbon concrete. This study [...] Read more.
Recycled aggregate concrete incorporating glazed hollow beads (GHBRC) achieves the dual objectives of energy conservation and emission reduction by combining recycled coarse aggregate with glazed hollow bead aggregate, aligning with the construction industry’s “dual-carbon” goals for the development of low-carbon concrete. This study systematically investigates the flexural performance of GHBRC beams to establish calculation formulas for ultimate limit state bearing capacity and serviceability limit state verification. Six full-scale GHBRC beams were tested under simply supported conditions with two-point symmetric mid-span loading. Three critical variables (concrete composition, longitudinal tensile reinforcement ratio, and stirrup reinforcement configuration) were examined. Experimental results indicate that GHBRC beams exhibit failure modes consistent with conventional concrete beams, confirming the validity of the plane section assumption. At identical reinforcement ratios, GHBRC beams demonstrated a 3.1% increase in ultimate bearing capacity and an 18.78% higher mid-span deflection compared to ordinary concrete beams, highlighting their superior deformation performance. Building on methodologies for conventional concrete beams, this study recalibrated key short-term stiffness parameters using a stiffness analytical method and proposed a computational model for mid-span deflection prediction. These findings provide theoretical and practical foundations for optimizing the structural design of GHBRC beams in alignment with sustainable construction objectives. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

27 pages, 12280 KB  
Article
Shear Performance of Assembled Bamboo–Concrete Composite Structures Featuring Perforated Steel Plate Connectors
by Lingling Chen, Zhiyuan Wang and Huihui Liu
Buildings 2025, 15(8), 1376; https://doi.org/10.3390/buildings15081376 - 21 Apr 2025
Viewed by 834
Abstract
To reduce the cast in place work of concrete and realize the industrial production of a bamboo–concrete composite (BCC), innovative connection systems composed of an assembled bamboo–lightweight concrete composite (ABLCC) structure featuring perforated steel plate connectors are presented for use in engineering structures. [...] Read more.
To reduce the cast in place work of concrete and realize the industrial production of a bamboo–concrete composite (BCC), innovative connection systems composed of an assembled bamboo–lightweight concrete composite (ABLCC) structure featuring perforated steel plate connectors are presented for use in engineering structures. This study examined the shear performance of connection systems composed of an assembled BCC structure featuring perforated steel plate connectors based on the design and fabrication of three groups of shear connectors with nine different parameters using bamboo scrimber, lightweight concrete, perforated steel plates, and grout. Push-out tests were conducted on these shear connectors. A linear variable differential transformer (LVDT) and digital image correlation (DIC) were utilized for measurements. The test parameters comprised fabrication techniques (assembled and cast-in-place/CIP) and connector size (steel plate thickness). This study investigated mechanical performance indicators, including the failure mode, load–slip relationship, shear stiffness, and shear capacity of the shear connectors. The experimental results showed that the shear connector failure modes involved concrete spalling near the connectors and deformation of the perforated steel plates. The load–slip curves generally included three stages: high slope linear increase, low slope nonlinear increase, and rapid decrease. The shear capacity and stiffness of the assembled shear connectors were 0.84 times and 2.46 times those of the CIP connectors, respectively. The stiffness of the 4 mm steel plate connectors increased by 42% compared to the 2 mm steel plate connectors. Analysis showed that the shear capacity of the BBC primarily consisted of four aspects: the end bearing force of the steel plate, contact friction, and forces due to the influence of tenon columns and the reinforcing impact of through-rebars. This study proposes a simple and suitable formula for obtaining the shear capacity of perforated steel plate connectors in the BCC structure, with the analytical values being in good agreement with the test results. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

Back to TopTop