Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,122)

Search Parameters:
Keywords = vertical speed

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 477 KB  
Article
Evaluation of the Validity and Reliability of NeuroSkin’s Wearable Sensor Gait Analysis Device in Healthy Individuals
by Maël Descollonges, Baptiste Moreau, Nicolas Feppon, Oussama Abdoun, Perrine Séguin, Lana Popovic-Maneski, Julie Di Marco and Amine Metani
Bioengineering 2025, 12(9), 960; https://doi.org/10.3390/bioengineering12090960 (registering DOI) - 6 Sep 2025
Abstract
Gait analysis plays a crucial role in assessing and monitoring the progress of individuals undergoing rehabilitation. This preliminary validation study aims to compare the performance of a new wearable system, NeuroSkin®, equipped with embedded sensors (inertial measurement unit and pressure sensors), [...] Read more.
Gait analysis plays a crucial role in assessing and monitoring the progress of individuals undergoing rehabilitation. This preliminary validation study aims to compare the performance of a new wearable system, NeuroSkin®, equipped with embedded sensors (inertial measurement unit and pressure sensors), with the non-wearable gold standard, GAITRite®, in assessing spatio-temporal parameters during gait. Data was collected from nine healthy participants wearing the NeuroSkin while walking on the GAITRite walkway. Temporal parameters were calculated using the pressure sensors of the NeuroSkin® to detect heel strike (HS) and toe off (TO) on both sides. Distances were calculated using vertical hip acceleration with an inverted pendulum method. We found that the level of agreement between NeuroSkin® and GAITRite® measures was excellent for speed, cadence, as well as length and duration of stride and step (lower bound of intraclass correlation coefficients (ICCs) > 0.95), and moderate to excellent for stance and swing durations (ICC > 0.5). These levels of agreement are comparable to the known test–retest reliability of GAITRite® measures. These results demonstrate the potential of NeuroSkin® as an embedded gait assessment system for healthy subjects. As this study was conducted exclusively in healthy adults, the results are not directly generalizable to clinical populations. Thus, future studies are needed to investigate its use in patients. Full article
(This article belongs to the Special Issue Intelligent Systems for Human Action Recognition)
Show Figures

Figure 1

19 pages, 10558 KB  
Article
Ionospheric Disturbances from the 2022 Hunga-Tonga Volcanic Eruption: Impacts on TEC Spatial Gradients and GNSS Positioning Accuracy Across the Japan Region
by Zhihao Fu, Xuhui Shen, Qinqin Liu and Ningbo Wang
Remote Sens. 2025, 17(17), 3108; https://doi.org/10.3390/rs17173108 (registering DOI) - 6 Sep 2025
Abstract
The Hunga-Tonga volcanic eruption on 15 January 2022, produced significant atmospheric and ionospheric disturbances that may degrade global navigation satellite system (GNSS) and precise point positioning (PPP) accuracy. Using data from the GEONET GNSS network and Soratena barometric pressure sensors across Japan, we [...] Read more.
The Hunga-Tonga volcanic eruption on 15 January 2022, produced significant atmospheric and ionospheric disturbances that may degrade global navigation satellite system (GNSS) and precise point positioning (PPP) accuracy. Using data from the GEONET GNSS network and Soratena barometric pressure sensors across Japan, we analyzed the eruption’s effects through the gradient ionospheric index (GIX) and the rate of TEC index (ROTI) to characterize the propagation and effects of these disturbances on ionospheric total electron content (TEC) gradients. Our analysis identified two separate ionospheric disturbance events. The first event, coinciding with the arrival of atmospheric Lamb waves, was characterized by wave-like pressure anomalies, differential TEC (dTEC) fluctuations, and modest horizontal gradients of vertical TEC (VTEC). In contrast, the second, more pronounced disturbance was driven by equatorial plasma bubbles (EPBs), which generated severe ionospheric irregularities and large TEC gradients. Further analysis revealed that these two disturbances had markedly different impacts on GNSS positioning accuracy. The Lamb wave–induced disturbance mainly caused moderate TEC fluctuations with limited effects on positioning accuracy, and mid-latitude stations maintained both average and 95th percentile positioning (ppp,P95) errors below 0.1 m throughout the event. In contrast, the EPB-driven disturbance had a substantial impact on low-latitude regions, where the average horizontal PPP error peaked at 0.5 m and the horizontal and vertical ppp,P95 errors exceeded 1 m. Our findings reveal two episodes of spatial-gradient enhancement and successfully estimate the propagation speed and direction of the Lamb waves, supporting the potential application of ionospheric gradient monitoring in forecasting GNSS performance degradation. Full article
Show Figures

Figure 1

34 pages, 4858 KB  
Article
A Slip-Based Model Predictive Control Approach for Trajectory Following of Unmanned Tracked Vehicles
by Ismail Gocer and Selahattin Caglar Baslamisli
Machines 2025, 13(9), 817; https://doi.org/10.3390/machines13090817 - 5 Sep 2025
Abstract
In the field of tracked vehicle dynamics, studies show that vertical loads are concentrated under road wheels on firm road conditions, allowing slip-based models of tracked vehicles to be designed similar to wheeled vehicle models. This paper proposes a slip-based nonlinear two-track prediction [...] Read more.
In the field of tracked vehicle dynamics, studies show that vertical loads are concentrated under road wheels on firm road conditions, allowing slip-based models of tracked vehicles to be designed similar to wheeled vehicle models. This paper proposes a slip-based nonlinear two-track prediction model for model predictive control (MPC), where track forces under road wheels are calculated with a simplification procedure implemented onto shear displacement theory. The study includes a comparative analysis with a kinematic prediction model, examining scenarios such as constant speed cornering and spiral maneuvers. Validation is carried out by comparing the simulation results of the proposed controller with field test data acquired from a five‑wheeled tracked vehicle platform, including measurements on asphalt and stabilized road conditions. The results demonstrate that the slip-based model excels in trajectory tracking, with lateral deviations consistently below 0.25 m and typically around 0.02–0.08 m RMS depending on the scenario. By improving the computational efficiency and ensuring precise navigation, this approach offers an advanced control solution for tracked vehicles on firm terrain. Full article
20 pages, 46995 KB  
Article
Upper Ocean Response to Typhoon Khanun in the South China Sea from Multiple-Satellite Observations and Numerical Simulations
by Fengcheng Guo, Xia Chai, Yongze Li and Dongyang Fu
J. Mar. Sci. Eng. 2025, 13(9), 1718; https://doi.org/10.3390/jmse13091718 - 5 Sep 2025
Abstract
This study examines the upper-ocean response to Typhoon Khanun, which traversed the northern South China Sea in October 2017, by integrating multi-satellite observations with numerical simulations from the Regional Ocean Modeling System (ROMS). For the ROMS simulations, an Arakawa C-grid was adopted with [...] Read more.
This study examines the upper-ocean response to Typhoon Khanun, which traversed the northern South China Sea in October 2017, by integrating multi-satellite observations with numerical simulations from the Regional Ocean Modeling System (ROMS). For the ROMS simulations, an Arakawa C-grid was adopted with a 4-km horizontal resolution and 40 vertical terrain-following σ-layers, covering the domain of 105° E to 119° E and 15° N to 23° N. Typhoons significantly influence ocean dynamics, altering sea surface temperature (SST), sea surface salinity (SSS), and ocean currents, thereby modulating air–sea exchange processes and marine ecosystem dynamics. High-resolution satellite datasets, including GHRSSST for SST, SMAP for SSS, GPM IMERG for precipitation, and GLORYS12 for sea surface height, were combined with ROMS simulations configured at a 4-km horizontal resolution with 40 vertical layers to analyze ocean changes from 11 to 18 October 2017. The results show that Typhoon Khanun induced substantial SST cooling, with ROMS simulations indicating a maximum decrease of 1.94 °C and satellite data confirming up to 1.5 °C, primarily on the right side of the storm track due to wind-driven upwelling and vertical mixing. SSS exhibited a complex response: nearshore regions, such as the Beibu Gulf, experienced freshening of up to 0.1 psu driven by intense rainfall, while the right side of the storm track showed a salinity increase of 0.6 psu due to upwelling of saltier deep water. Ocean currents intensified significantly, reaching speeds of 0.5–1 m/s near coastal areas, with pronounced vertical mixing in the upper 70 m driven by Ekman pumping and wave-current interactions. By effectively capturing typhoon-induced oceanic responses, the integration of satellite data and the ROMS model enhances understanding of typhoon–ocean interaction mechanisms, providing a scientific basis for risk assessment and disaster management in typhoon-prone regions. Future research should focus on refining model parameterizations and advancing data assimilation techniques to improve predictions of typhoon–ocean interactions, providing valuable insights for disaster preparedness and environmental management in typhoon-prone regions. Full article
(This article belongs to the Section Physical Oceanography)
27 pages, 3123 KB  
Article
Research on Control Strategy of Semi-Active Suspension System Based on Fuzzy Adaptive PID-MPC
by Cheng Cai, Guiyong Wang, Zhigang Wang, Raoqiang Li and Zhiwei Li
Appl. Sci. 2025, 15(17), 9768; https://doi.org/10.3390/app15179768 - 5 Sep 2025
Abstract
To address the dynamic characteristics of vehicle semi-active suspension systems under special operating conditions and multi-source excitations, this paper proposes a fuzzy adaptive proportional–integral–derivative model predictive control (PID-MPC) strategy aimed at enhancing ride comfort during vehicle operation. The proposed approach employs MPC as [...] Read more.
To address the dynamic characteristics of vehicle semi-active suspension systems under special operating conditions and multi-source excitations, this paper proposes a fuzzy adaptive proportional–integral–derivative model predictive control (PID-MPC) strategy aimed at enhancing ride comfort during vehicle operation. The proposed approach employs MPC as the primary controller to optimize suspension performance, incorporating a fuzzy adaptive PID compensation mechanism for real-time adjustment of PID parameters, thereby improving control efficacy. A half-car semi-active suspension model was established on the MATLAB/Simulink (2020b) platform, with simulation validation conducted across diverse road profiles, including speed bump road surface, Class B road surface, and Class C road surface. Simulation results demonstrate that the proposed strategy achieves a significant reduction in both vehicle vertical acceleration and vehicle pitch angle acceleration while maintaining appropriate suspension deflection and tire dynamic loads, effectively elevating occupant ride comfort. Research demonstrates that the fuzzy adaptive PID-MPC control strategy exhibits commendable performance under typical road operating conditions, possessing notable potential for practical engineering implementation. Full article
19 pages, 439 KB  
Article
Speeding Up Floyd–Warshall’s Algorithm to Compute All-Pairs Shortest Paths and the Transitive Closure of a Graph
by Giuseppe Lancia and Marcello Dalpasso
Algorithms 2025, 18(9), 560; https://doi.org/10.3390/a18090560 - 4 Sep 2025
Abstract
Floyd–Warshall’s algorithm is a widely-known procedure for computing all-pairs shortest paths in a graph of n vertices in Θ(n3) time complexity. A simplified version of the same algorithm computes the transitive closure of the graph with the same time [...] Read more.
Floyd–Warshall’s algorithm is a widely-known procedure for computing all-pairs shortest paths in a graph of n vertices in Θ(n3) time complexity. A simplified version of the same algorithm computes the transitive closure of the graph with the same time complexity. The algorithm operates on an n×n matrix, performing n inspections and no more than n updates of each matrix cell, until the final matrix is computed. In this paper, we apply a technique called SmartForce, originally devised as a performance enhancement for solving the traveling salesman problem, to avoid the inspection and checking of cells that do not need to be updated, thus reducing the overall computation time when the number, u, of cell updates is substantially smaller than n3. When the ratio u/n3 is not small enough, the performance of the proposed procedure might be worse than that of the Floyd–Warshall algorithm. To speed up the algorithm independently of the input instance type, we introduce an effective hybrid approach. Finally, a similar procedure, which exploits suitable fast data structures, can be used to achieve a speedup over the Floyd–Warshall simplified algorithm that computes the transitive closure of a graph. Full article
(This article belongs to the Special Issue Graph and Hypergraph Algorithms and Applications)
Show Figures

Figure 1

25 pages, 946 KB  
Article
Overall Equipment Effectiveness for Elevators (OEEE) in Industry 4.0: Conceptual Framework and Indicators
by Sonia Val and Iván García
Eng 2025, 6(9), 227; https://doi.org/10.3390/eng6090227 - 4 Sep 2025
Viewed by 83
Abstract
In the context of Industry 4.0 and the proliferation of smart buildings, elevators represent critical assets whose performance is often inadequately measured by traditional indicators that overlook energy consumption. This study addresses the need for a more holistic Key Performance Indicator (KPI) by [...] Read more.
In the context of Industry 4.0 and the proliferation of smart buildings, elevators represent critical assets whose performance is often inadequately measured by traditional indicators that overlook energy consumption. This study addresses the need for a more holistic Key Performance Indicator (KPI) by developing the Overall Equipment Effectiveness for Elevators (OEEE), an index designed to integrate operational effectiveness with energy efficiency. The methodology involves adapting the classical OEE framework through a comprehensive literature review and an analysis of elevator energy standards. This leads to a novel structure that incorporates a dedicated energy efficiency dimension alongside the traditional pillars of availability, performance, and quality. The framework further refines the performance and energy efficiency dimensions, resulting in six distinct sub-indicators that specifically measure operational uptime, speed adherence, electromechanical conversion, fault-free cycles (as a proxy for operational quality), and energy use during both movement and standby modes. The primary result is the complete mathematical formulation of the OEEE, a single, integrated KPI derived from these six metrics and designed for implementation using data from modern IoT-enabled elevators. The study concludes that the OEEE provides a more accurate and comprehensive tool for asset management, enabling data-driven decisions to enhance reliability, optimise energy consumption, and reduce operational costs in smart vertical transportation systems. Full article
Show Figures

Figure 1

15 pages, 37613 KB  
Article
Wideband Reconfigurable Reflective Metasurface with 1-Bit Phase Control Based on Polarization Rotation
by Zahid Iqbal, Xiuping Li, Zihang Qi, Wenyu Zhao, Zaid Akram and Muhammad Ishfaq
Telecom 2025, 6(3), 65; https://doi.org/10.3390/telecom6030065 - 3 Sep 2025
Viewed by 133
Abstract
The rapid expansion of broadband wireless communication systems, including 5G, satellite networks, and next-generation IoT platforms, has created a strong demand for antenna architectures capable of real-time beam control, compact integration, and broad frequency coverage. Traditional reflectarrays, while effective for narrowband applications, often [...] Read more.
The rapid expansion of broadband wireless communication systems, including 5G, satellite networks, and next-generation IoT platforms, has created a strong demand for antenna architectures capable of real-time beam control, compact integration, and broad frequency coverage. Traditional reflectarrays, while effective for narrowband applications, often face inherent limitations such as fixed beam direction, high insertion loss, and complex phase-shifting networks, making them less viable for modern adaptive and reconfigurable systems. Addressing these challenges, this work presents a novel wideband planar metasurface that operates as a polarization rotation reflective metasurface (PRRM), combining 90° polarization conversion with 1-bit reconfigurable phase modulation. The metasurface employs a mirror-symmetric unit cell structure, incorporating a cross-shaped patch with fan-shaped stub loading and integrated PIN diodes, connected through vertical interconnect accesses (VIAs). This design enables stable binary phase control with minimal loss across a significantly wide frequency range. Full-wave electromagnetic simulations confirm that the proposed unit cell maintains consistent cross-polarized reflection performance and phase switching from 3.83 GHz to 15.06 GHz, achieving a remarkable fractional bandwidth of 118.89%. To verify its applicability, the full-wave simulation analysis of a 16 × 16 array was conducted, demonstrating dynamic two-dimensional beam steering up to ±60° and maintaining a 3 dB gain bandwidth of 55.3%. These results establish the metasurface’s suitability for advanced beamforming, making it a strong candidate for compact, electronically reconfigurable antennas in high-speed wireless communication, radar imaging, and sensing systems. Full article
Show Figures

Figure 1

17 pages, 2768 KB  
Article
Validation of Garmin HRM-Pro for Assessment of Spatiotemporal Parameters During Treadmill Running: Agreement with Three Motion Analysis Systems
by José Carlos Cabrera-Linares, Cristian Martínez Salazar, Juan Antonio Párraga Montilla and Pedro Ángel Latorre Román
Sensors 2025, 25(17), 5407; https://doi.org/10.3390/s25175407 - 2 Sep 2025
Viewed by 209
Abstract
Background: The aim of this study was to validate the accuracy of the spatiotemporal parameters of running provided by the Garmin HRM-Pro band through a concurrent comparison with the OptoGait system (version v.1.14.11), the Stryd power meter, and 2D photogrammetric analysis in recreational [...] Read more.
Background: The aim of this study was to validate the accuracy of the spatiotemporal parameters of running provided by the Garmin HRM-Pro band through a concurrent comparison with the OptoGait system (version v.1.14.11), the Stryd power meter, and 2D photogrammetric analysis in recreational runners at different paces (9 and 12 km/h). Methods: Fifty recreational runners (mean age: 22.14 ± 2.71 years) engaged in this study. Participants ran on a treadmill for 2 min at speeds of 9 and 12 km/h. Spatiotemporal parameters (ground contact time, step length, flight time, cadence, and vertical oscillation of center of gravity) were recorded using (1) the Garmin HRM-Pro band; (2) the OptoGait system; (3) the Stryd power meter; and (4) 2D photogrammetric analysis. Results: Only in relation to the VO of the center of gravity does the Garmin device yield higher values (p = 0.006) compared to video analysis. At 12 km/h, significant differences were found between devices in all the analyzed variables. In comparison to video analysis, the Garmin device does not show significant differences in any variable at this speed. The relative reliability parameters of the Garmin device at two different speeds showed excellent values across all analyzed variables. The Bland–Altman plots showed appropriate limits of agreement indicating good agreement between devices. Conclusions: The Garmin HRM-Pro Band can be used for the assessment of spatiotemporal variables of running in sports science, clinical gait assessment, and training optimization. Full article
(This article belongs to the Special Issue Sensors in 2025)
Show Figures

Figure 1

20 pages, 16141 KB  
Article
Low-Latitude Ionospheric Anomalies During Geomagnetic Storm on 10–12 October 2024
by Plamen Mukhtarov and Rumiana Bojilova
Universe 2025, 11(9), 295; https://doi.org/10.3390/universe11090295 - 1 Sep 2025
Viewed by 145
Abstract
This research examines in detail the behavior of the Equatorial Ionization Anomaly (EIA) during a severe geomagnetic storm that occurred on 10–11 October 2024. The global data of Total Electron Content (TEC) represented by relative deviation, giving information about the variations compared to [...] Read more.
This research examines in detail the behavior of the Equatorial Ionization Anomaly (EIA) during a severe geomagnetic storm that occurred on 10–11 October 2024. The global data of Total Electron Content (TEC) represented by relative deviation, giving information about the variations compared to quiet conditions, were used. The main attention is paid to the appearance of an additional “fountain effect” under the action of disturbed dynamo currents and the vertical drift of the ionospheric plasma caused by them. The results show that the area in which a positive response (increase) of TEC is observed occurs in an area corresponding to local time around 18–20 h (longitude around 60 °W) at magnetic latitudes ±30° and during the storm shifts westward to around 180 °W. The westward drift of the storm-induced “fountain effect” is moving at a speed much slower than the Earth’s rotation speed. As a result, the area of positive TEC response (vertical upward drift) and the area of negative response (vertical downward drift) are localized in both nighttime and daytime conditions. In this investigation, an example of a very similar geomagnetic storm registered on 25 September 1998 is given for comparison, in which a similar stationing of the storm-induced EIA was observed at longitudes around 180 °E. Full article
(This article belongs to the Section Space Science)
Show Figures

Figure 1

40 pages, 6391 KB  
Systematic Review
A Systematic Review of Technological Strategies to Improve Self-Starting in H-Type Darrieus VAWT
by Jorge-Saúl Gallegos-Molina and Ernesto Chavero-Navarrete
Sustainability 2025, 17(17), 7878; https://doi.org/10.3390/su17177878 - 1 Sep 2025
Viewed by 241
Abstract
The self-starting capability of straight-bladed H-type Darrieus Vertical Axis Wind Turbines (VAWTs) remains a major constraint for deployment, particularly in urban, low speed, and turbulent environments. We conducted a systematic review of technological strategies to improve self-starting, grouped into five categories: (1) aerodynamic [...] Read more.
The self-starting capability of straight-bladed H-type Darrieus Vertical Axis Wind Turbines (VAWTs) remains a major constraint for deployment, particularly in urban, low speed, and turbulent environments. We conducted a systematic review of technological strategies to improve self-starting, grouped into five categories: (1) aerodynamic airfoil design, (2) rotor configuration, (3) passive flow control, (4) active flow control, and (5) incident flow augmentation. Searches in Scopus and IEEE Xplore (last search 20 August 2025) covered the period from 2019 to 2026 and included peer-reviewed journal articles in English reporting experimental or numerical interventions on H-type Darrieus VAWTs with at least one start-up metric. From 1212 records, 53 studies met the eligibility after title/abstract screening and full-text assessment. Data were synthesized qualitatively using a comparative thematic approach, highlighting design parameters, operating conditions, and performance metrics (torque and power coefficients) during start-up. Quantitatively, studies reported typical start-up torque gains of 20–30% for airfoil optimization and passive devices, about 25% for incident-flow augmentation, and larger but less certain improvements (around 30%) for active control. Among the strategies, airfoil optimization and passive devices consistently improved start-up torque at low TSR with minimal added systems; rotor-configuration tuning and incident-flow devices further reduced start-up time where structural or siting constraints allowed; and active control showed the largest laboratory gains but with uncertain regarding energy and durability. However, limitations included heterogeneity in designs and metrics, predominance of 2D-Computational Fluid Dynamics (CFDs), and limited 3D/field validation restricted quantitative pooling. Risk of bias was assessed using an ad hoc matrix; overall certainty was rated as low to moderate due to limited validation and inconsistent uncertainty reporting. In conclusions, no single solution is universally optimal; hybrid strategies, combining optimized airfoils with targeted passive or active control, appear most promising. Future work should standardize start-up metrics, adopt validated 3D Fluid–Structure Interaction (FSI) models, and expand wind-tunnel/field trials. Full article
Show Figures

Graphical abstract

15 pages, 8842 KB  
Article
Applying Satellite-Based and Global Atmospheric Reanalysis Datasets to Simulate Sulphur Dioxide Plume Dispersion from Mount Nyamuragira 2006 Volcanic Eruption
by Thabo Modiba, Moleboheng Molefe and Lerato Shikwambana
Earth 2025, 6(3), 102; https://doi.org/10.3390/earth6030102 - 1 Sep 2025
Viewed by 167
Abstract
Understanding the dispersion of volcanic sulphur dioxide (SO2) plumes is crucial for assessing their environmental and climatic impacts. This study integrates satellite-based and reanalysis datasets to simulate as well as visualise the dispersion patterns of volcanic SO2 under diverse atmospheric [...] Read more.
Understanding the dispersion of volcanic sulphur dioxide (SO2) plumes is crucial for assessing their environmental and climatic impacts. This study integrates satellite-based and reanalysis datasets to simulate as well as visualise the dispersion patterns of volcanic SO2 under diverse atmospheric conditions. By incorporating data from the MERRA-2 (Modern-Era Retrospective Analysis for Research and Applications, version 2), CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations), and OMI (Ozone Monitoring Instrument) datasets, we are able to provide comprehensive insights into the vertical and horizontal trajectories of SO2 plumes. The methodology involves modelling SO2 dispersion across various atmospheric pressure surfaces, incorporating wind directions, wind speeds, and vertical column mass densities. This approach allows us to trace the evolution of SO2 plumes from their source through varying meteorological conditions, capturing detailed vertical distributions and plume paths. Combining these datasets allows for a comprehensive analysis of both natural and human-induced factors affecting SO2 dispersion. Visual and statistical interpretations in the paper reveal overall SO2 concentrations, first injection dates, and dissipation patterns detected across altitudes of up to ±20 km in the stratosphere. This work highlights the significance of combining satellite-based and global atmospheric reanalysis datasets to validate and enhance the accuracy of plume dispersion models while having a general agreement that OMI daily data and MERRA-2 reanalysis hourly data are capable of accurately accounting for SO2 plume dispersion patterns under varying meteorological conditions. Full article
Show Figures

Figure 1

19 pages, 1766 KB  
Article
Canopy Fuel Characteristics and Potential Fire Behavior in Dwarf Pine (Pinus pumila) Forests
by Xinxue He, Xin Zheng, Rong Cui, Chenglin Chi, Qianxue Wang, Shuo Wang, Guoqiang Zhang, Huiying Cai, Yanlong Shan, Mingyu Wang and Jili Zhang
Fire 2025, 8(9), 347; https://doi.org/10.3390/fire8090347 - 1 Sep 2025
Viewed by 291
Abstract
Crown fire hazard assessment and behavior prediction in dwarf pine (Pinus pumila) forests are dictated by the amount of canopy fuel available, topography, and weather. In this study, we collected data on CFL (available canopy fuel load), CBD (canopy bulk density), [...] Read more.
Crown fire hazard assessment and behavior prediction in dwarf pine (Pinus pumila) forests are dictated by the amount of canopy fuel available, topography, and weather. In this study, we collected data on CFL (available canopy fuel load), CBD (canopy bulk density), and CBH (canopy base height) through the destructive sampling of dwarf pine trees in the Greater Khingan Mountains of Northeast China. Allometric equations were developed for estimating the canopy’s available biomass, CFL, and CBD to support the assessment of canopy fuel. Three burning scenarios were designed to investigate the impact of various environmental parameters on fire behavior. Our findings indicated that the average CFL of a dwarf pine was 0.36 kg·m−2, while the average CBD was measured at 0.17 kg·m−3. The vertical variation trends of both CFL and CBD exhibited consistency, with values increasing progressively from the bottom to the top of the tree crown. Fire behavior simulations indicated that the low CBH of dwarf pine trees increased the likelihood of crown fires. Various factors, including wind speed, slope, and CBH, exerted considerable influence on fire behavior, with wind speed emerging as the most critical determinant. Silvicultural treatments, such as thinning and pruning, may effectively reduce fuel loads and elevate the canopy base height, thereby decreasing both the probability and intensity of crown fires. Full article
Show Figures

Figure 1

25 pages, 9004 KB  
Article
Austral Summer and Winter Analysis of Upper Tropospheric Wind Speed Trends for Brazil from 1980 to 2022
by Joshua M. Gilliland
Meteorology 2025, 4(3), 23; https://doi.org/10.3390/meteorology4030023 - 31 Aug 2025
Viewed by 190
Abstract
This study examines wind speed trends based on seven mandatory pressure levels of the atmosphere for Brazil from 1980 to 2022 using radiosonde and climate reanalysis products. The results show that austral summer (DJF) and winter (JJA) wind speed trends are predominately influenced [...] Read more.
This study examines wind speed trends based on seven mandatory pressure levels of the atmosphere for Brazil from 1980 to 2022 using radiosonde and climate reanalysis products. The results show that austral summer (DJF) and winter (JJA) wind speed trends are predominately influenced by upper tropospheric circulations in each reanalysis model. A vertical wind profile shows that the lowest wind speed trend changes occur below 500 hPa, while the largest wind speed trend tendencies develop in the upper troposphere (400–200 hPa). To further quantify this finding, a spatial profile of wind speed change is developed through a three-dimensional model. The model shows that two synoptic features are possibly controlling upper-level air trends across Brazil. During summer, decreased (increased) upper-level wind speeds across southern and northeastern (central-west and southeastern) Brazil are related to changes in temperature and geopotential heights occurring in proximity of the Bolivian high. This anticyclone gradually dissipates and the role of the subtropical jet stream affects upper-level wind trends across the subtropical latitudes of Brazil during winter. Finally, an upper-level wind analysis is also conducted to support the geographical findings shown in the three-dimensional wind trend model. The results provide a foundation for understanding how wind speeds vary not only from a vertical but also from a spatial (horizontal) perspective across Brazil. Full article
Show Figures

Figure 1

21 pages, 5927 KB  
Article
Flow Control-Based Aerodynamic Enhancement of Vertical Axis Wind Turbines for Offshore Renewable Energy Deployment
by Huahao Ou, Qiang Zhang, Chun Li, Dinghong Lu, Weipao Miao, Huanhuan Li and Zifei Xu
J. Mar. Sci. Eng. 2025, 13(9), 1674; https://doi.org/10.3390/jmse13091674 - 31 Aug 2025
Viewed by 238
Abstract
As wind energy development continues to expand toward nearshore and deep-sea regions, enhancing the aerodynamic efficiency of vertical axis wind turbines (VAWTs) in complex marine environments has become a critical challenge. To address this, a composite flow control strategy combining leading-edge suction and [...] Read more.
As wind energy development continues to expand toward nearshore and deep-sea regions, enhancing the aerodynamic efficiency of vertical axis wind turbines (VAWTs) in complex marine environments has become a critical challenge. To address this, a composite flow control strategy combining leading-edge suction and trailing-edge gurney flap is proposed. A two-dimensional unsteady numerical simulation framework is established based on CFD and the four-equation Transition SST (TSST) transition model. The key control parameters, including the suction slot position and width as well as the gurney flap height and width, are systematically optimized through orthogonal experimental design. The aerodynamic performance under single (suction or gurney flap) and composite control schemes is comprehensively evaluated. Results show that leading-edge suction effectively delays flow separation, while the gurney flap improves aerodynamic characteristics in the downwind region. Their synergistic effect significantly suppresses blade load fluctuations and enhances the wake structure, thereby improving wind energy capture. Compared to all other configurations, including suction-only and gurney flap-only blades, the composite control blade achieves the most significant increase in power coefficient across the entire tip speed ratio range, with an average improvement of 67.24%, demonstrating superior aerodynamic stability and strong potential for offshore applications. Full article
(This article belongs to the Special Issue Advanced Studies in Marine Data Analysis)
Show Figures

Figure 1

Back to TopTop