Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (180)

Search Parameters:
Keywords = virtual simulation infrastructures

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 2038 KB  
Article
Cognitive-Inspired Multimodal Learning Framework for Hazard Identification in Highway Construction with BIM–GIS Integration
by Jibiao Zhou, Zewei Li, Zhan Shi, Xinhua Mao and Chao Gao
Sustainability 2025, 17(21), 9395; https://doi.org/10.3390/su17219395 - 22 Oct 2025
Viewed by 264
Abstract
Highway construction remains one of the most hazardous sectors in the infrastructure domain, where persistent accident rates challenge the vision of sustainable and safe development. Traditional hazard identification methods rely on manual inspections that are often slow, error-prone, and unable to cope with [...] Read more.
Highway construction remains one of the most hazardous sectors in the infrastructure domain, where persistent accident rates challenge the vision of sustainable and safe development. Traditional hazard identification methods rely on manual inspections that are often slow, error-prone, and unable to cope with complex and dynamic site conditions. To address these limitations, this study develops a cognitive-inspired multimodal learning framework integrated with BIM–GIS-enabled digital twins to advance intelligent hazard identification and digital management for highway construction safety. The framework introduces three key innovations: a biologically grounded attention mechanism that simulates inspector search behavior, an adaptive multimodal fusion strategy that integrates visual, textual, and sensor information, and a closed-loop digital twin platform that synchronizes physical and virtual environments in real time. The system was validated across five highway construction projects over an 18-month period. Results show that the framework achieved a hazard detection accuracy of 91.7% with an average response time of 147 ms. Compared with conventional computer vision methods, accuracy improved by 18.2%, while gains over commercial safety systems reached 24.8%. Field deployment demonstrated a 34% reduction in accidents and a 42% increase in inspection efficiency, delivering a positive return on investment within 8.7 months. By linking predictive safety analytics with BIM–GIS semantics and site telemetry, the framework enhances construction safety, reduces delays and rework, and supports more resource-efficient, low-disruption project delivery, highlighting its potential as a sustainable pathway toward zero-accident highway construction. Full article
Show Figures

Figure 1

23 pages, 3752 KB  
Article
Leveraging Immersive Technologies for Safety Evaluation in Forklift Operations
by Patryk Żuchowicz and Konrad Lewczuk
Appl. Sci. 2025, 15(20), 11048; https://doi.org/10.3390/app152011048 - 15 Oct 2025
Viewed by 334
Abstract
This article presents a novel methodology for evaluating the safety of forklift operations in intralogistics systems using a multi-user simulation model integrated with virtual reality (MUSM-VR). Set against the backdrop of persistent safety challenges in warehouse environments, particularly for inexperienced operators, the study [...] Read more.
This article presents a novel methodology for evaluating the safety of forklift operations in intralogistics systems using a multi-user simulation model integrated with virtual reality (MUSM-VR). Set against the backdrop of persistent safety challenges in warehouse environments, particularly for inexperienced operators, the study addresses the need for proactive safety assessment tools. The authors develop a simulation framework within the FlexSim 24.2 environment, enhanced by proprietary VR and server integration libraries, enabling interactive, immersive testing of warehouse layouts and operational scenarios. Through literature review and analysis of risk factors, the methodology incorporates human, infrastructural, organizational, and technical dimensions of forklift safety. A case study involving inexperienced participants demonstrates the model’s capability to identify high-risk areas, assess operator behavior, and evaluate the impact of visibility and speed parameters on collision risk. Results highlight the effectiveness of MUSM-VR in pinpointing hazardous intersections and inform design recommendations such as optimal speed limits and layout modifications. The study concludes that MUSM-VR not only facilitates early-stage safety analysis but also supports ergonomic design, operator training, and iterative testing of preventive measures, aligning with Industry 4.0 and 5.0 paradigms. The integration of immersive simulation into design and safety workflows marks a significant advancement in intralogistics system development. Full article
(This article belongs to the Section Applied Industrial Technologies)
Show Figures

Figure 1

49 pages, 1688 KB  
Review
Digital Twin Applications in the Water Sector: A Review
by Pooria Ghorbani Bam, Nader Rezaei, Alexander Roubanis, Dana Austin, Elinor Austin, Brian Tarroja, Imre Takacs, Kris Villez and Diego Rosso
Water 2025, 17(20), 2957; https://doi.org/10.3390/w17202957 - 14 Oct 2025
Viewed by 2267
Abstract
As cities develop and resource demands rise, the water sector faces crucial challenges to deliver reliable, sustainable, and efficient services. Digital Twins (DTs), virtual replicas of physical systems, offer a promising tool to transform how we manage water infrastructure. Originally developed in the [...] Read more.
As cities develop and resource demands rise, the water sector faces crucial challenges to deliver reliable, sustainable, and efficient services. Digital Twins (DTs), virtual replicas of physical systems, offer a promising tool to transform how we manage water infrastructure. Originally developed in the aerospace industry, DTs are now gaining traction in the water sector, enabling real-time monitoring, simulation, and predictive control of water and wastewater treatment, collection and distribution networks, and water reclamation and reuse systems. While still emerging in the water sector, DTs have shown potential to enhance operational efficiency, reduce environmental impacts, and support smarter, more resilient water management. This review study provides a comprehensive overview of current DT applications in the water sector, highlighting successful case studies, technical challenges, and knowledge gaps. It also explores how DTs can help bridge the water–energy nexus by optimizing resources utilized across interconnected systems. By synthesizing recent advances and identifying future research directions, this paper illustrates how DTs can play a central role in building sustainable, adaptive, and digitally-enabled water infrastructure. Full article
(This article belongs to the Special Issue AI, Machine Learning and Digital Twin Applications in Water)
Show Figures

Figure 1

13 pages, 3043 KB  
Article
Secure Virtual Network Provisioning over Key Programmable Optical Networks
by Xiaoyu Wang, Hao Jiang, Jianwei Li and Zhonghua Liang
Entropy 2025, 27(10), 1042; https://doi.org/10.3390/e27101042 - 7 Oct 2025
Viewed by 242
Abstract
Virtual networks have emerged as a promising solution for enabling diverse users to efficiently share bandwidth resources over optical network infrastructures. Despite the invention of various schemes aimed at ensuring secure isolation among virtual networks, the security of data transfer in virtual networks [...] Read more.
Virtual networks have emerged as a promising solution for enabling diverse users to efficiently share bandwidth resources over optical network infrastructures. Despite the invention of various schemes aimed at ensuring secure isolation among virtual networks, the security of data transfer in virtual networks remains a challenging problem. To address this challenge, the concept of evolving traditional optical networks into key programmable optical networks (KPONs) has been proposed. Inspired by this, this paper delves into the establishment of secure virtual networks over KPONs, in which the information-theoretically secure keys can be supplied for ensuring the information-theoretic security of data transfer within virtual networks. A layered architecture for secure virtual network provisioning over KPONs is proposed, which leverages software-defined networking to realize the programmable control of optical-layer resources. With this architecture, a heuristic algorithm, i.e., the key adaptation-based secure virtual network provisioning (KA-SVNP) algorithm, is designed to dynamically allocate key resources based on the adaption between the key supply and key demand. To evaluate the proposed solutions, an emulation testbed is established, achieving millisecond latencies for secure virtual network establishment and deletion. Moreover, numerical simulations indicate that the designed KA-SVNP algorithm performs superior to the benchmark algorithm in terms of the success probability of secure virtual network requests. Full article
(This article belongs to the Special Issue Secure Network Ecosystems in the Quantum Era)
Show Figures

Figure 1

31 pages, 19756 KB  
Article
Impact of Climate Change and Other Disasters on Coastal Cultural Heritage: An Example from Greece
by Chryssy Potsiou, Sofia Basiouka, Styliani Verykokou, Denis Istrati, Sofia Soile, Marcos Julien Alexopoulos and Charalabos Ioannidis
Land 2025, 14(10), 2007; https://doi.org/10.3390/land14102007 - 7 Oct 2025
Viewed by 1168
Abstract
Protection of coastal cultural heritage is among the most urgent global priorities, as these sites face increasing threats from climate change, sea level rise, and human activity. This study emphasises the value of innovative geospatial tools and data ecosystems for timely risk assessment. [...] Read more.
Protection of coastal cultural heritage is among the most urgent global priorities, as these sites face increasing threats from climate change, sea level rise, and human activity. This study emphasises the value of innovative geospatial tools and data ecosystems for timely risk assessment. The role of land administration systems, geospatial documentation of coastal cultural heritage sites, and the adoption of innovative techniques that combine various methodologies is crucial for timely action. The coastal management infrastructure in Greece is presented, outlining the key public authorities and national legislation, as well as the land administration and geospatial ecosystems and the various available geospatial ecosystems. We profile the Hellenic Cadastre and the Hellenic Archaeological Cadastre along with open geospatial resources, and introduce TRIQUETRA Decision Support System (DSS), produced through the EU’s Horizon project, and a Digital Twin methodology for hazard identification, quantification, and mitigation. Particular emphasis is given to the role of Digital Twin technology, which acts as a continuously updated virtual replica of coastal cultural heritage sites, integrating heterogeneous geospatial datasets such as cadastral information, photogrammetric 3D models, climate projections, and hazard simulations, allowing for stakeholders to test future scenarios of sea level rise, flooding, and erosion, offering an advanced tool for resilience planning. The approach is validated at the coastal archaeological site of Aegina Kolona, where a UAV-based SfM-MVS survey produced using high-resolution photogrammetric outputs, including a dense point cloud exceeding 60 million points, a 5 cm resolution Digital Surface Model, high-resolution orthomosaics with a ground sampling distance of 1 cm and 2.5 cm, and a textured 3D model using more than 6000 nadir and oblique images. These products provided a geospatial infrastructure for flood risk assessment under extreme rainfall events, following a multi-scale hydrologic–hydraulic modelling framework. Island-scale simulations using a 5 m Digital Elevation Model (DEM) were coupled with site-scale modelling based on the high-resolution UAV-derived DEM, allowing for the nested evaluation of water flow, inundation extents, and velocity patterns. This approach revealed spatially variable flood impacts on individual structures, highlighted the sensitivity of the results to watershed delineation and model resolution, and identified critical intervention windows for temporary protection measures. We conclude that integrating land administration systems, open geospatial data, and Digital Twin technology provides a practical pathway to proactive and efficient management, increasing resilience for coastal heritage against climate change threats. Full article
(This article belongs to the Special Issue Land Modifications and Impacts on Coastal Areas, Second Edition)
Show Figures

Figure 1

21 pages, 40956 KB  
Article
The apex MCC: Blueprint of an Open-Source, Secure, CCSDS-Compatible Ground Segment for Sounding Rockets, CubeSats, and Small Lander Missions
by Nico Maas, Sebastian Feles and Jean-Pierre de Vera
Eng 2025, 6(9), 246; https://doi.org/10.3390/eng6090246 - 17 Sep 2025
Cited by 1 | Viewed by 688
Abstract
The operation of microgravity research missions, such as sounding rockets, CubeSats, and small landers, typically relies on proprietary mission control infrastructures, which limit reproducibility, portability, and interdisciplinary use. In this work, we present an open-source blueprint for a distributed ground-segment architecture designed to [...] Read more.
The operation of microgravity research missions, such as sounding rockets, CubeSats, and small landers, typically relies on proprietary mission control infrastructures, which limit reproducibility, portability, and interdisciplinary use. In this work, we present an open-source blueprint for a distributed ground-segment architecture designed to support telemetry, telecommand, and mission operations across institutional and geographic boundaries. The system integrates containerized services, broker bridging for publish–subscribe communication, CCSDS-compliant telemetry and telecommand handling, and secure virtual private networks with two-factor authentication. A modular mission control system based on Yamcs was extended with custom plug-ins for CRC verification, packet reassembly, and command sequencing. The platform was validated during the MAPHEUS-10 sounding rocket mission, where it enabled uninterrupted remote commanding between Sweden and Germany and achieved end-to-end command–response latencies of ~550 ms under flight conditions. To the best of our knowledge, this represents the first open-source ground-segment framework deployed in a space mission. By combining elements from computer science, aerospace engineering, and systems engineering, this work demonstrates how interdisciplinary integration enables resilient, reproducible, and portable mission operations. The blueprint offers a practical foundation for future interdisciplinary research missions, extending beyond sounding rockets to CubeSats, ISS experiments, and planetary landers. This study is part two of a three-part series describing the apex Mk.2/Mk.3 experiments, open-source ground segment, and service module simulator. Full article
(This article belongs to the Special Issue Interdisciplinary Insights in Engineering Research)
Show Figures

Figure 1

22 pages, 9783 KB  
Article
Combining Virtual Reality with the Physical Model Factory: A Practice Course Designed for Manufacturing Process Education
by Hanming Zhang, Xizhi Sun, Diane Mynors and Canzhi Guo
Processes 2025, 13(9), 2946; https://doi.org/10.3390/pr13092946 - 15 Sep 2025
Viewed by 592
Abstract
Diverse model factories have been established in universities and enterprises to support practical education across various fields. Increasingly stringent health and safety regulations have made practical equipment more complex and costlier. With the advancement of digital infrastructure, virtual reality (VR) technology has been [...] Read more.
Diverse model factories have been established in universities and enterprises to support practical education across various fields. Increasingly stringent health and safety regulations have made practical equipment more complex and costlier. With the advancement of digital infrastructure, virtual reality (VR) technology has been widely adopted in education to simulate real-world environments. This study explores the application of VR technology in enhancing manufacturing process education. To achieve this, an interaction methodology based on the OPC UA standard is proposed to enable data exchange between virtual and physical environments. Additionally, a detailed workflow of the practice course, conducted in a physical model factory at North China University of Technology, is presented. This approach is particularly noteworthy because it allows students to validate simulated results using a physical system, rather than relying solely on virtual scenes to mimic real-world settings. Students were divided into two groups: a practice group using the proposed digital method, and a control group without digital tools. The number of mistakes from the practice group was 37% less than that of the control group. Statistical analysis of students’ grades and questionnaire responses concludes that the proposed methodology is valuable to improve students’ engagement and practical skills. The presented course is replicable for other training institutions. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

19 pages, 6761 KB  
Article
An Integrated Multi-Sensor Information System for Real-Time Reservoir Monitoring and Management
by Shiwei Shao, Fan Zhou, Yuxuan Wang and Jiawei Wu
Sensors 2025, 25(18), 5730; https://doi.org/10.3390/s25185730 - 14 Sep 2025
Viewed by 769
Abstract
Reservoirs face growing challenges in safety and sustainable management, requiring systematic approaches that integrate monitoring, analysis, and decision support. To address this need, this study develops an integrated information system framework with a four-layer architecture, encompassing “perception,” “data,” “model,” and “application.” The perception [...] Read more.
Reservoirs face growing challenges in safety and sustainable management, requiring systematic approaches that integrate monitoring, analysis, and decision support. To address this need, this study develops an integrated information system framework with a four-layer architecture, encompassing “perception,” “data,” “model,” and “application.” The perception layer establishes a multi-platform monitoring network based on fused multi-sensor data. The data layer manages heterogeneous information through correlation mechanisms at the physics, semantics, and application levels. The model layer supports decision-making through a cross-coupled analytical framework for the coordinated management of water safety, resources, environment, and ecology. Finally, the application layer utilizes virtual-physical mapping and dynamic reasoning to implement a closed-loop management system encompassing forecasting, warning, simulation, and planning. This framework was implemented and validated at the Ye Fan Reservoir in Hubei Province, China. By integrating components like “One Map,” flood dispatching, safety monitoring, early warning, video surveillance, and operational supervision, a three-dimensional perception network was constructed. This deployment significantly improved the precision, reliability, and scientific basis of reservoir operation. The integrated monitoring and management system presented in this paper, driven by heterogeneous sensor networks, provides an effective and generalizable solution for modern reservoir management, with the potential for extension to broader water resource and infrastructure systems. Full article
(This article belongs to the Special Issue Intelligent Traffic Safety and Security)
Show Figures

Figure 1

35 pages, 12605 KB  
Article
Multi-User Virtual Reality Tool for Remote Communication in Construction Projects: Bridge Maintenance Application
by Sofía Montecinos-Orellana, Felipe Muñoz La Rivera, Javier Mora-Serrano, Pere-Andreu Ubach and María-Jesús Bopp
Systems 2025, 13(9), 789; https://doi.org/10.3390/systems13090789 - 8 Sep 2025
Viewed by 1632
Abstract
Effective communication between construction sites and engineering or architectural offices is critical to the success of construction projects, particularly in the maintenance of critical infrastructure such as bridges. In scenarios where distance limits the physical presence of specialists, Requests for Information (RFIs) are [...] Read more.
Effective communication between construction sites and engineering or architectural offices is critical to the success of construction projects, particularly in the maintenance of critical infrastructure such as bridges. In scenarios where distance limits the physical presence of specialists, Requests for Information (RFIs) are the primary formal exchange tool. However, issues such as incomplete data, poor quality, or delayed responses often lead to significant project delays. This study proposes a multi-user Virtual Reality (VR) platform to optimize communication workflows in these contexts. Using the Design Science Research Methodology (DSRM), an immersive environment was developed to connect up to 20 users simultaneously, integrating BIM models with support for technical details, language, and contextual factors. The tool was validated through a case study focused on the maintenance of a railway bridge, where five real RFIs were simulated. Results show that the immersive experience enhances spatial understanding, improves remote collaboration, and accelerates decision-making. Users highlighted the sense of presence and perceived usefulness, positioning this tool as an effective alternative to overcome communication barriers in geographically distributed infrastructure maintenance. Full article
(This article belongs to the Special Issue Advancing Project Management Through Digital Transformation)
Show Figures

Figure 1

29 pages, 2570 KB  
Article
Governance Framework for Intelligent Digital Twin Systems in Battery Storage: Aligning Standards, Market Incentives, and Cybersecurity for Decision Support of Digital Twin in BESS
by April Lia Hananto and Ibham Veza
Computers 2025, 14(9), 365; https://doi.org/10.3390/computers14090365 - 2 Sep 2025
Viewed by 1226
Abstract
Digital twins represent a transformative innovation for battery energy storage systems (BESS), offering real-time virtual replicas of physical batteries that enable accurate monitoring, predictive analytics, and advanced control strategies. These capabilities promise to significantly enhance system efficiency, reliability, and lifespan. Yet, despite the [...] Read more.
Digital twins represent a transformative innovation for battery energy storage systems (BESS), offering real-time virtual replicas of physical batteries that enable accurate monitoring, predictive analytics, and advanced control strategies. These capabilities promise to significantly enhance system efficiency, reliability, and lifespan. Yet, despite the clear technical potential, large-scale deployment of digital twin-enabled battery systems faces critical governance barriers. This study identifies three major challenges: fragmented standards and lack of interoperability, weak or misaligned market incentives, and insufficient cybersecurity safeguards for interconnected systems. The central contribution of this research is the development of a comprehensive governance framework that aligns these three pillars—standards, market and regulatory incentives, and cybersecurity—into an integrated model. Findings indicate that harmonized standards reduce integration costs and build trust across vendors and operators, while supportive regulatory and market mechanisms can explicitly reward the benefits of digital twins, including improved reliability, extended battery life, and enhanced participation in energy markets. For example, simulation-based evidence suggests that digital twin-guided thermal and operational strategies can extend usable battery capacity by up to five percent, providing both technical and economic benefits. At the same time, embedding robust cybersecurity practices ensures that the adoption of digital twins does not introduce vulnerabilities that could threaten grid stability. Beyond identifying governance gaps, this study proposes an actionable implementation roadmap categorized into short-, medium-, and long-term strategies rather than fixed calendar dates, ensuring adaptability across different jurisdictions. Short-term actions include establishing terminology standards and piloting incentive programs. Medium-term measures involve mandating interoperability protocols and embedding digital twin requirements in market rules, and long-term strategies focus on achieving global harmonization and universal plug-and-play interoperability. International examples from Europe, North America, and Asia–Pacific illustrate how coordinated governance can accelerate adoption while safeguarding energy infrastructure. By combining technical analysis with policy and governance insights, this study advances both the scholarly and practical understanding of digital twin deployment in BESSs. The findings provide policymakers, regulators, industry leaders, and system operators with a clear framework to close governance gaps, maximize the value of digital twins, and enable more secure, reliable, and sustainable integration of energy storage into future power systems. Full article
(This article belongs to the Section AI-Driven Innovations)
Show Figures

Figure 1

29 pages, 4970 KB  
Review
Is the Healthcare Industry Ready for Digital Twins? Examining the Opportunities and Challenges
by Srinivasini Sasitharasarma, Noor H. S. Alani and Zazli Lily Wisker
Future Internet 2025, 17(9), 386; https://doi.org/10.3390/fi17090386 - 27 Aug 2025
Viewed by 1508
Abstract
Recent advancements in the healthcare sector have reached a pivotal juncture, catalysed by the emergence of Digital Twin (DT) technologies. These innovations facilitate the development of virtual replicas that accurately simulate real-world conditions, thereby transforming traditional approaches to medical analysis, diagnostics, and treatment [...] Read more.
Recent advancements in the healthcare sector have reached a pivotal juncture, catalysed by the emergence of Digital Twin (DT) technologies. These innovations facilitate the development of virtual replicas that accurately simulate real-world conditions, thereby transforming traditional approaches to medical analysis, diagnostics, and treatment planning. Although widely successful in manufacturing, the adoption of Digital Twins in healthcare is relatively limited, particularly regarding their impact on clinical efficiency and patient outcomes. This study addresses three primary research questions: (1) How does Digital Twin technology improve individualised patient treatments and care quality? (2) What is the role of Digital Twin technology in accurately predicting patient responses to medical interventions? (3) What are the significant challenges of integrating Digital Twin technology into healthcare? Synthesising findings from 70 peer-reviewed articles, this review identifies critical knowledge gaps and provides practical recommendations for healthcare stakeholders to effectively navigate these challenges. This research proposes a conceptual framework illustrating the lifecycle of Digital Twin implementation in healthcare and outlines essential strategies for successful adoption. It emphasises the importance of robust infrastructure, clear regulatory guidance, and ethical practices to fully leverage the advantages of DT technologies. Nevertheless, this review acknowledges its limitations, including reliance on secondary data and the absence of empirical validation. Future research should focus on practical applications, diverse healthcare contexts, and broader stakeholder perspectives to comprehensively assess real-world impacts. Full article
(This article belongs to the Special Issue IoT Architecture Supported by Digital Twin: Challenges and Solutions)
Show Figures

Figure 1

19 pages, 6184 KB  
Article
Research on Hardware-in-the-Loop Test Platform Based on Simulated IED and Man-in-the-Middle Attack
by Ke Liu, Rui Song, Wenqian Zhang, Han Guo, Jun Han and Hongbo Zou
Processes 2025, 13(9), 2735; https://doi.org/10.3390/pr13092735 - 27 Aug 2025
Viewed by 589
Abstract
With the widespread adoption of intelligent electronic devices (IEDs) in smart substations, the real-time data transmission and interoperability features of the IEC 61850 communication standard play a crucial role in ensuring seamless automation system integration. This paper presents a hardware-in-the-loop (HIL) platform experiment [...] Read more.
With the widespread adoption of intelligent electronic devices (IEDs) in smart substations, the real-time data transmission and interoperability features of the IEC 61850 communication standard play a crucial role in ensuring seamless automation system integration. This paper presents a hardware-in-the-loop (HIL) platform experiment analysis based on a simulated IED and man-in-the-middle (MITM) attack, leveraging built-in IEC 61850 protocol software to replicate an existing substation communication architecture in cyber physical systems. This study investigates the framework performance and protocol robustness of this approach. First, the physical network infrastructure of smart grids is analyzed in detail, followed by the development of an HIL testing platform tailored for discrete communication network scenarios. Next, virtual models of intelligent electrical equipment and MITM attacks are created, along with their corresponding communication layer architectures, enabling comprehensive simulation analysis. Finally, in the 24-h stability operation test and the test of three typical fault scenarios, the simulated IED can achieve 100% of the protocol consistency passing rate, which is completely consistent with the protection action decision of the physical IED, the end-to-end delay is less than 4 ms, and the measurement accuracy matches the accuracy level of the physical IED, which verifies that the proposed test platform can effectively guide the commissioning of smart substations. Full article
Show Figures

Figure 1

18 pages, 965 KB  
Article
Digital Twin-Assisted Deep Reinforcement Learning for Joint Caching and Power Allocation in Vehicular Networks
by Guobin Zhang, Junran Su, Canxuan Zhong, Feng Ke and Yuling Liu
Electronics 2025, 14(17), 3387; https://doi.org/10.3390/electronics14173387 - 26 Aug 2025
Viewed by 602
Abstract
In recent years, digital twin technology has demonstrated remarkable potential in intelligent transportation systems, leveraging its capabilities of high-precision virtual mapping and real-time dynamic simulation of physical entities. By integrating multi-source data, it constructs virtual replicas of vehicles, roads, and infrastructure, enabling in-depth [...] Read more.
In recent years, digital twin technology has demonstrated remarkable potential in intelligent transportation systems, leveraging its capabilities of high-precision virtual mapping and real-time dynamic simulation of physical entities. By integrating multi-source data, it constructs virtual replicas of vehicles, roads, and infrastructure, enabling in-depth analysis and optimal decision-making for traffic scenarios. In vehicular networks, existing information caching and transmission systems suffer from low real-time information update and serious transmission delay accumulation due to outdated storage mechanism and insufficient interference coordination, thus leading to a high age of information (AoI). In response to this issue, we focus on pairwise road side unit (RSU) collaboration and propose a digital twin-integrated framework to jointly optimize information caching and communication power allocation. We model the tradeoff between information freshness and resource utilization to formulate an AoI-minimization problem with energy consumption and communication rate constraints, which is solved through deep reinforcement learning within digital twin systems. Simulation results show that our approach reduces the AoI by more than 12 percent compared with baseline methods, validating its effectiveness in balancing information freshness and communication efficiency. Full article
Show Figures

Figure 1

31 pages, 1508 KB  
Review
Human-Centered AI in Placemaking: A Review of Technologies, Practices, and Impacts
by Pedro J. S. Cardoso and João M. F. Rodrigues
Appl. Sci. 2025, 15(17), 9245; https://doi.org/10.3390/app15179245 - 22 Aug 2025
Viewed by 1281
Abstract
Artificial intelligence (AI) for placemaking holds the potential to revolutionize how we conceptualize, design, and manage urban spaces to create more vibrant, resilient, and people-centered cities. In this context, integrating Human-Centered AI (HCAI) into public infrastructure presents an exciting opportunity to reimagine the [...] Read more.
Artificial intelligence (AI) for placemaking holds the potential to revolutionize how we conceptualize, design, and manage urban spaces to create more vibrant, resilient, and people-centered cities. In this context, integrating Human-Centered AI (HCAI) into public infrastructure presents an exciting opportunity to reimagine the role of urban amenities and furniture in shaping inclusive, responsive, and technologically enhanced public spaces. This review examines the state-of-the-art in HCAI for placemaking, focusing on some of the main factors that must be analyzed to guide future technological research and development, such as (a) AI-driven tools for community engagement in the placemaking process, including sentiment analysis, participatory design platforms, and virtual reality simulations; (b) AI sensors and image recognition technology for analyzing user behaviors within public spaces to inform evidence-based urban design decisions; (c) the role of HCAI in enhancing community engagement in the placemaking process, focusing on tools and approaches that facilitate more inclusive and participatory design practices; and (d) the utilization of AI in analyzing and understanding user behaviors within public spaces, highlighting how these insights can inform more responsive and user-centric design decisions. The review identifies current innovations, implementation challenges, and emerging opportunities at the intersection of artificial intelligence, urban design, and human experience. Full article
Show Figures

Figure 1

29 pages, 1124 KB  
Review
From Mathematical Modeling and Simulation to Digital Twins: Bridging Theory and Digital Realities in Industry and Emerging Technologies
by Antreas Kantaros, Theodore Ganetsos, Evangelos Pallis and Michail Papoutsidakis
Appl. Sci. 2025, 15(16), 9213; https://doi.org/10.3390/app15169213 - 21 Aug 2025
Cited by 1 | Viewed by 2204
Abstract
Against the background of the unprecedented advancements related to Industry 4.0 and beyond, transitioning from classical mathematical models to fully embodied digital twins represents a critical change in the planning, monitoring, and optimization of complex industrial systems. This work outlines the subject within [...] Read more.
Against the background of the unprecedented advancements related to Industry 4.0 and beyond, transitioning from classical mathematical models to fully embodied digital twins represents a critical change in the planning, monitoring, and optimization of complex industrial systems. This work outlines the subject within the broader field of applied mathematics and computational simulation while highlighting the critical role of sound mathematical foundations, numerical methodologies, and advanced computational tools in creating data-informed virtual models of physical infrastructures and processes in real time. The discussion includes examples related to smart manufacturing, additive manufacturing technologies, and cyber–physical systems with a focus on the potential for collaboration between physics-informed simulations, data unification, and hybrid machine learning approaches. Central issues including a lack of scalability, measuring uncertainties, interoperability challenges, and ethical concerns are discussed along with rising opportunities for multi/macrodisciplinary research and innovation. This work argues in favor of the continued integration of advanced mathematical approaches with state-of-the-art technologies including artificial intelligence, edge computing, and fifth-generation communication networks with a focus on deploying self-regulating autonomous digital twins. Finally, defeating these challenges via effective collaboration between academia and industry will provide unprecedented society- and economy-wide benefits leading to resilient, optimized, and intelligent systems that mark the future of critical industries and services. Full article
(This article belongs to the Special Issue Feature Review Papers in Section Applied Industrial Technologies)
Show Figures

Figure 1

Back to TopTop