Interdisciplinary Insights in Engineering Research

A special issue of Eng (ISSN 2673-4117).

Deadline for manuscript submissions: 31 December 2025 | Viewed by 52136

Special Issue Editor


E-Mail Website
Guest Editor
INAMAT^2-Departamento de Ciencias, Edificio de los Acebos, Universidad Pública de Navarra, Campus de Arrosadía, 31006 Pamplona, Spain
Interests: preparation, characterization and catalytic activity of metal-supported catalysts; surface properties of solids; pollutants adsorption; environmental management; industrial waste valorization
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

As Editor-in-Chief of Eng, I am pleased to announce this Special Issue, entitled “Interdisciplinary Insights in Engineering Research”. This Special Issue aims to bring together high-quality reviews and original papers that explore the latest developments and innovations in engineering through an interdisciplinary lens. The focus of this Special Issue is on the ways in which different engineering disciplines can collaborate and integrate to solve complex problems and drive forward advancements in the field.

The potential topics for this Special Issue are diverse and include, but are not limited to, the keywords of this Special Issue listed below. By featuring research that spans these disciplines, we aim to highlight the value of interdisciplinary collaboration in engineering research.

In addition to showcasing the latest developments in these fields, we also encourage submissions that explore the intersections between engineering and other disciplines, such as physics, chemistry, biology, and computer science. We are particularly interested in papers that present innovative approaches to solving complex problems, leverage cutting-edge technologies, and offer practical insights that can be applied in real-world situations.

The goal of this Special Issue is to provide a comprehensive resource for researchers, practitioners, and policymakers in the engineering field. We believe that by highlighting the latest interdisciplinary insights in engineering research, we can help to drive forward advancements in the field and inspire new generations of researchers to explore the exciting possibilities that lie ahead.

We therefore very much look forward to your valued contributions to make this Special Issue a reference resource of essential knowledge for future researchers in the engineering field.

Prof. Dr. Antonio Gil Bravo
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Eng is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • electrical, electronic, and information engineering
  • chemical and materials engineering
  • energy engineering
  • mechanical and automotive engineering
  • industrial and manufacturing engineering
  • civil and structural engineering
  • aerospace engineering
  • biomedical engineering
  • geotechnical engineering and engineering geology
  • ocean and environmental engineering

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (33 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

35 pages, 2975 KB  
Article
Rain-Cloud Condensation Optimizer: Novel Nature-Inspired Metaheuristic for Solving Engineering Design Problems
by Sandi Fakhouri, Amjad Hudaib, Azzam Sleit and Hussam N. Fakhouri
Eng 2025, 6(10), 281; https://doi.org/10.3390/eng6100281 - 21 Oct 2025
Viewed by 50
Abstract
This paper presents Rain-Cloud Condensation Optimizer (RCCO), a nature-inspired metaheuristic that maps cloud microphysics to population-based search. Candidate solutions (“droplets”) evolve under a dual-attractor dynamic toward both a global leader and a rank-weighted cloud core, with time-decaying coefficients that progressively shift emphasis from [...] Read more.
This paper presents Rain-Cloud Condensation Optimizer (RCCO), a nature-inspired metaheuristic that maps cloud microphysics to population-based search. Candidate solutions (“droplets”) evolve under a dual-attractor dynamic toward both a global leader and a rank-weighted cloud core, with time-decaying coefficients that progressively shift emphasis from exploration to exploitation. Diversity is preserved via domain-aware coalescence and opposition-based mirroring sampled within the coordinate-wise band defined by two parents. Rare heavy-tailed “turbulence gusts” (Cauchy perturbations) enable long jumps, while a wrap-and-reflect scheme enforces feasibility near the bounds. A sine-map initializer improves early coverage with negligible overhead. RCCO exposes a small hyperparameter set, and its per-iteration time and memory scale linearly with population size and problem dimension. RCOO has been compared with 21 state-of-the-art optimizers, over the CEC 2022 benchmark suite, where it achieves competitive to superior accuracy and stability, and achieves the top results over eight functions, including in high-dimensional regimes. We further demonstrate constrained, real-world effectiveness on five structural engineering problems—cantilever stepped beam, pressure vessel, planetary gear train, ten-bar planar truss, and three-bar truss. These results suggest that a hydrology-inspired search framework, coupled with simple state-dependent schedules, yields a robust, low-tuning optimizer for black-box, nonconvex problems. Full article
(This article belongs to the Special Issue Interdisciplinary Insights in Engineering Research)
Show Figures

Figure 1

29 pages, 1297 KB  
Article
EPT Switching vs. Instruction Repair vs. Instruction Emulation: A Performance Comparison of Hyper-Breakpoint Variants
by Lukas Beierlieb, Alexander Schmitz, Anas Karazon, Artur Leinweber and Christian Dietrich
Eng 2025, 6(10), 278; https://doi.org/10.3390/eng6100278 - 16 Oct 2025
Viewed by 223
Abstract
Virtual Machine Introspection (VMI) is a powerful technology used to detect and analyze malicious software inside Virtual Machines (VMs) from the outside. Asynchronous access to the VM’s memory can be insufficient for efficient monitoring of what is happening inside of a VM. Active [...] Read more.
Virtual Machine Introspection (VMI) is a powerful technology used to detect and analyze malicious software inside Virtual Machines (VMs) from the outside. Asynchronous access to the VM’s memory can be insufficient for efficient monitoring of what is happening inside of a VM. Active VMI introduces breakpoints to intercept VM execution at relevant points. Especially for frequently visited breakpoints, and even more so for production systems, it is crucial to keep performance overhead as low as possible. In this paper, we present an empirical study that compares the performance of four VMI breakpoint-implementation variants—EPT switching (SLAT view switching) with and without fast single-stepping acceleration, instruction repair, and instruction emulation—from two VMI applications (DRAKVUF, SmartVMI) with the XEN hypervisor on 20 Intel Core i processors ranging from the fourth to the thirteenth generation. Instruction emulation was the fastest method across all 20 tested platforms. Modern processors such as the Intel Core i7 12700H and Intel Core i9 13900HX achieved median breakpoint-processing times as low as 15 µs for the emulation mechanism. The slowest method was instruction repair, followed by EPT switching and EPT switching with FSS. The order was the same for all measurements, indicating that this is a strong and generalizable result. Full article
(This article belongs to the Special Issue Interdisciplinary Insights in Engineering Research)
Show Figures

Figure 1

17 pages, 11456 KB  
Article
Analysis of Sprinkler Irrigation Uniformity via Multispectral Data from RPAs
by Lucas Santos Santana, Lucas Gabryel Maciel dos Santos, Josiane Maria da Silva, Luiz Alves Caldeira, Marcos David dos Santos Lopes, Hermes Soares da Rocha, Paulo Sérgio Cardoso Batista and Gabriel Araujo e Silva Ferraz
Eng 2025, 6(10), 268; https://doi.org/10.3390/eng6100268 - 6 Oct 2025
Viewed by 386
Abstract
Efficient irrigation management is crucial for optimizing crop development while minimizing resource use. This study aimed to assess the spatial variability of water distribution under conventional sprinkler irrigation, alongside soil moisture and infiltration dynamics, using multispectral sensors onboard Remotely Piloted Aircraft (RPAs). The [...] Read more.
Efficient irrigation management is crucial for optimizing crop development while minimizing resource use. This study aimed to assess the spatial variability of water distribution under conventional sprinkler irrigation, alongside soil moisture and infiltration dynamics, using multispectral sensors onboard Remotely Piloted Aircraft (RPAs). The experiment was conducted over a 466.2 m2 area equipped with 65 georeferenced collectors spaced at 3 m intervals. Soil data were collected through volumetric rings (0–5 cm), auger sampling (30–40 cm), and 65 measurements of penetration resistance down to 60 cm. Four RPA flights were performed at 20 min intervals post-irrigation to generate NDVI and NDWI indices. NDWI values decreased from 0.03 to −0.02, indicating surface moisture reduction due to infiltration and evaporation, corroborated by gravimetric moisture decline from 0.194 g/g to 0.191 g/g. Penetration resistance exceeded 2400 kPa at 30 cm depth, while bulk density ranged from 1.30 to 1.50 g/cm3. Geostatistical methods, including Inverse Distance Weighting and Ordinary Kriging, revealed non-uniform water distribution and subsurface compaction zones. The integration of spectral indices within situ measurements proved effective in characterizing irrigation system performance, offering a robust approach for calibration and precision water management. Full article
(This article belongs to the Special Issue Interdisciplinary Insights in Engineering Research)
Show Figures

Figure 1

18 pages, 7027 KB  
Article
The apex MRMSS: A Multi-Role Mission Support System and Service Module Simulator for Payloads of Sounding Rockets and Other Space Applications
by Nico Maas, Sebastian Feles and Jean-Pierre de Vera
Eng 2025, 6(9), 247; https://doi.org/10.3390/eng6090247 - 19 Sep 2025
Cited by 3 | Viewed by 473
Abstract
To support the development, testing, and operations of the apex experiments flown on-board the MAPHEUS-8 and -10 missions, a series of service module simulators and mission support tools have been developed and improved over the years. With each generation, a more generalized approach [...] Read more.
To support the development, testing, and operations of the apex experiments flown on-board the MAPHEUS-8 and -10 missions, a series of service module simulators and mission support tools have been developed and improved over the years. With each generation, a more generalized approach has been taken, which allowed simulating not only sounding rocket service module payload interfaces but also the Astrobotic Peregrine Moon Lander and the Swedish Space Corporation Suborbital Express experiment interfaces. This study is part three of a three-part series describing the apex Mk.2/Mk.3 experiments, open-source ground segment, and service module simulator. Full article
(This article belongs to the Special Issue Interdisciplinary Insights in Engineering Research)
Show Figures

Figure 1

21 pages, 40956 KB  
Article
The apex MCC: Blueprint of an Open-Source, Secure, CCSDS-Compatible Ground Segment for Sounding Rockets, CubeSats, and Small Lander Missions
by Nico Maas, Sebastian Feles and Jean-Pierre de Vera
Eng 2025, 6(9), 246; https://doi.org/10.3390/eng6090246 - 17 Sep 2025
Cited by 1 | Viewed by 651
Abstract
The operation of microgravity research missions, such as sounding rockets, CubeSats, and small landers, typically relies on proprietary mission control infrastructures, which limit reproducibility, portability, and interdisciplinary use. In this work, we present an open-source blueprint for a distributed ground-segment architecture designed to [...] Read more.
The operation of microgravity research missions, such as sounding rockets, CubeSats, and small landers, typically relies on proprietary mission control infrastructures, which limit reproducibility, portability, and interdisciplinary use. In this work, we present an open-source blueprint for a distributed ground-segment architecture designed to support telemetry, telecommand, and mission operations across institutional and geographic boundaries. The system integrates containerized services, broker bridging for publish–subscribe communication, CCSDS-compliant telemetry and telecommand handling, and secure virtual private networks with two-factor authentication. A modular mission control system based on Yamcs was extended with custom plug-ins for CRC verification, packet reassembly, and command sequencing. The platform was validated during the MAPHEUS-10 sounding rocket mission, where it enabled uninterrupted remote commanding between Sweden and Germany and achieved end-to-end command–response latencies of ~550 ms under flight conditions. To the best of our knowledge, this represents the first open-source ground-segment framework deployed in a space mission. By combining elements from computer science, aerospace engineering, and systems engineering, this work demonstrates how interdisciplinary integration enables resilient, reproducible, and portable mission operations. The blueprint offers a practical foundation for future interdisciplinary research missions, extending beyond sounding rockets to CubeSats, ISS experiments, and planetary landers. This study is part two of a three-part series describing the apex Mk.2/Mk.3 experiments, open-source ground segment, and service module simulator. Full article
(This article belongs to the Special Issue Interdisciplinary Insights in Engineering Research)
Show Figures

Figure 1

17 pages, 25008 KB  
Article
apex Mk.2/Mk.3: Secure Live Transmission of the First Flight of Trichoplax adhaerens in Space Based on Components Off-the-Shelf
by Nico Maas, Jean-Pierre de Vera, Moritz Jonathan Schmidt, Pia Reimann, Jason G. Randall, Sebastian Feles, Ruth Hemmersbach, Bernd Schierwater and Jens Hauslage
Eng 2025, 6(9), 241; https://doi.org/10.3390/eng6090241 - 12 Sep 2025
Cited by 3 | Viewed by 877
Abstract
After the successful flight of the first Advanced Processors, Encryption, and Security Experiment (apex) Commercial Off-the-Shelf (COTS) On-Board Computer (OBC) during the Propulsion Technologies and Components of Launcher Stages (ATEK)/Material Physics Experiments Under Microgravity (MAPHEUS)-8 sounding rocket campaign, a second generation of COTS [...] Read more.
After the successful flight of the first Advanced Processors, Encryption, and Security Experiment (apex) Commercial Off-the-Shelf (COTS) On-Board Computer (OBC) during the Propulsion Technologies and Components of Launcher Stages (ATEK)/Material Physics Experiments Under Microgravity (MAPHEUS)-8 sounding rocket campaign, a second generation of COTS OBCs were built, leveraging the knowledge gained. This new concept and improvements are provided. The Mk.2 Science Camera Platform (SCP) has an instrumented high-definition science camera to research the behavior of small organisms such as Trichoplax adhaerens under challenging gravity conditions, while the Mk.3 Student Experiment Sensorboard (SES) represents an Arduino-like board that directly interfaces with the MAPHEUS Service Module and allows for rapid development of new sensor solutions on sounding rocket systems. Both experiments were flown successfully on MAPHEUS-10, including a biological system as a proof of concept, and paved the way for an even more capable third generation of apex OBCs. This study is part one of a three-part series describing the apex Mk.2/Mk.3 experiments, open-source ground segment, and service module simulator. Full article
(This article belongs to the Special Issue Interdisciplinary Insights in Engineering Research)
Show Figures

Figure 1

24 pages, 862 KB  
Article
Optimizing Urban Bus Networks Through Mathematical Modeling: Environmental and Operational Gains in Medium-Sized Cities
by María Torres-Falcón, Omar Rodríguez-Abreo, M. Romero-Sánchez, Luis Angel Iturralde Carrera and Juvenal Rodríguez-Reséndiz
Eng 2025, 6(9), 238; https://doi.org/10.3390/eng6090238 - 10 Sep 2025
Viewed by 382
Abstract
This study aimed to optimize the urban public transportation system in Queretaro, Mexico, while meeting passenger demand by using Linear Programming (LP) and Goal Programming (GP) models to reduce redundant routes, minimize fuel consumption and CO2 emissions, and balance costs with service [...] Read more.
This study aimed to optimize the urban public transportation system in Queretaro, Mexico, while meeting passenger demand by using Linear Programming (LP) and Goal Programming (GP) models to reduce redundant routes, minimize fuel consumption and CO2 emissions, and balance costs with service coverage. Operational data from 316 drivers were collected on diesel consumption, working hours, and vehicle availability while incorporating twelve technical, labor, and regulatory constraints. The LP model reduced the number of routes from 148 to 124, achieving daily savings of 13,789 L of diesel, a reduction of 36,816 kg in CO2 emissions, and an economic benefit of USD 17,071.90, equivalent to 13,253 tons of CO2 avoided annually; these results demonstrate LP’s ability to deliver quantifiable improvements in efficiency and sustainability. The GP model integrated multiple and often conflicting objectives, such as maintaining a maximum fuel cost of USD 9312/day for 1944 buses distributed across five zones while ensuring a minimum coverage of 145 routes and 450,000 daily passengers, showing that it is possible to meet service targets with marginal cost overruns (USD 4118.66) when balancing both coverage and budget. The novelty of this paper lies in combining mathematical optimization models with real operational data and simultaneously reporting both economic and environmental impacts. This allows us to offer a replicable and highly interpretable tool with low computational cost for use in medium-sized cities seeking to align mobility planning with sustainability policies and operational efficiency. Full article
(This article belongs to the Special Issue Interdisciplinary Insights in Engineering Research)
Show Figures

Figure 1

19 pages, 1150 KB  
Article
A Fuzzy Multi-Criteria Decision-Making Framework for Evaluating Non-Destructive Testing Techniques in Oil and Gas Facility Maintenance Operations
by Kehinde Afolabi, Olubayo Babatunde, Desmond Ighravwe, Busola Akintayo and Oludolapo Akanni Olanrewaju
Eng 2025, 6(9), 214; https://doi.org/10.3390/eng6090214 - 1 Sep 2025
Viewed by 488
Abstract
This study presents a comprehensive multi-criteria decision-making (MCDM) framework for evaluating and selecting optimal non-destructive testing (NDT) techniques for oil and gas facility maintenance operations. This research used a Fuzzy Analytic Hierarchy Process (FAHP) integrated with multiple MCDM methods to assess eight NDT [...] Read more.
This study presents a comprehensive multi-criteria decision-making (MCDM) framework for evaluating and selecting optimal non-destructive testing (NDT) techniques for oil and gas facility maintenance operations. This research used a Fuzzy Analytic Hierarchy Process (FAHP) integrated with multiple MCDM methods to assess eight NDT techniques including radiographic testing, ultrasonic testing, and thermographic testing. The evaluation framework incorporated seven technical criteria and seven economic criteria. The FAHP results revealed spatial resolution (0.175) as the most critical technical criterion, followed by depth penetration (0.155) and defect characterization (0.143). For economic criteria, downtime costs (0.210) and operational costs (0.190) emerged as the most significant factors. This study used TOPSIS (Technique for Order Preference by Similarity to Ideal Solution), PROMETHEE (Preference Ranking Organization Method for Enrichment of Evaluations), and VIKOR (VIseKriterijumska Optimizacija I Kompromisno Resenje) methods to rank NDT techniques, with results consolidated using the CRITIC (CRiteria Importance Through Intercriteria Correlation) method. The final techno-economic analysis identified radiographic testing as the most suitable NDT method with a score of 0.665, followed by acoustic emission testing at 0.537. Visual testing ranked lowest with a score of 0.214. This research demonstrates the effectiveness of combining fuzzy logic with multiple MCDM approaches for NDT method selection in offshore welding operations. Full article
(This article belongs to the Special Issue Interdisciplinary Insights in Engineering Research)
Show Figures

Figure 1

22 pages, 1255 KB  
Article
Natural Ventilation Strategies to Prevent Airborne Disease Transmission in Public Buildings
by Jesús M. Ballesteros-Álvarez, Álvaro Romero-Barriuso, Ángel Rodríguez-Sáiz and Blasa María Villena-Escribano
Eng 2025, 6(8), 197; https://doi.org/10.3390/eng6080197 - 8 Aug 2025
Viewed by 821
Abstract
This paper evaluates the effectiveness of natural ventilation as a health and safety strategy in municipal buildings, focusing on its capacity to ensure indoor air quality and limit airborne disease transmission. Natural ventilation can be incorporated into building design as the primary mechanism [...] Read more.
This paper evaluates the effectiveness of natural ventilation as a health and safety strategy in municipal buildings, focusing on its capacity to ensure indoor air quality and limit airborne disease transmission. Natural ventilation can be incorporated into building design as the primary mechanism for achieving the required indoor air quality, equipping buildings with operable windows based on their intended occupancy. Using 11 public buildings in Mostoles, Spain, as case studies, the research applies a quantitative methodology based on carbon dioxide concentration to estimate ventilation rates and theoretical occupancy thresholds. The findings reveal that cross ventilation is the only natural method capable of meeting air renewal rates recommended by health authorities, particularly the IDA2 air quality standard and three to five air changes per hour suggested to reduce disease spread. However, 53% of the assessed spaces lacked cross ventilation capacity, underscoring the need to integrate natural and mechanical systems. The study proposes a replicable model to assess and adapt indoor occupancy based on real ventilation capacity, offering a practical tool for decision-making in public health, energy efficiency, and architectural design. Ultimately, the research supports the strategic use of natural ventilation as a low-cost, scalable intervention to enhance environmental quality in public facilities. Full article
(This article belongs to the Special Issue Interdisciplinary Insights in Engineering Research)
Show Figures

Figure 1

19 pages, 1835 KB  
Article
Methods for Enhancing Energy and Resource Efficiency in Sunflower Oil Production: A Case Study from Bulgaria
by Penka Zlateva, Angel Terziev, Nikolay Kolev, Martin Ivanov, Mariana Murzova and Momchil Vasilev
Eng 2025, 6(8), 195; https://doi.org/10.3390/eng6080195 - 6 Aug 2025
Viewed by 1155
Abstract
The rising demand for energy resources and industrial goods presents significant challenges to sustainable development. Sunflower oil, commonly utilized in the food sector, biofuels, and various industrial applications, is notably affected by this demand. In Bulgaria, it serves as a primary source of [...] Read more.
The rising demand for energy resources and industrial goods presents significant challenges to sustainable development. Sunflower oil, commonly utilized in the food sector, biofuels, and various industrial applications, is notably affected by this demand. In Bulgaria, it serves as a primary source of vegetable fats, ranking second to butter in daily consumption. The aim of this study is to evaluate and propose methods to improve energy and resource efficiency in sunflower oil production in Bulgaria. The analysis is based on data from an energy audit conducted in 2023 at an industrial sunflower oil production facility. Reconstruction and modernization initiatives, which included the installation of high-performance, energy-efficient equipment, led to a 34% increase in energy efficiency. The findings highlight the importance of adjusting the technological parameters such as temperature, pressure, grinding level, and pressing time to reduce energy use and operational costs. Additionally, resource efficiency is improved through more effective raw material utilization and waste reduction. These strategies not only enhance the economic and environmental performance of sunflower oil production but also support sustainable development and competitiveness within the industry. The improvement reduces hexane use by approximately 2%, resulting in energy savings of 12–15 kWh/t of processed seeds and a reduction in CO2 emissions by 3–4 kg/t, thereby improving the environmental profile of sunflower oil production. Full article
(This article belongs to the Special Issue Interdisciplinary Insights in Engineering Research)
Show Figures

Figure 1

17 pages, 5314 KB  
Article
The Settlement Ratio and Settled Area: Novel Indicators for Analyzing Land Use in Relation to Road Network Functions and Performance
by Giulia Del Serrone, Giuseppe Cantisani and Paolo Peluso
Eng 2025, 6(8), 188; https://doi.org/10.3390/eng6080188 - 5 Aug 2025
Viewed by 508
Abstract
Land use significantly influences mobility dynamics, affecting both travel behavior and mode choice. Traditional indicators such as the Floor Area Ratio, Land-Use Mix Index, and Built-up Area Ratio are widely used to describe settlement patterns; yet, they often fail to capture their functional [...] Read more.
Land use significantly influences mobility dynamics, affecting both travel behavior and mode choice. Traditional indicators such as the Floor Area Ratio, Land-Use Mix Index, and Built-up Area Ratio are widely used to describe settlement patterns; yet, they often fail to capture their functional impacts on road networks. This study introduces two complementary indicators—Settlement Ratio (SR) and Settled Area (SA)—developed through a spatial analysis framework integrating GIS data and MATLAB processing. SR offers a continuous typological profile of built-up functions along the road axis, while SA measures the percentage of anthropized land within fixed analysis windows. Applied to two Italian state roads, SS14 and SS309, in the Veneto Region, the dual-indicator approach reveals how the intensity (SR) and extent (SA) of settlement vary across different territorial contexts. In suburban segments, SR values exceeding 15–20, together with SA levels between 10% and 15%, highlight the significant spatial impact of isolated development clusters—often not evident from macro-scale observations. These findings demonstrate that the SR–SA framework provides a robust tool for analyzing land use in relation to road function. Although the study focuses on spatial structure and indicator design, future developments will explore correlations with traffic flow, speed, and crash data to support road safety analyses. Full article
(This article belongs to the Special Issue Interdisciplinary Insights in Engineering Research)
Show Figures

Figure 1

25 pages, 9050 KB  
Article
Field Blast Tests and Finite Element Analysis of A36 Steel Sheets Subjected to High Explosives
by Anselmo S. Augusto, Girum Urgessa, José A. F. F. Rocco, Fausto B. Mendonça and Koshun Iha
Eng 2025, 6(8), 187; https://doi.org/10.3390/eng6080187 - 5 Aug 2025
Viewed by 884
Abstract
Blast mitigation of structures is an important research topic due to increasing intentional and accidental human-induced threats and hazards. This research area is essential to building capabilities in sustaining structural protection, site planning, protective design efficiency, occupant safety, and response and recovery plans. [...] Read more.
Blast mitigation of structures is an important research topic due to increasing intentional and accidental human-induced threats and hazards. This research area is essential to building capabilities in sustaining structural protection, site planning, protective design efficiency, occupant safety, and response and recovery plans. This paper investigates experimental tests and finite element analysis (FEM) of thin A36 steel sheets subjected to blast. Six field blast tests were performed at standoff distances of 300 mm and 500 mm. The explosive charges comprised 334 g of bare Composition B, and the steel sheets were 2 mm thick. The experimental results, derived from the analysis of high-speed camera recordings of the blast events, were compared with FEM simulations conducted using Abaqus®/Explicit version 6.10. Three constitutive material models were considered in these simulations. First, the FEM simulation results were compared with experimental results. It was shown that the FEM analysis provided reliable results and was proven to be robust and cost-effective. Second, an extensive set of 460 additional numerical simulations was carried out as a parametric study involving varying standoff distances and steel sheet thicknesses. The results and methodologies presented in this paper offer valuable and original insights for engineers and researchers aiming to predict damage to steel structures during real detonation events and to design blast-resistant structures. Full article
(This article belongs to the Special Issue Interdisciplinary Insights in Engineering Research)
Show Figures

Figure 1

14 pages, 355 KB  
Article
Driver Behavior-Driven Evacuation Strategy with Dynamic Risk Propagation Modeling for Road Disruption Incidents
by Yanbin Hu, Wenhui Zhou and Hongzhi Miao
Eng 2025, 6(8), 173; https://doi.org/10.3390/eng6080173 - 31 Jul 2025
Viewed by 500
Abstract
When emergency incidents, such as bridge damage, abruptly occur on highways and lead to traffic disruptions, the multidimensionality and complexity of driver behaviors present significant challenges to the design of effective emergency response mechanisms. This study introduces a multi-level collaborative emergency mechanism grounded [...] Read more.
When emergency incidents, such as bridge damage, abruptly occur on highways and lead to traffic disruptions, the multidimensionality and complexity of driver behaviors present significant challenges to the design of effective emergency response mechanisms. This study introduces a multi-level collaborative emergency mechanism grounded in driver behavior characteristics, aiming to enhance both traffic safety and emergency response efficiency through hierarchical collaboration and dynamic optimization strategies. By capitalizing on human drivers’ perception and decision-making attributes, a driver behavior classification model is developed to quantitatively assess the risk response capabilities of distinct behavioral patterns (conservative, risk-taking, and conformist) under emergency scenarios. A multi-tiered collaborative framework, comprising an early warning layer, a guidance layer, and an interception layer, is devised to implement tailored emergency strategies. Additionally, a rear-end collision risk propagation model is constructed by integrating the risk field model with probabilistic risk assessment, enabling dynamic adjustments to interception range thresholds for precise and real-time emergency management. The efficacy of this mechanism is substantiated through empirical case studies, which underscore its capacity to substantially reduce the occurrence of secondary accidents and furnish scientific evidence and technical underpinnings for emergency management pertaining to highway bridge damage. Full article
(This article belongs to the Special Issue Interdisciplinary Insights in Engineering Research)
Show Figures

Figure 1

32 pages, 2740 KB  
Article
Vision-Based Navigation and Perception for Autonomous Robots: Sensors, SLAM, Control Strategies, and Cross-Domain Applications—A Review
by Eder A. Rodríguez-Martínez, Wendy Flores-Fuentes, Farouk Achakir, Oleg Sergiyenko and Fabian N. Murrieta-Rico
Eng 2025, 6(7), 153; https://doi.org/10.3390/eng6070153 - 7 Jul 2025
Cited by 2 | Viewed by 6095
Abstract
Camera-centric perception has matured into a cornerstone of modern autonomy, from self-driving cars and factory cobots to underwater and planetary exploration. This review synthesizes more than a decade of progress in vision-based robotic navigation through an engineering lens, charting the full pipeline from [...] Read more.
Camera-centric perception has matured into a cornerstone of modern autonomy, from self-driving cars and factory cobots to underwater and planetary exploration. This review synthesizes more than a decade of progress in vision-based robotic navigation through an engineering lens, charting the full pipeline from sensing to deployment. We first examine the expanding sensor palette—monocular and multi-camera rigs, stereo and RGB-D devices, LiDAR–camera hybrids, event cameras, and infrared systems—highlighting the complementary operating envelopes and the rise of learning-based depth inference. The advances in visual localization and mapping are then analyzed, contrasting sparse and dense SLAM approaches, as well as monocular, stereo, and visual–inertial formulations. Additional topics include loop closure, semantic mapping, and LiDAR–visual–inertial fusion, which enables drift-free operation in dynamic environments. Building on these foundations, we review the navigation and control strategies, spanning classical planning, reinforcement and imitation learning, hybrid topological–metric memories, and emerging visual language guidance. Application case studies—autonomous driving, industrial manipulation, autonomous underwater vehicles, planetary rovers, aerial drones, and humanoids—demonstrate how tailored sensor suites and algorithms meet domain-specific constraints. Finally, the future research trajectories are distilled: generative AI for synthetic training data and scene completion; high-density 3D perception with solid-state LiDAR and neural implicit representations; event-based vision for ultra-fast control; and human-centric autonomy in next-generation robots. By providing a unified taxonomy, a comparative analysis, and engineering guidelines, this review aims to inform researchers and practitioners designing robust, scalable, vision-driven robotic systems. Full article
(This article belongs to the Special Issue Interdisciplinary Insights in Engineering Research)
Show Figures

Figure 1

23 pages, 3548 KB  
Article
PSO-Based Robust Control of SISO Systems with Application to a Hydraulic Inverted Pendulum
by Michael G. Skarpetis, Nikolaos D. Kouvakas, Fotis N. Koumboulis and Marios Tsoukalas
Eng 2025, 6(7), 146; https://doi.org/10.3390/eng6070146 - 1 Jul 2025
Viewed by 620
Abstract
This work will present an algorithmic approach for robust control focusing on hydraulic–mechanical systems. The approach is applied to a hydraulic actuator driving a cart with an inverted pendulum. The algorithmic approach aims to satisfy two robust control requirements for single input single [...] Read more.
This work will present an algorithmic approach for robust control focusing on hydraulic–mechanical systems. The approach is applied to a hydraulic actuator driving a cart with an inverted pendulum. The algorithmic approach aims to satisfy two robust control requirements for single input single output (SISO) linear systems with nonlinear uncertain structure. The first control requirement is robust stabilization, and the second is robust asymptotic command following for arbitrary reference signals. The approach is analyzed in two stages. In the first stage, the stability regions of the controller parameters are identified. In the second stage, a Particle Swarm Optimization Algorithm (PSO) is applied to find suboptimal solutions for the controller parameters in these regions, with respect to a suitable performance cost function. The application of the approach to a hydraulic actuator, driving a cart with an inverted pendulum, satisfies the goal of achieving precise control of the pendulum angle, despite the system’s inherent physical uncertainties. Full article
(This article belongs to the Special Issue Interdisciplinary Insights in Engineering Research)
Show Figures

Figure 1

27 pages, 2024 KB  
Article
Research on the Enhancement and Development of the Resilience Assessment System for Underground Engineering Disaster Risk
by Weiqiang Zheng, Zhiqiang Wang, Bo Wu, Shixiang Xu, Jiacheng Pan and Yuxuan Zhu
Eng 2025, 6(7), 140; https://doi.org/10.3390/eng6070140 - 26 Jun 2025
Viewed by 597
Abstract
The rapid development of underground engineering contributes significantly to achieving China’s “dual carbon” strategic goals. However, during the construction and operation phases, this engineering project faces diverse risks and challenges related to disasters. Consequently, enhancing the evaluation capability for underground engineering resilience is [...] Read more.
The rapid development of underground engineering contributes significantly to achieving China’s “dual carbon” strategic goals. However, during the construction and operation phases, this engineering project faces diverse risks and challenges related to disasters. Consequently, enhancing the evaluation capability for underground engineering resilience is imperative. Based on the characteristics of resilience evaluation and enhancement in underground engineering, this study defines the concept and objectives of resilience evaluation for underground space engineering and analyzes corresponding enhancement methods. By considering aspects such as the magnitude of collapse disaster risk in underground engineering, its vulnerability, resistance capacity, adaptability to disasters, recovery ability, and economic feasibility, a comprehensive index system for evaluating the resilience of collapse disaster risks in underground engineering has been established. This research suggests that disaster risk management should shift from passive to active prevention. Through resilience evaluation case applications, it is possible to improve the design objectives of underground engineering towards “structural recoverability”, “ease of damage repair”, and “controllable consequences after a disaster”. The integration of intelligent static assessment models based on artificial intelligence algorithms can effectively enhance the accuracy of resilience evaluations. Furthermore, dynamic assessments using multiple data fusion techniques combined with numerical simulations represent promising directions for improving the overall resilience of underground engineering. Full article
(This article belongs to the Special Issue Interdisciplinary Insights in Engineering Research)
Show Figures

Figure 1

19 pages, 3192 KB  
Article
Evaluation of Solar Energy Performance in Green Buildings Using PVsyst: Focus on Panel Orientation and Efficiency
by Seyed Azim Hosseini, Seyed Alireza Mansoori Al-yasin, Mohammad Gheibi and Reza Moezzi
Eng 2025, 6(7), 137; https://doi.org/10.3390/eng6070137 - 24 Jun 2025
Cited by 2 | Viewed by 1433
Abstract
This study explores the optimization of solar energy harvesting in Truro City in the UK using PVSyst simulations integrated with real-time meteorological data. Focusing on panel orientation, tilt angle, shading, and albedo, the research aimed to enhance both energy efficiency and economic viability [...] Read more.
This study explores the optimization of solar energy harvesting in Truro City in the UK using PVSyst simulations integrated with real-time meteorological data. Focusing on panel orientation, tilt angle, shading, and albedo, the research aimed to enhance both energy efficiency and economic viability of photovoltaic (PV) systems in green buildings. A 100 kWp rooftop solar installation served as the case study. Energy outputs derived from spreadsheet-based models and PVSyst simulations were compared to validate results. Optimal tilt angles were identified between 35° and 39°, and the azimuth angle of 0° yielded the highest energy gain without requiring solar tracking. Fixed configurations with a 5 m pitch showed only a 10% shading loss, requiring 1680 m2 of space and generating an average of 646.83 kWh/m2 monthly. Compared to recent works, our integration of real-time climate data improved simulation accuracy by 6–9%, refining operational planning and decision-making processes. This included better timing of high-load activities and enhanced prediction for grid feedback. The study demonstrates that data-driven optimization significantly improves performance reliability and system design, offering practical insights for solar infrastructure in similar temperate climates. These results provide a benchmark for urban energy planners seeking to balance performance and spatial constraints in PV deployment. Full article
(This article belongs to the Special Issue Interdisciplinary Insights in Engineering Research)
Show Figures

Figure 1

29 pages, 12056 KB  
Article
A Standard Test Apparatus and Method for Validating the Accuracy of Mobile Phone Apps in Measuring Concrete Crack Widths
by Chyuan-Hwan Jeng, Min Chao and Jian-Hung Chen
Eng 2025, 6(6), 122; https://doi.org/10.3390/eng6060122 - 2 Jun 2025
Viewed by 1932
Abstract
This paper presents a standardized apparatus and method for testing the accuracy of mobile phone apps designed to measure concrete crack widths. The apparatus comprises a standardized crack-width calibration plate (CWCP) and a simulated wall (SW), along with a pose adjusting and fixing [...] Read more.
This paper presents a standardized apparatus and method for testing the accuracy of mobile phone apps designed to measure concrete crack widths. The apparatus comprises a standardized crack-width calibration plate (CWCP) and a simulated wall (SW), along with a pose adjusting and fixing device (PAFD) and a spatial distance measuring assemblage (SDMA). The test method employs an innovative two-stage procedure associated with the SDMA to calculate the distances (Ki) from the phone’s four corners to the SW. The phone’s position is adjusted using the PAFD until the four monitored Ki values match the target Ki. An app installed on the phone then measures crack widths on the CWCP. A standard experimental procedure was established to assess the accuracy of a preliminary Android app in measuring concrete crack widths, with results presented and discussed. This apparatus and method, grounded in their underlying physical meaning, can realistically simulate actual engineering conditions precisely and cost-effectively. Full article
(This article belongs to the Special Issue Interdisciplinary Insights in Engineering Research)
Show Figures

Figure 1

29 pages, 1367 KB  
Article
Integrated Approach to Optimizing Selection and Placement of Water Pipeline Condition Monitoring Technologies
by Diego Calderon and Mohammad Najafi
Eng 2025, 6(5), 97; https://doi.org/10.3390/eng6050097 - 13 May 2025
Viewed by 1260
Abstract
The gradual deterioration of underground water infrastructure requires constant condition monitoring to prevent catastrophic failures, reduce leaks, and avoid costly unexpected repairs. However, given the large scale and tight budgets of water utilities, it is essential to implement strategies for optimal selection and [...] Read more.
The gradual deterioration of underground water infrastructure requires constant condition monitoring to prevent catastrophic failures, reduce leaks, and avoid costly unexpected repairs. However, given the large scale and tight budgets of water utilities, it is essential to implement strategies for optimal selection and deployment of monitoring technologies. This article introduces a unified framework and methods for optimally selecting condition monitoring technologies while locating their deployment at the most vulnerable pipe segments. The approach is underpinned by an R-E-R-A-V (Redundant, Established, Reliable, Accurate, and Viable) principle and asset management concepts. The proposed method is supported by a thorough review of assessment and monitoring technologies, as well as common sensor placement approaches. The approach selects optimal technology using a combination of technology readiness levels and SFAHP (Spherical Fuzzy Analytic Hierarchy Process). Optimal placement is achieved with a k-Nearest Neighbors (kNN) model tuned with minimal topological and physical pipeline system features. Feature engineering is performed with OPTICS (Ordering Points to Identify the Clustering Structure) by evaluating the pipe segment vulnerability to failure-prone areas. Both the optimal technology selection and placement methods are integrated through a proposed algorithm. The optimal placement of monitoring technology is demonstrated through a modified benchmark network (Net3). The results reveal an accurate model with robust performance and a harmonic mean of precision and recall of approximately 65%. The model effectively identifies pipe segments requiring monitoring to prevent failures over a period of 11 years. The benefits and areas of future exploratory research are explained to encourage improvements and additional applications. Full article
(This article belongs to the Special Issue Interdisciplinary Insights in Engineering Research)
Show Figures

Figure 1

26 pages, 4688 KB  
Article
How Best to Use Forest Wood for Energy: Perspectives from Energy Efficiency and Environmental Considerations
by John J. Fitzpatrick, Jack Carroll, Strahinja Macura and Neil Murphy
Eng 2025, 6(5), 95; https://doi.org/10.3390/eng6050095 - 8 May 2025
Viewed by 1082
Abstract
This paper examines how best to use forest wood for energy application, considering that it is a limited natural resource. Eight systems are considered, including wood stoves, steam systems (boiler, power plant, and combined heat and power (CHP)), and gasification combined systems (gas [...] Read more.
This paper examines how best to use forest wood for energy application, considering that it is a limited natural resource. Eight systems are considered, including wood stoves, steam systems (boiler, power plant, and combined heat and power (CHP)), and gasification combined systems (gas turbine and combined cycle power plant, CHP, and Fischer–Tropsch). The methodology uses energy analysis and modelling and environmental/sustainability considerations to compare the energy systems. In terms of energy conversion efficiency, steam boilers and high-efficiency wood stoves for heating applications provide the highest efficiencies (~80 to 90%) and should be considered. Steam CHP systems provide lower overall energy conversion efficiencies (~75 to 80%) but do provide some electrical energy, and thus should be considered. The use of wood for the production of electricity on its own should not be considered due to low efficiencies (~20 to 30%). Particulate emissions hinder the application of high-efficiency stoves, especially in urban areas, whereas for industrial-scale steam boilers and CHP systems, particle separators can negate this problem. Gasification/Fischer–Tropsch systems have a lower energy efficiency (~30 to 50%); however, a sustainability argument could be made for liquid fuels that have few sustainable alternatives. Full article
(This article belongs to the Special Issue Interdisciplinary Insights in Engineering Research)
Show Figures

Figure 1

18 pages, 7105 KB  
Article
Integration of Digital Twin, IoT and LoRa in SCARA Robots for Decentralized Automation with Wireless Sensor Networks
by William Aparecido Celestino Lopes, Adilson Cunha Rusteiko, Cleiton Rodrigues Mendes, Nicolas Vinicius Cruz Honório and Marcelo Tsuguio Okano
Eng 2025, 6(5), 90; https://doi.org/10.3390/eng6050090 - 26 Apr 2025
Viewed by 1152
Abstract
The integration of Digital Twin (DT), Internet of Things (IoT), and Long Range Wireless (LoRa) technology in industrial automation increases efficiency, flexibility, and real-time monitoring. This study proposes a decentralized automation architecture for SCARA robots, leveraging wireless sensor networks to improve scalability, reduce [...] Read more.
The integration of Digital Twin (DT), Internet of Things (IoT), and Long Range Wireless (LoRa) technology in industrial automation increases efficiency, flexibility, and real-time monitoring. This study proposes a decentralized automation architecture for SCARA robots, leveraging wireless sensor networks to improve scalability, reduce the number of infrastructure components, and optimizing data-driven decision-making. Experimental validation demonstrated a 74.9% reduction in cycle time, decreasing from 55.42 s to 13.91 s across all test scenarios. The system achieved a 98.6% packet delivery success rate, ensuring reliable communication, while latency remained between 1 and 2 s, maintaining synchronization between the real robot and its digital twin. The main contributions include the following: (i) a decentralized control framework for SCARA robots, (ii) an evaluation of LoRa-based wireless communication, and (iii) experimental validation of feasibility. The results confirm the effectiveness of the system in stable real-time data transmission and precise robotic movements, offering a cost-effective alternative to conventional structures. Despite the advantages, challenges such as data security, interoperability, and real-time synchronization require further research. This study provides insights into the practical implementation of DT, IoT, and LoRa in industrial robotics, paving the way for advancements in smart manufacturing and Industry 4.0. Full article
(This article belongs to the Special Issue Interdisciplinary Insights in Engineering Research)
Show Figures

Figure 1

24 pages, 580 KB  
Article
Vulnerability and Risk Management to Ensure the Occupational Safety of Underground Mines
by Fîță Nicolae Daniel, Păsculescu Dragoș, Obretenova Mila Ilieva, Popescu Florin Gabriel, Lazăr Teodora, Cruceru Emanuel Alin, Lazăr Dan Cristian, Slușariuc Gabriela, Safta Gheorghe Eugen and Șchiopu Adrian Mihai
Eng 2025, 6(5), 88; https://doi.org/10.3390/eng6050088 - 25 Apr 2025
Viewed by 1039
Abstract
Ensuring occupational safety in underground mines is a fundamental priority due to the major risks associated with this unfriendly work environment. This involves employing a set of technical, organizational, and educational measures to reduce the hazards for workers and minimize the risks of [...] Read more.
Ensuring occupational safety in underground mines is a fundamental priority due to the major risks associated with this unfriendly work environment. This involves employing a set of technical, organizational, and educational measures to reduce the hazards for workers and minimize the risks of accidents and occupational diseases due to electrical and mechanical causes. Old and precarious coal extraction methods, in conjunction with obsolete infrastructure and electrical and mechanical installations, lead to high accident risk, endangering the lives of underground workers when at work. Precarious working conditions and working materials alongside the carelessness of decision makers make underground mine-based work a major cause of accidents and professional illnesses. In this paper, the authors identify, estimate, prioritize, and evaluate the vulnerabilities within underground mines and discuss the actions and resources necessary to mitigate, stop, and/or eliminate these vulnerabilities, as well as a mitigation strategy for stopping and/or eliminating them to achieve increased occupational safety. Full article
(This article belongs to the Special Issue Interdisciplinary Insights in Engineering Research)
17 pages, 6257 KB  
Article
Unveiling the Impact of LED Light on Growing Carrot Taproots: A Novel Hydroponic Cultivation System
by Masaru Sakamoto, Ayuhiko Funaki, Fumiya Sakagami, Taichi Kaida and Takahiro Suzuki
Eng 2025, 6(5), 87; https://doi.org/10.3390/eng6050087 - 25 Apr 2025
Viewed by 1069
Abstract
Root crops typically develop and enlarge their storage organs in the soil, where they are naturally shielded from light exposure. This characteristic influences their physiological development and presents challenges for hydroponic cultivation, as taproot enlargement is often inhibited when submerged in water. To [...] Read more.
Root crops typically develop and enlarge their storage organs in the soil, where they are naturally shielded from light exposure. This characteristic influences their physiological development and presents challenges for hydroponic cultivation, as taproot enlargement is often inhibited when submerged in water. To overcome this limitation, this study introduced a novel hydroponic system that prevents direct submersion in the nutrient solution. By isolating the taproots from both soil and nutrient solution, this system allows precise control of the root-zone light environment using LED irradiation. Carrot taproots were cultivated under blue, green, and red LED light from 42 days after sowing to assess their specific responses to different wavelengths. The results revealed distinct pigment accumulation patterns influenced by light quality. Blue light induced anthocyanin accumulation in the epidermis and outer cortex within 2 days of exposure and also stimulated chlorophyll synthesis in these outer tissues. In contrast, green and red light treatments promoted chlorophyll accumulation primarily in the stele, with red light having the most pronounced effect. These findings suggest that carrot taproots exhibit specific physiological responses to light exposure, demonstrating their ability to adjust pigment biosynthesis depending on the wavelength. By integrating controlled lighting environments into hydroponic systems, this study provides new insights into root development mechanisms and presents a novel strategy for optimizing root crop cultivation. Full article
(This article belongs to the Special Issue Interdisciplinary Insights in Engineering Research)
Show Figures

Figure 1

24 pages, 1950 KB  
Article
Fuzzy-Based Decision Support for Strategic Management: Evaluating Electric Vehicle Attractiveness in the Digital Era
by Sónia Gouveia, Daniel H. de la Iglesia, José Luís Abrantes, Alfonso J. López Rivero and Eduardo Gouveia
Eng 2025, 6(5), 86; https://doi.org/10.3390/eng6050086 - 25 Apr 2025
Cited by 1 | Viewed by 759
Abstract
In an era marked by sustainability challenges and digital transformation, organizations face heightened uncertainty in strategic decision-making. This paper applies a conceptual tool, a fuzzy-based decision model, in the appraisal of the attractiveness of electric vehicle acquisition and navigates the multifaceted complexities of [...] Read more.
In an era marked by sustainability challenges and digital transformation, organizations face heightened uncertainty in strategic decision-making. This paper applies a conceptual tool, a fuzzy-based decision model, in the appraisal of the attractiveness of electric vehicle acquisition and navigates the multifaceted complexities of integrating economic, environmental, and infrastructural factors. A concise overview of fuzzy principles highlights their relevance to strategic management in uncertain contexts. The study uses a practical example to demonstrate how fuzzy set-based decision models assess EV attractiveness by synthesizing costs, environmental impact, vehicle depreciation, and energy independence variables. The findings reveal the fuzzy set-based decision model’s potential to enhance decision clarity and efficiency, offering managers a simple but robust framework for navigating complex trade-offs. Implications for sustainable strategic management and suggestions for future research on advanced decision support systems are discussed. Full article
(This article belongs to the Special Issue Interdisciplinary Insights in Engineering Research)
Show Figures

Figure 1

42 pages, 55621 KB  
Article
Design and Development of a Multifunctional Stepladder: Usability, Sustainability, and Cost-Effectiveness
by Elwin Nesan Selvanesan, Poh Kiat Ng, Kia Wai Liew, Kah Wei Gan, Peng Lean Chong, Jian Ai Yeow and Yu Jin Ng
Eng 2025, 6(4), 79; https://doi.org/10.3390/eng6040079 - 17 Apr 2025
Cited by 1 | Viewed by 1242
Abstract
This study presents the design, development, and evaluation of a multifunctional stepladder that integrates four functionalities: a stepladder, Pilates chair, wheelchair, and walking aid. Unlike existing research that focuses on single-function assistive devices, this study uniquely integrates a stepladder, wheelchair, walking aid, and [...] Read more.
This study presents the design, development, and evaluation of a multifunctional stepladder that integrates four functionalities: a stepladder, Pilates chair, wheelchair, and walking aid. Unlike existing research that focuses on single-function assistive devices, this study uniquely integrates a stepladder, wheelchair, walking aid, and Pilates chair into one multifunctional device, offering a compact, space-saving solution that addresses multiple daily needs in a single design. Building upon previous research, which conceptualized a multifunctional stepladder by synthesizing ideas, features, and functions from patent literature, existing products, and scientific articles, this study focuses on the design and testing phases to refine and validate the concept. Using sustainable materials like mild steel and aluminium, the design was optimized through structural simulations, ensuring durability under loads of up to 100 kg. Usability tests revealed that the invention significantly reduced task completion times, saved five times the space compared to single-function products, and provided enhanced versatility. Cost analysis highlighted its affordability, with a retail price of MYR 1392—approximately 35% lower than the combined cost of its single-function counterparts. Participant feedback noted strengths such as eco-friendliness, practicality, and ergonomic design, alongside areas for improvement, including portability, armrests, and storage. Future work includes enhanced portability for stair navigation, outdoor usability tests, and integration of smart technologies. This multifunctional stepladder significantly contributes to caregivers by reducing the physical burden of managing multiple assistive devices, enhancing efficiency in daily caregiving tasks, and providing a safer, more convenient tool that supports both mobility and exercise for elderly users. This multifunctional stepladder also offers a sustainable, cost-effective, and user-centric solution, addressing usability gaps while supporting global sustainability and accessibility initiatives. Full article
(This article belongs to the Special Issue Interdisciplinary Insights in Engineering Research)
Show Figures

Figure 1

29 pages, 8412 KB  
Article
Sensitivity Analysis of Soil Hydraulic Parameters for Improved Flow Predictions in an Atlantic Forest Watershed Using the MOHID-Land Platform
by Dhiego da Silva Sales, Jader Lugon Junior, David de Andrade Costa, Renata Silva Barreto Sales, Ramiro Joaquim Neves and Antonio José da Silva Neto
Eng 2025, 6(4), 65; https://doi.org/10.3390/eng6040065 - 27 Mar 2025
Cited by 1 | Viewed by 1387
Abstract
Soil controls water distribution, which is crucial for accurate hydrological modeling. MOHID-Land is a physically based, spatially distributed model that uses van Genuchten–Mualem (VGM) functions to calculate water content in porous media. The hydraulic soil parameters of VGM are dependent on soil type [...] Read more.
Soil controls water distribution, which is crucial for accurate hydrological modeling. MOHID-Land is a physically based, spatially distributed model that uses van Genuchten–Mualem (VGM) functions to calculate water content in porous media. The hydraulic soil parameters of VGM are dependent on soil type and are typically estimated from experimental data; however, they are often obtained using pedotransfer functions, which carry significant uncertainty. As a result, calibration is frequently required to account for both the natural spatial variability of soil and uncertainties estimation. This study focuses on a representative Atlantic Forest watershed. It assesses the sensitivity of channel flow to VGM parameters using a mathematical approach based on residuals derivative, aimed at enhancing soil calibration efficiency for MOHID-Land. The model’s performance significantly improved following calibration, considering only five parameters. The NSE improved from 0.16 on the base simulation to 0.53 after calibration. A sensitivity analysis indicated the curve adjustment parameter (n) as the most sensitive parameter, followed by saturated water content (θs) considering the 10% variation. Additionally, a combined change in θs, n, residual water content (θr), curve adjustment parameter (α), and saturated conductivity (Ksat) values by 10% significantly improves the model’s performance, by reducing channel flow peaks and increasing baseflow. Full article
(This article belongs to the Special Issue Interdisciplinary Insights in Engineering Research)
Show Figures

Figure 1

36 pages, 3674 KB  
Article
Regulation of Small Modular Reactors (SMRs): Innovative Strategies and Economic Insights
by Rachael E. Josephs, Thomas Yap, Moones Alamooti, Toluwase Omojiba, Achouak Benarbia, Olusegun Tomomewo and Habib Ouadi
Eng 2025, 6(4), 61; https://doi.org/10.3390/eng6040061 - 22 Mar 2025
Cited by 3 | Viewed by 7137
Abstract
The advent of small modular reactors (SMRs) represents a transformative leap in nuclear technology. With their smaller size, modular construction, and safety features, SMRs address challenges faced by traditional reactors. However, these technological advancements pose significant regulatory challenges that must be addressed to [...] Read more.
The advent of small modular reactors (SMRs) represents a transformative leap in nuclear technology. With their smaller size, modular construction, and safety features, SMRs address challenges faced by traditional reactors. However, these technological advancements pose significant regulatory challenges that must be addressed to ensure their safe and effective integration into the energy grid. This paper presents robust regulatory strategies essential for the deployment of SMRs. We also perform economic and sensitivity analysis on a notional SMR project to assess its feasibility, profitability, and long-term viability, pinpointing areas for cost optimization and determining the project’s resilience to market trends and technological changes. Key findings highlight market demand as the most influential factor, with public acceptance, regulatory clarity, economic viability, and government support playing critical roles. The sensitivity analysis shows that SMRs could account for 3% to 9% of the energy market by 2050, with a base case of 4.5%, emphasizing the need for coordinated efforts among policymakers, industry stakeholders, and regulatory bodies. Technological maturity suggests current designs are viable, with future R&D focusing on market appeal and safety. By synthesizing these insights, the paper aims to guide regulatory authorities in facilitating informed decision-making, policy formulation, and the adoption of SMRs. Full article
(This article belongs to the Special Issue Interdisciplinary Insights in Engineering Research)
Show Figures

Figure 1

26 pages, 4618 KB  
Article
An Enhanced Cloud Network Integrity and Fair Compensation Scheme Through Data Structures and Blockchain Enforcement
by Renato Racelis Maaliw III
Eng 2025, 6(3), 52; https://doi.org/10.3390/eng6030052 - 12 Mar 2025
Viewed by 1144
Abstract
The expansion of cloud-based storage has intensified concerns about integrity, security, and fair compensation for third-party auditors. Existing authentication methods often compromise privacy with high computational costs, punctuating the need for an efficient and transparent verification system. This study proposes a privacy-preserving authentication [...] Read more.
The expansion of cloud-based storage has intensified concerns about integrity, security, and fair compensation for third-party auditors. Existing authentication methods often compromise privacy with high computational costs, punctuating the need for an efficient and transparent verification system. This study proposes a privacy-preserving authentication framework that combines blockchain-driven smart contracts with an optimized ranked-based Merkle hash tree (RBMHT). Experimental results demonstrated that our approach lowers computational costs by 24.02% and reduces communication overhead by 86.22% compared to existing solutions. By minimizing redundant operations and limiting auditor–cloud interactions, the systems improve reliability and scalability. This makes it well-suited for applications where privacy and trust are critical. Beyond performance gains, the scheme constitutes self-executing smart contracts, preventing dishonest collusions. By bridging security, dependability, and fairness, our findings set a new standard for reliable cloud attestation for a more secure and transparent auditing system. Full article
(This article belongs to the Special Issue Interdisciplinary Insights in Engineering Research)
Show Figures

Figure 1

25 pages, 5650 KB  
Article
Efficiency and Sustainability in Solar Photovoltaic Systems: A Review of Key Factors and Innovative Technologies
by Luis Angel Iturralde Carrera, Margarita G. Garcia-Barajas, Carlos D. Constantino-Robles, José M. Álvarez-Alvarado, Yoisdel Castillo-Alvarez and Juvenal Rodríguez-Reséndiz
Eng 2025, 6(3), 50; https://doi.org/10.3390/eng6030050 - 6 Mar 2025
Cited by 6 | Viewed by 6908
Abstract
PSS (Photovoltaic Solar Systems) are a key technology in energy transition, and their efficiency depends on multiple interrelated factors. This study uses a systematic review based on the PRISMA methodology to identify four main categories affecting performance: technological, environmental, design and installation, and [...] Read more.
PSS (Photovoltaic Solar Systems) are a key technology in energy transition, and their efficiency depends on multiple interrelated factors. This study uses a systematic review based on the PRISMA methodology to identify four main categories affecting performance: technological, environmental, design and installation, and operational factors. Notably, technological advances in materials such as perovskites and emerging technologies like tandem and bifacial cells significantly enhance conversion efficiency, fostering optimism in the field. Environmental factors, including solar radiation, temperature, and contaminants, also substantially impact system performance. Design and installation play a crucial role, particularly in panel orientation, solar tracking systems, and the optimization of electrical configurations. Maintenance, material degradation, and advanced monitoring systems are essential for sustaining efficiency over time. This study provides a comprehensive understanding of the field by reviewing 113 articles and analyzing three key areas—materials, application of sizing technologies, and optimization—from 2018 to 2025. The paper also explores emerging trends, such as the development of energy storage systems and the integration of smart grids, which hold promise for enhancing photovoltaic module (PM) performance. The findings highlight the importance of integrating technological innovation, design strategies, and effective operational management to maximize the potential of PM systems, providing a solid foundation for future research and applications across residential, industrial, and large-scale contexts. Full article
(This article belongs to the Special Issue Interdisciplinary Insights in Engineering Research)
Show Figures

Figure 1

9 pages, 2670 KB  
Communication
Performance Monitoring of a Double-Slope Passive Solar-Powered Desalination System Using Arduino Programming
by Ganesh Radhakrishnan and Kadhavoor R. Karthikeyan
Eng 2025, 6(2), 39; https://doi.org/10.3390/eng6020039 - 18 Feb 2025
Viewed by 773
Abstract
Solar energy is one of the promising renewable energies; it is clean, green, and accepted worldwide for targeting sustainable development through applications such as power generation, desalination, food preservation, etc. Solar-powered desalination has received more attention in recent times to meet the demand [...] Read more.
Solar energy is one of the promising renewable energies; it is clean, green, and accepted worldwide for targeting sustainable development through applications such as power generation, desalination, food preservation, etc. Solar-powered desalination has received more attention in recent times to meet the demand of pure water in the rural places of many countries where solar energy is abundant. In the present work, a double-slope passive solar desalination system was fabricated with readily available materials that can be installed and used in rural places, either for domestic purposes or in small-scale industries. The capacity of the desalination system fabricated to be filled with saline water is ~15 L. The performance of the desalination system is continuously monitored by recording the temperatures at various locations around the system, such as the outer surface of the glass, the inner surface of the glass, inside the basin, and outside the basin, through DHT11 sensors controlled by Arduino programming fed in the Arduino UNO board. The influence of solar radiation intensity and temperatures at various locations on the solar still on the thermal performance and production of desalination unit is analyzed by the data recorded by the Arduino program. A cumulative yield of fresh water of around 0.7–0.9 L is recorded every day, and the lowest yield of around 0.55 L was obtained on the third day of experimentation. Full article
(This article belongs to the Special Issue Interdisciplinary Insights in Engineering Research)
Show Figures

Figure 1

Review

Jump to: Research

25 pages, 433 KB  
Review
Operational Cycle Detection for Mobile Mining Equipment: An Integrative Scoping Review with Narrative Synthesis
by Augustin Marks de Chabris, Markus Timusk and Meng Cheng Lau
Eng 2025, 6(10), 279; https://doi.org/10.3390/eng6100279 - 16 Oct 2025
Viewed by 303
Abstract
Background: Operational cycle detection underpins a range of important tasks, such as predictive maintenance, energy consumption prediction, and energy management for mobile equipment in mining. Yet, no review has investigated the landscape of methods that segment mobile mining vehicle telemetry into discrete [...] Read more.
Background: Operational cycle detection underpins a range of important tasks, such as predictive maintenance, energy consumption prediction, and energy management for mobile equipment in mining. Yet, no review has investigated the landscape of methods that segment mobile mining vehicle telemetry into discrete operating modes—a task termed operational cycle detection. Methods: Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses, Scoping Review extension (PRISMA-ScR) framework, we searched The Lens database on 27 June 2025, for records published between 2000 and 2025 that apply cycle detection to mobile mining vehicles. After de-duplication and two-stage screening, 20 empirical studies met all criteria (19 diesel, 1 electric-drive). Due to the sparse research involving battery electric vehicles (BEVs) in mining, three articles performing cycle detection on heavy-duty vehicles in a similar operational context to mining are synthesized. Results: Early diesel work used single-sensor thresholds, often achieving >90% site-specific accuracy, while recent studies increasingly employ neural networks using multivariate datasets. While the cycle detection research on mining BEVs, even supplemented with additional heavy-duty BEV studies, is sparse, similar approaches are favored. Conclusions: Persisting gaps in the literature include the absence of public mining datasets, inconsistent evaluation metrics, and limited real-time validation. Full article
(This article belongs to the Special Issue Interdisciplinary Insights in Engineering Research)
Show Figures

Figure 1

20 pages, 2243 KB  
Review
Prospects of Improving the Vibroacoustic Method for Locating Buried Non-Metallic Pipelines
by Vladimir Pshenin, Alexander Sleptsov and Leonid Dukhnevich
Eng 2025, 6(6), 121; https://doi.org/10.3390/eng6060121 - 2 Jun 2025
Cited by 2 | Viewed by 1639
Abstract
Acoustic methods are a promising direction when determining the position of buried non-metallic pipelines. Under difficult soil conditions, one of the most effective methods is the vibroacoustic method, which has a maximum range of application when acoustic waves propagate through the transported medium. [...] Read more.
Acoustic methods are a promising direction when determining the position of buried non-metallic pipelines. Under difficult soil conditions, one of the most effective methods is the vibroacoustic method, which has a maximum range of application when acoustic waves propagate through the transported medium. However, due to limited energy input into the pipeline, signal detection at significant distances from the source becomes challenging. This article considers the mechanism of acoustic oscillations attenuation in pipes and suggests possible directions for optimization of the investigated technology. The evaluation of mathematical modeling methods for the investigated process is conducted, and the key signal attenuation relationships are presented. The analysis allowed us to establish that the vibroacoustic method has the potential of increasing the efficiency by approximately 10–20%. Full article
(This article belongs to the Special Issue Interdisciplinary Insights in Engineering Research)
Show Figures

Figure 1

18 pages, 3794 KB  
Review
Vertiports: The Infrastructure Backbone of Advanced Air Mobility—A Review
by Paola Di Mascio, Giulia Del Serrone and Laura Moretti
Eng 2025, 6(5), 93; https://doi.org/10.3390/eng6050093 - 30 Apr 2025
Cited by 2 | Viewed by 5202
Abstract
Technological innovation toward electrification and digitalization is revolutionizing aviation, paving the way for new aeronautical paradigms and novel modes to transport goods and people in urban and regional environments. Advanced Air Mobility (AAM) leverages vertical and digital mobility, driven by safe, quiet, sustainable, [...] Read more.
Technological innovation toward electrification and digitalization is revolutionizing aviation, paving the way for new aeronautical paradigms and novel modes to transport goods and people in urban and regional environments. Advanced Air Mobility (AAM) leverages vertical and digital mobility, driven by safe, quiet, sustainable, and cost-effective electric vertical takeoff and landing (VTOL) aircraft. A key enabler of this transformation is the development of vertiports—dedicated infrastructure designed for VTOL operations. Vertiports are pivotal in integrating AAM into multimodal transport networks, ensuring seamless connectivity with existing urban and regional transportation systems. Their design, placement, and operational framework are central to the success of AAM, influencing urban accessibility, safety, and public acceptance. These facilities should accommodate passenger and cargo operations, incorporating charging stations, takeoff and landing areas, and optimized traffic management systems. Public and private sectors are investing in vertiports, shaping the regulatory and technological landscape for widespread adoption. As cities prepare for the future of aerial mobility, vertiports will be the cornerstone of sustainable, efficient, and scalable air transportation. Full article
(This article belongs to the Special Issue Interdisciplinary Insights in Engineering Research)
Show Figures

Figure 1

Back to TopTop