Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,345)

Search Parameters:
Keywords = virtual technology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 17232 KB  
Article
From Mechanical Instability to Virtual Precision: Digital Twin Validation for Next-Generation MEMS-Based Eye-Tracking Systems
by Mateusz Pomianek, Marek Piszczek, Paweł Stawarz and Aleksandra Kucharczyk-Drab
Sensors 2025, 25(20), 6460; https://doi.org/10.3390/s25206460 (registering DOI) - 18 Oct 2025
Abstract
The development of high-performance MEMS-based eye trackers, crucial for next-generation medical diagnostics and human–computer interfaces, is often hampered by the mechanical instability and time-consuming recalibration of physical prototypes. To address this bottleneck, we present the development and rigorous validation of a high-fidelity digital [...] Read more.
The development of high-performance MEMS-based eye trackers, crucial for next-generation medical diagnostics and human–computer interfaces, is often hampered by the mechanical instability and time-consuming recalibration of physical prototypes. To address this bottleneck, we present the development and rigorous validation of a high-fidelity digital twin (DT) designed to accelerate the design–test–refine cycle. We conducted a comparative study of a physical MEMS scanning system and its corresponding digital twin using a USAF 1951 test target under both static and dynamic conditions. Our analysis reveals that the DT accurately replicates the physical system’s behavior, showing a geometric discrepancy of <30 µm and a matching feature shift (1 µm error) caused by tracking dynamics. Crucially, the DT effectively removes mechanical vibration artifacts, enabling the precise analysis of system parameters in a controlled virtual environment. The validated model was then used to develop a pupil detection algorithm that achieved an accuracy of 1.80 arc minutes, a result that surpasses the performance of a widely used commercial system in our comparative tests. This work establishes a validated methodology for using digital twins in the rapid prototyping and optimization of complex optical systems, paving the way for faster development of critical healthcare technologies. Full article
(This article belongs to the Section Sensors and Robotics)
31 pages, 2122 KB  
Technical Note
The VISIR Remote Laboratory: Analysis of Limitations and Proposals for Improvement
by Frederico Lázaro Jacob, Maria Arcelina Marques, Gustavo R. Alves, André Vaz Fidalgo, Felix Garcia Loro and Elio San Cristóbal Ruiz
Laboratories 2025, 2(4), 20; https://doi.org/10.3390/laboratories2040020 (registering DOI) - 18 Oct 2025
Abstract
Engineering education depends on hands-on experimentation, but laboratory access is often limited by time, availability, and resources. Remote laboratories mitigate these barriers by enabling online access to real experiments, with the Virtual Instrument Systems in Reality (VISIR) standing out as a long-established system [...] Read more.
Engineering education depends on hands-on experimentation, but laboratory access is often limited by time, availability, and resources. Remote laboratories mitigate these barriers by enabling online access to real experiments, with the Virtual Instrument Systems in Reality (VISIR) standing out as a long-established system for teaching electronics and electrical circuits. Based on an extensive literature review and on substantial experience, this study qualitatively analyzes VISIR and identifies limitations related to scalability, interoperability, and integration with emerging technologies. From these insights, the paper proposes a set of improvements and technologies to enhance or replace key components while preserving its core infrastructure. The conclusions contribute to practical recommendations for those developing remote laboratories for electrical circuits and analog electronics education, thus offering achievable design suggestions and outlining directions for future research and development. Full article
Show Figures

Figure 1

11 pages, 527 KB  
Review
A Narrative Review of Photon-Counting CT and Radiomics in Cardiothoracic Imaging: A Promising Match?
by Salvatore Claudio Fanni, Ilaria Ambrosini, Francesca Pia Caputo, Maria Emanuela Cuibari, Domitilla Deri, Alessio Guarracino, Camilla Guidi, Vincenzo Uggenti, Giancarlo Varanini, Emanuele Neri, Dania Cioni, Mariano Scaglione and Salvatore Masala
Diagnostics 2025, 15(20), 2631; https://doi.org/10.3390/diagnostics15202631 (registering DOI) - 18 Oct 2025
Abstract
Photon-counting computed tomography (PCCT) represents a major technological innovation compared to conventional CT, offering improved spatial resolution, reduced electronic noise, and intrinsic spectral capabilities. These advances open new perspectives for synergy with radiomics, a field that extracts quantitative features from medical images. The [...] Read more.
Photon-counting computed tomography (PCCT) represents a major technological innovation compared to conventional CT, offering improved spatial resolution, reduced electronic noise, and intrinsic spectral capabilities. These advances open new perspectives for synergy with radiomics, a field that extracts quantitative features from medical images. The ability of PCCT to generate multiple types of datasets, including high-resolution conventional images, iodine maps, and virtual monoenergetic reconstructions, increases the richness of extractable features and potentially enhances radiomics performance. This narrative review investigates the current evidence on the interplay between PCCT and radiomics in cardiothoracic imaging. Phantom studies demonstrate reduced reproducibility between PCCT and conventional CT systems, while intra-scanner repeatability remains high. Nonetheless, PCCT introduces additional complexity, as reconstruction parameters and acquisition settings significantly may affect feature stability. In chest imaging, early studies suggest that PCCT-derived features may improve nodule characterization, but existing machine learning models, such as those applied to interstitial lung disease, may require recalibration to accommodate the new imaging paradigm. In cardiac imaging, PCCT has shown particular promise: radiomic features extracted from myocardial and epicardial tissues can provide additional diagnostic insights, while spectral reconstructions improve plaque characterization. Proof-of-concept studies already suggest that PCCT radiomics can capture myocardial aging patterns and discriminate high-risk coronary plaques. In conclusion, evidence supports a growing synergy between PCCT and radiomics, with applications already emerging in both lung and cardiac imaging. By enhancing the reproducibility and richness of quantitative features, PCCT may significantly broaden the clinical potential of radiomics in computed tomography. Full article
14 pages, 1222 KB  
Article
Beyond Fresnel Wave Surfaces: Theory of Off-Shell Photonic Density of States and Near-Fields in Isotropy-Broken Materials with Loss or Gain
by Maxim Durach and David Keene
Photonics 2025, 12(10), 1032; https://doi.org/10.3390/photonics12101032 - 17 Oct 2025
Abstract
Fresnel wave surfaces, or isofrequency light shells, provide a powerful framework for describing electromagnetic wave propagation in anisotropic media, yet their applicability is restricted to reciprocal, lossless materials and far-field radiation. This paper extends the concept by incorporating near-field effects and non-Hermitian responses [...] Read more.
Fresnel wave surfaces, or isofrequency light shells, provide a powerful framework for describing electromagnetic wave propagation in anisotropic media, yet their applicability is restricted to reciprocal, lossless materials and far-field radiation. This paper extends the concept by incorporating near-field effects and non-Hermitian responses arising in media with loss, gain, or non-reciprocity. Using the Om-potential approach to macroscopic electromagnetism, we reinterpret near fields as off-shell electromagnetic modes, in analogy with off-shell states in quantum field theory. Formally, both QFT off-shell states and electromagnetic near-field modes lie away from the dispersion shell; physically, however, wavefunctions of fundamental particles admit no external sources (virtual contributions live only inside propagators), whereas macroscopic electromagnetic near-fields are intrinsically source-generated by charges, currents, and boundaries and are therefore directly measurable—for example via near-field probes and momentum-resolved imaging—making “off-shell” language more natural and operational in our setting. We show that photonic density of states (PDOS) distributions near Fresnel surfaces acquire Lorentzian broadening in non-reciprocal media, directly linking this effect to the Beer–Bouguer–Lambert law of exponential attenuation or amplification. Furthermore, we demonstrate how Abraham and Minkowski momenta, locked to light shells in the far field, naturally shift to characterize source structures in the near-field regime. This unified treatment bridges the gap between sources and radiation, on-shell and off-shell modes, and reciprocal and non-reciprocal responses. The framework provides both fundamental insight into structured light and practical tools for the design of emitters and metamaterial platforms relevant to emerging technologies such as 6G communications, photonic density-of-states engineering, and non-Hermitian photonics. Full article
29 pages, 5676 KB  
Article
OCM: An Overcapacity Mapping-Based Virtual Disk Approach for Large-Scale Storage
by Songfu Tan and Ligu Zhu
Electronics 2025, 14(20), 4091; https://doi.org/10.3390/electronics14204091 - 17 Oct 2025
Abstract
In large-scale distributed storage simulations, disk simulation plays a critical role in evaluating system reliability, scalability, and performance. However, the existing virtual disk technologies face challenges in supporting ultra-large capacities and high-concurrency workloads under constrained physical resources. To address this limitation, we propose [...] Read more.
In large-scale distributed storage simulations, disk simulation plays a critical role in evaluating system reliability, scalability, and performance. However, the existing virtual disk technologies face challenges in supporting ultra-large capacities and high-concurrency workloads under constrained physical resources. To address this limitation, we propose an overcapacity mapping (OCM) virtual disk technology that substantially reduces simulation costs while preserving functionality similar to real physical disks. OCM integrates thin provisioning and data deduplication at the Linux Device Mapper layer to construct virtual disks whose logical capacities greatly exceed their physical capacities. We further introduce an SSD-based tiered asynchronous I/O strategy to mitigate performance bottlenecks under high-concurrency random read/write workloads. Our experimental results show that OCM achieves substantial space savings in scenarios with data duplication. In high-concurrency workloads involving small-block random I/O, cache acceleration yields up to 7.8× write speedup and 248.2× read speedup. Moreover, we deploy OCM in a Kubernetes environment to construct a Ceph system with 3 PB logical capacity using only 8.8 TB of physical resources, achieving 98.36% disk cost savings. Full article
(This article belongs to the Topic Recent Advances in Security, Privacy, and Trust)
Show Figures

Figure 1

16 pages, 2887 KB  
Article
Enhanced Reality Exercise System Designed for People with Limited Mobility
by Ahmet Özkurt, Tolga Olcay and Taner Akkan
Appl. Sci. 2025, 15(20), 11146; https://doi.org/10.3390/app152011146 - 17 Oct 2025
Abstract
People with limited mobility experience disadvantages when participating in outdoor activities such as cycling, which can lead to negative consequences. This study proposes an indoor physical cycling activity, with the help of technological solutions, for people with limited mobility. The aim is to [...] Read more.
People with limited mobility experience disadvantages when participating in outdoor activities such as cycling, which can lead to negative consequences. This study proposes an indoor physical cycling activity, with the help of technological solutions, for people with limited mobility. The aim is to use enhanced reality (ER) technology, based on virtual reality, to exercise in the person’s own indoor environment. In this system, real track and speed information is received by a 360-degree camera, GPS, and gyroscope sensors and presented to the mechanical system in the electromechanical bike structure with real-time interaction. The pedal force system of the exercise bike is driven using information of the incline, and data from the bike’s speed sensor and head movements are transferred in real time to the track image on the user’s head-up display, creating a realistic experience. With this system, it is possible to maintain an experience close to real cycling through human–computer interaction with hardware and software integration. Thus, using this system, people with limited mobility can improve their quality of life by performing indoor physical activities with an experience close to reality. Full article
22 pages, 52390 KB  
Article
Hydrogen Production Power Supply with Low Current Ripple Based on Virtual Impedance Technology Suitable for Offshore Wind–Solar–Storage System
by Peng Chen, Jiajin Zou, Chunjie Wang, Qiang Fu, Lin Cui and Lishan Ma
J. Mar. Sci. Eng. 2025, 13(10), 1997; https://doi.org/10.3390/jmse13101997 - 17 Oct 2025
Abstract
Hydrogen production from water electrolysis can not only reduce greenhouse gas emissions, but also has abundant raw materials, which is one of the ideal ways to produce hydrogen from new energy. The hydrogen production power supply is the core component of the new [...] Read more.
Hydrogen production from water electrolysis can not only reduce greenhouse gas emissions, but also has abundant raw materials, which is one of the ideal ways to produce hydrogen from new energy. The hydrogen production power supply is the core component of the new energy electrolytic water hydrogen production device, and its characteristics have a significant impact on the efficiency and purity of hydrogen production and the service life of the electrolytic cell. In essence, the DC/DC converter provides the large current required for hydrogen production. For the converter, its input still needs the support of a DC power supply. Given the maturity and technical characteristics of new energy power generation, integrating energy storage into offshore energy systems enables stable power supply. This configuration not only mitigates energy fluctuations from renewable sources but also further reduces electrolysis costs, providing a feasible pathway for large-scale commercialization of green hydrogen production. First, this paper performs a simulation analysis on the wind–solar hybrid energy storage power generation system to demonstrate that the wind–solar–storage system can provide stable power support. It places particular emphasis on the significance of hydrogen production power supply design—this focus stems primarily from the fact that electrolyzers impose specific requirements on high operating current levels and low current ripple, which exert a direct impact on the electrolyzer’s service life, hydrogen production efficiency, and operational safety. To suppress the current ripple induced by high switching frequency and high output current, traditional approaches typically involve increasing the output inductor. However, this method substantially increases the volume and weight of the device, reduces the rate of current change, and ultimately results in a degradation of the system’s dynamic response performance. To this end, this paper focuses on developing a virtual impedance control technology, aiming to reduce the ripple amplitude while avoiding an increase in the filter inductor. Owing to constraints in current experimental conditions, this research temporarily relies on simulation data. Specifically, a programmable power supply is employed to simulate the voltage output of the wind–solar–storage hybrid system, thereby bringing the simulation as close as possible to the actual operating conditions of the wind–solar–storage hydrogen production system. The experimental results demonstrate that the proposed method can effectively suppress the ripple amplitude, maintain high operating efficiency, and ultimately meet the expected research objectives. That makes it particularly suitable as a high-quality power supply for offshore hydrogen production systems that have strict requirements on volume and weight. Full article
(This article belongs to the Special Issue Offshore Renewable Energy, Second Edition)
Show Figures

Figure 1

28 pages, 6347 KB  
Article
Reliability Assessment of High-Speed Train Gearbox Based on Digital Twin and WHO-WPHM
by Tengfei Wang, Yun Chen, Siying Li, Jinhe Lv, Yumei Liu, Jinyu Yang and Qiushi Yan
Sensors 2025, 25(20), 6418; https://doi.org/10.3390/s25206418 - 17 Oct 2025
Abstract
The gearbox is essential for power transmission in high-speed trains, and its reliability directly impacts operational safety. Accurate monitoring data and effective assessment methods are crucial for accurately assessing its reliability. This study is based on digital twin (DT) technology, precisely deploying virtual [...] Read more.
The gearbox is essential for power transmission in high-speed trains, and its reliability directly impacts operational safety. Accurate monitoring data and effective assessment methods are crucial for accurately assessing its reliability. This study is based on digital twin (DT) technology, precisely deploying virtual sensors to collect vibration data from critical measurement points accurately. By integrating the Wild Horse Optimizer (WHO) and the Weibull Proportional Hazards Model (WPHM), it achieved reliability assessment for a high-speed train gearbox. First, a DT framework for the high-speed train gearbox was established. Taking the gear pair, a critical power transmission component in the gearbox, as an example, a DT model of the gear pair was built on Ansys Twin Builder, virtual sensors were deployed at critical measurement points, and vibration acceleration data was collected. Then, a WPHM reliability assessment model was established, and the WHO was used to estimate and optimize the WPHM parameters. Finally, the response covariates reduced by the Local Tangent Space Alignment (LTSA) were used as model inputs, and the WPHM was applied to assess the reliability of critical parts based on the collected data. The web-deployed DT model was delivered within 13 s. This achieved a simulation acceleration factor of 2.35 × 104, compared to traditional methods. The number of iterations for the WOA was reduced by 62.9% compared to the WHO and by 48.1% compared to the HHO. The reliability assessment results align with the actual operating mileage status of the gear pair, thus validating the effectiveness and feasibility of this method. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
23 pages, 364 KB  
Review
Optical Imaging Technologies and Clinical Applications in Gastrointestinal Endoscopy
by Khyati Bidani, Vishali Moond, Madhvi Nagar, Arkady Broder and Nirav Thosani
Diagnostics 2025, 15(20), 2625; https://doi.org/10.3390/diagnostics15202625 - 17 Oct 2025
Abstract
Optical imaging technologies expand gastrointestinal endoscopy beyond white-light endoscopy (WLE), improving visualization of mucosal, vascular, and subsurface features. They are applied to the detection of neoplastic and premalignant lesions, inflammatory diseases, and small bowel and pancreatic disorders, though their validation and readiness for [...] Read more.
Optical imaging technologies expand gastrointestinal endoscopy beyond white-light endoscopy (WLE), improving visualization of mucosal, vascular, and subsurface features. They are applied to the detection of neoplastic and premalignant lesions, inflammatory diseases, and small bowel and pancreatic disorders, though their validation and readiness for routine practice vary. This review critically evaluates both guideline-endorsed and investigational optical imaging techniques across major gastrointestinal indications, highlighting diagnostic performance, level of validation, current guideline recommendations, and practical challenges to adoption. In Barrett’s esophagus, narrow-band imaging (NBI) is guideline-endorsed, while acetic acid chromoendoscopy is validated in expert centers. For gastric intestinal metaplasia and early gastric cancer, magnifying NBI achieves diagnostic accuracies exceeding 90% and is guideline-recommended, with acetic acid chromoendoscopy aiding in margin delineation. In inflammatory bowel disease, dye-spray chromoendoscopy is the reference standard for dysplasia surveillance, with virtual methods such as NBI, FICE, and i-SCAN serving as practical alternatives when dye application is not feasible. In the colorectum, NBI supports validated optical diagnosis strategies (resect-and-discard, diagnose-and-leave), while dye-based chromoendoscopy improves detection of flat and serrated lesions. Capsule endoscopy remains the standard for small bowel evaluation of bleeding, Crohn’s disease, and tumors, with virtual enhancement, intelligent chromo capsule endoscopy, and AI-assisted interpretation emerging as promising adjuncts. Pancreaticobiliary applications of optical imaging are also advancing, though current evidence is still preliminary. Investigational modalities including confocal laser endomicroscopy, optical coherence tomography, autofluorescence, Raman spectroscopy, and fluorescence molecular imaging show potential but remain largely restricted to research or expert settings. Guideline-backed modalities such as NBI and dye-based chromoendoscopy are established for clinical practice and supported by robust evidence, whereas advanced techniques remain investigational. Future directions will rely on broader validation, integration of artificial intelligence, and adoption of molecularly targeted probes and next-generation capsule technologies, which together may enhance accuracy, efficiency, and standardization in gastrointestinal endoscopy. Full article
(This article belongs to the Special Issue Advances in Gastrointestinal Endoscopy: From Diagnosis to Therapy)
36 pages, 2468 KB  
Systematic Review
Virtual Reality Application in Evaluating the Soundscape in Urban Environment: A Systematic Review
by Özlem Gök Tokgöz, Margret Sibylle Engel, Cherif Othmani and M. Ercan Altinsoy
Acoustics 2025, 7(4), 68; https://doi.org/10.3390/acoustics7040068 - 17 Oct 2025
Viewed by 38
Abstract
Urban soundscapes are complex due to the interaction of different sound sources and the influence of structures on sound propagation. Moreover, the dynamic nature of sounds over time and space adds to this complexity. Virtual reality (VR) has emerged as a powerful tool [...] Read more.
Urban soundscapes are complex due to the interaction of different sound sources and the influence of structures on sound propagation. Moreover, the dynamic nature of sounds over time and space adds to this complexity. Virtual reality (VR) has emerged as a powerful tool to simulate acoustic and visual environments, offering users an immersive sense of presence in controlled settings. This technology facilitates more accurate and predictive assessment of urban environments. It serves as a flexible tool for exploring, analyzing, and interpreting them under repeatable conditions. This study presents a systematic literature review focusing on research that integrates VR technology for the audiovisual reconstruction of urban environments. This topic remains relatively underrepresented in the existing literature. A total of 69 peer-reviewed studies were analyzed in this systematic review. The studies were classified according to research goals, selected urban environments, VR technologies used, technical equipment, and experimental setups. In this study, the relationship between the tools used in urban VR representations is examined, and experimental setups are discussed from both technical and perceptual perspectives. This paper highlights existing challenges and opportunities in using VR to assess soundscapes and offers practical insights for future applications of VR in urban environments. Full article
Show Figures

Figure 1

29 pages, 1297 KB  
Article
EPT Switching vs. Instruction Repair vs. Instruction Emulation: A Performance Comparison of Hyper-Breakpoint Variants
by Lukas Beierlieb, Alexander Schmitz, Anas Karazon, Artur Leinweber and Christian Dietrich
Eng 2025, 6(10), 278; https://doi.org/10.3390/eng6100278 - 16 Oct 2025
Viewed by 145
Abstract
Virtual Machine Introspection (VMI) is a powerful technology used to detect and analyze malicious software inside Virtual Machines (VMs) from the outside. Asynchronous access to the VM’s memory can be insufficient for efficient monitoring of what is happening inside of a VM. Active [...] Read more.
Virtual Machine Introspection (VMI) is a powerful technology used to detect and analyze malicious software inside Virtual Machines (VMs) from the outside. Asynchronous access to the VM’s memory can be insufficient for efficient monitoring of what is happening inside of a VM. Active VMI introduces breakpoints to intercept VM execution at relevant points. Especially for frequently visited breakpoints, and even more so for production systems, it is crucial to keep performance overhead as low as possible. In this paper, we present an empirical study that compares the performance of four VMI breakpoint-implementation variants—EPT switching (SLAT view switching) with and without fast single-stepping acceleration, instruction repair, and instruction emulation—from two VMI applications (DRAKVUF, SmartVMI) with the XEN hypervisor on 20 Intel Core i processors ranging from the fourth to the thirteenth generation. Instruction emulation was the fastest method across all 20 tested platforms. Modern processors such as the Intel Core i7 12700H and Intel Core i9 13900HX achieved median breakpoint-processing times as low as 15 µs for the emulation mechanism. The slowest method was instruction repair, followed by EPT switching and EPT switching with FSS. The order was the same for all measurements, indicating that this is a strong and generalizable result. Full article
(This article belongs to the Special Issue Interdisciplinary Insights in Engineering Research)
Show Figures

Figure 1

12 pages, 1456 KB  
Article
Advancing Cognitive–Motor Assessment: Reliability and Validity of Virtual Reality-Based Testing in Elite Athletes
by Cathy Craig, Erin Noble, Mario A. Parra and Madeleine A. Grealy
Virtual Worlds 2025, 4(4), 46; https://doi.org/10.3390/virtualworlds4040046 - 16 Oct 2025
Viewed by 115
Abstract
Emerging virtual reality (VR) technologies provide objective and immersive methods for assessing cognitive–motor function, particularly in elite sport. This study evaluated the reliability and validity of VR-based cognitive–motor assessments in a large sample of elite male athletes (n = 829). Ten cognitive–motor [...] Read more.
Emerging virtual reality (VR) technologies provide objective and immersive methods for assessing cognitive–motor function, particularly in elite sport. This study evaluated the reliability and validity of VR-based cognitive–motor assessments in a large sample of elite male athletes (n = 829). Ten cognitive–motor tests, delivered via Oculus Quest 2 headsets, were used, covering four domains: Balance and Gait (BG), Decision-Making (DM), Manual Dexterity (MD), and Memory (ME). A Confirmatory Factor Analysis (CFA) was conducted to establish a four-factor model and generate data-driven weights for domain-specific composite scores. The results demonstrated that the composite scores for BG, MD, ME, and a Global Cognitive–Motor (CM) score were all normally distributed. However, the DM score significantly deviated from normality, exhibiting a pronounced ceiling effect. Test–retest reliability was high across all cognitive–motor domains. In summary, VR assessments offer ecologically valid and precise measurements of cognitive–motor abilities by capitalising on high-fidelity motion tracking and standardised test delivery. In particular, the Global CM Score offers a robust metric for parametric analyses. While future work should address the DM ceiling effect and validate these tools in diverse populations, this approach holds significant potential for enhancing the precision and sensitivity of psychological and clinical assessment. Full article
Show Figures

Figure 1

23 pages, 602 KB  
Systematic Review
Use of Digital Technologies to Support Socioemotional Teacher Training: A Systematic Review
by Fabiola Sáez-Delgado, Paulo Coronado-Sánchez, Javier Mella-Norambuena, Yaranay López-Angulo, Joaquin Brieba-Fuenzalida, Carolina Contreras-Saavedra and Gissela Lozano-Peña
Educ. Sci. 2025, 15(10), 1377; https://doi.org/10.3390/educsci15101377 - 15 Oct 2025
Viewed by 247
Abstract
Several studies in the educational field have explored the use of digital technologies and how they promote the strengthening of socioemotional competencies. However, most of these studies have focused on students, leaving their application to teachers in the background. This systematic review identifies [...] Read more.
Several studies in the educational field have explored the use of digital technologies and how they promote the strengthening of socioemotional competencies. However, most of these studies have focused on students, leaving their application to teachers in the background. This systematic review identifies and analyzes studies on the application of digital tools aimed at strengthening the socioemotional competencies of teachers in order to answer the following question: What digital technologies have been implemented to support the socioemotional development of teachers in educational settings and what are their results? The study followed the PRISMA 2020 guidelines, based on the identification of research in the ERIC, EBSCO, OpenAlex, Sciencedirect, Scopus, PubMed, arXiv, and Google Scholar databases. Out of 451 research studies identified in an observation window open to any year, 57 studies were selected for analysis. The digital technologies reviewed to strengthen teachers’ socioemotional competencies were grouped into three categories: self-reflection tools (65%), such as digital diaries and blogs; intentional emotional development technologies (68%), such as virtual reality and gamification; and collaborative platforms (37%), such as social networks. Their use evidenced the development of CASEL model competencies: self-awareness and responsible decision-making (86%), self-regulation (81%), social awareness (58%) and relational skills (68%). It is recommended to integrate these technologies in an intentional and contextualized way in teacher training, in order to enhance their well-being, emotional preparation, and prosperity even in the midst of current educational challenges. Full article
(This article belongs to the Special Issue Beyond Classroom Walls: Exploring Virtual Learning Environments)
Show Figures

Figure 1

32 pages, 2733 KB  
Article
Collaborative Multi-Agent Platform with LIDAR Recognition and Web Integration for STEM Education
by David Cruz García, Sergio García González, Arturo Álvarez Sanchez, Rubén Herrero Pérez and Gabriel Villarrubia González
Appl. Sci. 2025, 15(20), 11053; https://doi.org/10.3390/app152011053 - 15 Oct 2025
Viewed by 132
Abstract
STEM (Science, Technology, Engineering, and Mathematics) education faces the challenge of incorporating advanced technologies that foster motivation, collaboration, and hands-on learning. This study proposes a portable system capable of transforming ordinary surfaces into interactive learning spaces through gamification and spatial perception. A prototype [...] Read more.
STEM (Science, Technology, Engineering, and Mathematics) education faces the challenge of incorporating advanced technologies that foster motivation, collaboration, and hands-on learning. This study proposes a portable system capable of transforming ordinary surfaces into interactive learning spaces through gamification and spatial perception. A prototype based on multi-agent architecture was developed on the PANGEA (Platform for automatic coNstruction of orGanizations of intElligent agents) platform, integrating LIDAR (Light Detection and Ranging) sensors for gesture detection, an ultra-short-throw projector for visual interaction and a web platform to manage educational content, organize activities and evaluate student performance. The data from the sensors is processed in real time using ROS (Robot Operating System), generating precise virtual interactions on the projected surface, while the web allows you to configure physical and pedagogical parameters. Preliminary tests show that the system accurately detects gestures, translates them into digital interactions, and maintains low latency in different classroom environments, demonstrating robustness, modularity, and portability. The results suggest that the combination of multi-agent architectures, LIDAR sensors, and gamified platforms offers an effective approach to promote active learning in STEM, facilitate the adoption of advanced technologies in diverse educational settings, and improve student engagement and experience. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

20 pages, 2608 KB  
Review
Pedestrian Emotion Perception in Urban Built Environments Based on Virtual Reality Technology: A Comparative Review of Chinese- and English-Language Literature
by Yidan Wang, Yan Wang, Xiang Li, Xuenan Guan, Bo Zhang and Xiaoran Huang
Buildings 2025, 15(20), 3713; https://doi.org/10.3390/buildings15203713 - 15 Oct 2025
Viewed by 196
Abstract
The built environment plays a crucial role in shaping residents’ quality of life and emotional well-being. In the context of growing efforts to promote livable and walkable cities, a key question emerges: how can emerging technologies—particularly virtual reality (VR)—be leveraged to evaluate and [...] Read more.
The built environment plays a crucial role in shaping residents’ quality of life and emotional well-being. In the context of growing efforts to promote livable and walkable cities, a key question emerges: how can emerging technologies—particularly virtual reality (VR)—be leveraged to evaluate and enhance urban environments through the lens of pedestrian emotional perception? This study systematically reviewed the literature published between 2015 and 2024 in the China National Knowledge Infrastructure (CNKI) and Web of Science (WOS) databases, ultimately identifying 37 Chinese-language and 113 English-language journal articles. Using bibliometric analysis and CiteSpace, the research mapped publication trends, research hotspots, and disciplinary networks across linguistic contexts. Results reveal that Chinese-language studies often emphasize embodied cognition and electroencephalogram (EEG) monitoring, while English-language studies focus more on VR application in stress recovery and health assessment. Based on this synthesis, this study proposes a “sensory–cognitive–affective” framework and a set of spatial intervention strategies, offering a novel perspective for emotion-driven urban design. The findings highlight a paradigm shift from engineering-oriented planning to human-centered approaches, with VR technologies serving as a critical enabling tool. This review contributes both conceptual and methodological foundations for future research at the intersection of immersive technologies, built environment studies, and urban emotional well-being. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

Back to TopTop