Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (185)

Search Parameters:
Keywords = virus–host barrier

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 604 KB  
Review
An Update on RNA Virus Discovery: Current Challenges and Future Perspectives
by Humberto Debat and Nicolas Bejerman
Viruses 2025, 17(7), 983; https://doi.org/10.3390/v17070983 - 15 Jul 2025
Viewed by 1004
Abstract
The relentless emergence of RNA viruses poses a perpetual threat to global public health, necessitating continuous efforts in surveillance, discovery, and understanding of these pathogens. This review provides a comprehensive update on recent advancements in RNA virus discovery, highlighting breakthroughs in technology and [...] Read more.
The relentless emergence of RNA viruses poses a perpetual threat to global public health, necessitating continuous efforts in surveillance, discovery, and understanding of these pathogens. This review provides a comprehensive update on recent advancements in RNA virus discovery, highlighting breakthroughs in technology and methodologies that have significantly enhanced our ability to identify novel viruses across diverse host organisms. We explore the expanding landscape of viral diversity, emphasizing the discovery of previously unknown viral families and the role of zoonotic transmissions in shaping the viral ecosystem. Additionally, we discuss the potential implications of RNA virus discovery on disease emergence and pandemic preparedness. Despite remarkable progress, current challenges in sample collection, data interpretation, and the characterization of newly identified viruses persist. Our ability to anticipate and respond to emerging respiratory threats relies on virus discovery as a cornerstone for understanding RNA virus evolution. We address these challenges and propose future directions for research, emphasizing the integration of multi-omic approaches, advanced computational tools, and international collaboration to overcome barriers in the field. This comprehensive overview aims to guide researchers, policymakers, and public health professionals in navigating the intricate landscape of RNA virus discovery, fostering a proactive and collaborative approach to anticipate and mitigate emerging viral threats. Full article
Show Figures

Figure 1

28 pages, 854 KB  
Review
H5N1 Avian Influenza: A Narrative Review of Scientific Advances and Global Policy Challenges
by Alison Simancas-Racines, Claudia Reytor-González, Melannie Toral and Daniel Simancas-Racines
Viruses 2025, 17(7), 927; https://doi.org/10.3390/v17070927 - 29 Jun 2025
Viewed by 1693
Abstract
The H5N1 avian influenza virus continues to evolve into genetically diverse and highly pathogenic clades with increased potential for cross-species transmission. Recent scientific advances have included the development of next-generation vaccine platforms, promising antiviral compounds, and more sensitive diagnostic tools, alongside strengthened surveillance [...] Read more.
The H5N1 avian influenza virus continues to evolve into genetically diverse and highly pathogenic clades with increased potential for cross-species transmission. Recent scientific advances have included the development of next-generation vaccine platforms, promising antiviral compounds, and more sensitive diagnostic tools, alongside strengthened surveillance systems in both animals and humans. However, persistent structural challenges hinder global readiness. Vaccine production is heavily concentrated in high-income countries, limiting equitable access during potential pandemics. Economic and logistical barriers complicate the implementation of control strategies such as vaccination, culling, and compensation schemes. Gaps in international coordination, public communication, and standardization of protocols further exacerbate vulnerabilities. Although sustained human-to-human transmission has not been documented, the severity of confirmed infections and the rapid global spread among wildlife and domestic animals underscore the urgent need for robust preparedness. International organizations have called for comprehensive pandemic response plans, enhanced multisectoral collaboration, and investment in targeted research. Priorities include expanding surveillance to asymptomatic animal hosts, evaluating viral shedding and transmission routes, and developing strain-specific and universal vaccines. Strengthening global cooperation and public health infrastructure will be critical to mitigate the growing threat of H5N1 and reduce the risk of a future influenza pandemic. Full article
(This article belongs to the Special Issue Controlling Zoonotic Viral Diseases from One Health Perspective 2025)
Show Figures

Figure 1

18 pages, 6973 KB  
Article
TRIM5α/Cyclophilin A-Modified MDBK Cells for Lentiviral-Based Gene Editing
by Lijing Wo, Shuhui Qi, Yongqi Guo, Chao Sun and Xin Yin
Viruses 2025, 17(7), 876; https://doi.org/10.3390/v17070876 - 21 Jun 2025
Viewed by 726
Abstract
The human immunodeficiency virus 1 (HIV-1)-based lentivirus has been widely used for genetic modification. However, the efficiency of lentiviral-based gene modification in Madin–Darby bovine kidney (MDBK) cells is considerably limited. In this study, we have shown that siRNA-mediated depletion of TRIM5α, a [...] Read more.
The human immunodeficiency virus 1 (HIV-1)-based lentivirus has been widely used for genetic modification. However, the efficiency of lentiviral-based gene modification in Madin–Darby bovine kidney (MDBK) cells is considerably limited. In this study, we have shown that siRNA-mediated depletion of TRIM5α, a restriction factor in HIV-1 infection, can dramatically enhance HIV-1 infection in MDBK cells. Furthermore, we generated a doxycycline-inducible Cas9-overexpressing MDBK cell line (MDBK-iCas9) suitable for CRISPR/Cas9-mediated editing. On this basis, we created a TRIM5α knock-out MDBK-iCas9 cell line MDBK-iCas9TRIM5α−/− without additional genome insertions by combining sgRNA transfection and single-cell cloning. We found that MDBK-iCas9TRIM5α−/− displayed greater permissiveness to lentivirus infection compared with MDBK-WT cells. Notably, we found that treatment with the chemical compound cyclosporine A, which directly interacts with cell factor cyclophilin A (CypA), could markedly increase the infectivity of lentivirus in both MDBK-iCas9TRIM5α−/− and MDBK-WT cell lines, suggesting that CypA functions independently with TRIM5α as an inhibitor of the lentivirus in bovine cells. Therefore, combining bovine TRIM5α and CypA targeting could remarkably enhance lentivirus infection. In conclusion, our findings highlight a promising gene engineering strategy for bovine cells that can surmount the significant barriers to investigating the interplay between bovine viruses and their host cells. Full article
(This article belongs to the Special Issue Pestivirus 2025)
Show Figures

Figure 1

21 pages, 2702 KB  
Article
Avian Influenza Virus: Comparative Evolution as the Key for Predicting Host Tropism Expansion
by Matteo Mellace, Carlotta Ceniti, Marielda Cataldi, Luca Borrelli and Bruno Tilocca
Pathogens 2025, 14(7), 608; https://doi.org/10.3390/pathogens14070608 - 20 Jun 2025
Viewed by 1183
Abstract
The avian influenza virus poses an emerging public health risk due to its ability to cross the species barrier and infect a broad spectrum of hosts, including humans. The aim of this study was to investigate the molecular mechanisms and evolutionary dynamics underlying [...] Read more.
The avian influenza virus poses an emerging public health risk due to its ability to cross the species barrier and infect a broad spectrum of hosts, including humans. The aim of this study was to investigate the molecular mechanisms and evolutionary dynamics underlying the spillover, using a bioinformatics approach to viral sequences. Eight viral proteins involved in the process of adaptation to new hosts were selected, and 156 amino acid mutations potentially associated with interspecies transmission were analyzed. The sequences, obtained from the NCBI Virus database, were aligned with the BLASTP1.4.0 tool and compared through phylogenetic analysis. The results show significant evolutionary proximity between human and animal viral strains, and the identification of shared mutations suggests the presence of conserved mechanisms in spillover. The identification of hosts that share mutations with human strains highlights the potential role of these animals as reservoirs or vectors. This study contributes to the understanding of viral adaptation and provides a starting point for targeted preventive strategies, including molecular surveillance and the development of containment and prevention measures. Full article
(This article belongs to the Section Viral Pathogens)
Show Figures

Figure 1

17 pages, 2381 KB  
Review
The Genetic Fingerprint of HIV in the Brain: Insights into Neurocognitive Dysfunction
by Sushama Jadhav, Shreeya Nair and Vijay Nema
Neuroglia 2025, 6(2), 23; https://doi.org/10.3390/neuroglia6020023 - 9 Jun 2025
Viewed by 1367
Abstract
HIV, primarily targeting CD4 cells, infiltrates the CNS through various mechanisms, including chemokine-mediated signaling and blood–brain barrier disruption, leading to neuroinflammation and neuronal dysfunction. Viral proteins such as gp120, Tat, and Vpr directly induce neurotoxicity, oxidative stress, and mitochondrial dysfunction, exacerbating cognitive deficits [...] Read more.
HIV, primarily targeting CD4 cells, infiltrates the CNS through various mechanisms, including chemokine-mediated signaling and blood–brain barrier disruption, leading to neuroinflammation and neuronal dysfunction. Viral proteins such as gp120, Tat, and Vpr directly induce neurotoxicity, oxidative stress, and mitochondrial dysfunction, exacerbating cognitive deficits and motor impairments observed in HIV-associated neurocognitive disorders (HANDs). Host genetic factors, including CCR5 mutations and HLA alleles, influence susceptibility to HIV-related neurologic complications, shaping disease progression and treatment responses. Advanced molecular and bioinformatics techniques, from genome sequencing to structural modeling and network analysis, provide insights into viral pathogenesis and identify potential therapeutic targets. These findings underscore the future potential of precision medicine approaches tailored to individual genetic profiles to mitigate neurologic complications and improve outcomes in HIV-infected populations. This comprehensive review explores the intricate interplay between HIV infection and neurogenetics, focusing on how the virus impacts the central nervous system (CNS) and contributes to neurocognitive disorders. This report delves into how the virus influences genetic expression, neuroinflammation, and neurodegeneration, offering insights into molecular mechanisms behind HAND. Full article
Show Figures

Figure 1

17 pages, 1414 KB  
Review
Viral Disruption of Blood–Testis Barrier Precedes Testicular Infection
by E. Eldridge Hager-Soto, Alexander N. Freiberg and Shannan L. Rossi
Viruses 2025, 17(6), 747; https://doi.org/10.3390/v17060747 - 23 May 2025
Viewed by 1383
Abstract
Several viruses have demonstrated the potential for infecting the human male genital tract, leading to potential host pathologic consequences and sexual transmission. Despite the testes being an immune-privileged niche of the body, viruses like Zika, mumps, Ebola, Marburg, and human immunodeficiency virus infect [...] Read more.
Several viruses have demonstrated the potential for infecting the human male genital tract, leading to potential host pathologic consequences and sexual transmission. Despite the testes being an immune-privileged niche of the body, viruses like Zika, mumps, Ebola, Marburg, and human immunodeficiency virus infect the lumen of testes. The human blood–testis barrier (BTB) is a specialized epithelial barrier responsible for protecting the developing sperm in the lumen of the seminiferous tubules from foreign antigen; however, testicular-tropic viruses possess the unique ability to modulate this barrier prior to entry into the lumen. Previous scientific reports identified immunomodulatory and viral-induced changes to BTB physiology during infection—a necessary step prior to viral entry into the testicular lumen. This review aims to explore the specific mechanisms employed by viruses to disrupt the human BTB and establish testicular infection. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

16 pages, 1706 KB  
Review
A Review of Cross-Species Transmission Mechanisms of Influenza Viruses
by Xianfeng Hui, Xiaowei Tian, Shihuan Ding, Ge Gao, Jiyan Cui, Chengguang Zhang, Tiesuo Zhao, Liangwei Duan and Hui Wang
Vet. Sci. 2025, 12(5), 447; https://doi.org/10.3390/vetsci12050447 - 7 May 2025
Viewed by 2481
Abstract
The cross-species transmission of influenza viruses represents a critical link in the pandemic of zoonotic diseases. This mechanism involves multi-level interactions, including viral genetic adaptability, host–receptor compatibility, and ecological drivers. Recent studies have highlighted the essential role of mutations in hemagglutinin and neuraminidase [...] Read more.
The cross-species transmission of influenza viruses represents a critical link in the pandemic of zoonotic diseases. This mechanism involves multi-level interactions, including viral genetic adaptability, host–receptor compatibility, and ecological drivers. Recent studies have highlighted the essential role of mutations in hemagglutinin and neuraminidase in overcoming host barriers, while elucidating the differences in the distribution of host sialic acid receptors. Furthermore, the “mixer” function of intermediate hosts, such as pigs, plays a significant role in viral redistribution. Advances in high-throughput sequencing and structural biology technologies have gradually resolved key molecular markers and host restriction factors associated with these viruses. However, challenges remain in understanding the dynamic evolutionary patterns of virus–host interaction networks, developing real-time early warning capabilities for cross-species transmission, and formulating broad-spectrum prevention and control strategies. Moving forward, it is essential to integrate multidisciplinary approaches to establish a multi-level defense system, leveraging the ‘One Health’ monitoring network, artificial intelligence prediction models, and new vaccine research and development to address the ongoing threat of cross-species transmission of influenza viruses. This paper systematically reviews the research progress and discusses bottlenecks in this field, providing a theoretical foundation for optimizing future prevention and control strategies. Full article
Show Figures

Figure 1

21 pages, 21042 KB  
Article
Lassa Virus Infection of Primary Human Airway Epithelial Cells
by Helena Müller-Kräuter, Sarah Katharina Fehling, Lucie Sauerhering, Birthe Ehlert, Janine Koepke, Juliane Schilling, Mikhail Matrosovich, Andrea Maisner and Thomas Strecker
Viruses 2025, 17(5), 592; https://doi.org/10.3390/v17050592 - 22 Apr 2025
Viewed by 1412
Abstract
Lassa mammarenavirus (LASV), a member of the family Arenaviridae, is a highly pathogenic virus capable of causing severe systemic infections in humans. The primary host reservoir is the Natal multimammate mouse (Mastomys natalensis), with human infections typically occurring through mucosal exposure [...] Read more.
Lassa mammarenavirus (LASV), a member of the family Arenaviridae, is a highly pathogenic virus capable of causing severe systemic infections in humans. The primary host reservoir is the Natal multimammate mouse (Mastomys natalensis), with human infections typically occurring through mucosal exposure to virus-containing aerosols from rodent excretions. To better understand the molecular mechanisms underlying LASV replication in the respiratory tract, we utilized differentiated primary human airway epithelial cells (HAECs) grown under air–liquid interface conditions, closely mimicking the bronchial epithelium in vivo. Our findings demonstrate that HAECs are permissive to LASV infection and support productive virus replication. While LASV entry into polarized HAECs occurred through both apical and basolateral surfaces, progeny virus particles were predominantly released from the apical surface, consistent with an intrinsic apical localization of the envelope glycoprotein GP. This suggests that apical virus shedding from infected bronchial epithelia may facilitate LASV transmission via airway secretions. Notably, limited basolateral release at later stages of infection was associated with LASV-induced rearrangement of the actin cytoskeleton, resulting in compromised epithelial barrier integrity. Finally, we demonstrate that LASV-infected HAECs exhibited a pronounced type III interferon response. A detailed understanding of LASV replication and host epithelial responses in the respiratory tract could facilitate the development of targeted future therapeutics. Full article
(This article belongs to the Special Issue Viral Infection in Airway Epithelial Cells)
Show Figures

Figure 1

14 pages, 2089 KB  
Article
Subtype AD Recombinant HIV-1 Transmitted/Founder Viruses Are Less Sensitive to Type I Interferons than Subtype D
by Denis Omara, Fortunate Natwijuka, Anne Kapaata, Frank Kato, Laban Kato, Christian Ndekezi, Angella Nakyanzi, Mercy L. Ayebale, Ling Yue, Eric Hunter, Obondo J. Sande, Christina Ochsenbauer, Pontiano Kaleebu and Sheila N. Balinda
Viruses 2025, 17(4), 486; https://doi.org/10.3390/v17040486 - 28 Mar 2025
Viewed by 1055
Abstract
Initial interactions between HIV-1 and the immune system at mucosal exposure sites play a critical role in determining whether the virus is eliminated or progresses to establish systemic infection. The virus that successfully crosses the mucosal barrier to establish infection in the new [...] Read more.
Initial interactions between HIV-1 and the immune system at mucosal exposure sites play a critical role in determining whether the virus is eliminated or progresses to establish systemic infection. The virus that successfully crosses the mucosal barrier to establish infection in the new host is referred to as the transmitted/founder (TF) virus. Following mucosal HIV-1 transmission, type 1 interferons (IFN-I) are rapidly induced at sites of initial virus replication. The resistance of TF variants to these antiviral effects of the IFN-I has been studied among HIV-1 subtypes B and C. However, their role in restricting HIV-1 replication among subtypes D and AD recombinant remains unexplored. This study assessed the sensitivity of HIV-1 subtype D and AD recombinant TF viruses to IFN-I by infecting peripheral blood mononuclear cells in vitro with infectious molecular clones of these viruses. Cells were exposed to varying concentrations of interferon-α and interferon-β, and viral replicative capacity was measured using HIV-1 p24 antigen ELISA from culture supernatants. Sensitivity to IFN-I was quantified based on viral replication levels. The results showed that interferon-α was more effective in inhibiting viral replication than interferon-β, regardless of the varying amounts of IFN-I used. However, recombinant AD viruses were found to be more resistant to the antiviral effects of IFN-I compared to subtype D viruses. These findings highlight the differential sensitivity of HIV-1 subtypes AD recombinant and D TF viruses to IFN-I and underscore the potential of IFN-I as a therapeutic strategy to target TF viruses and reduce HIV-1 transmission, particularly in populations where subtype D is prevalent. Full article
(This article belongs to the Special Issue Innate Immunity to Virus Infection 2nd Edition)
Show Figures

Figure 1

18 pages, 13833 KB  
Article
Host Serine Proteases and Antiviral Innate Immunity as Potential Therapeutic Targets in Influenza A Virus Infection-Induced COPD Exacerbations
by Haiqing Bai, Melissa Rodas, Longlong Si, Yuncheng Man, Jie Ji, Roberto Plebani, Johnathan D. Mercer, Rani K. Powers, Chaitra Belgur, Amanda Jiang, Sean R. R. Hall, Rachelle Prantil-Baun and Donald E. Ingber
Int. J. Mol. Sci. 2025, 26(6), 2549; https://doi.org/10.3390/ijms26062549 - 12 Mar 2025
Viewed by 1535
Abstract
Lung manifestations of chronic obstructive pulmonary disease (COPD) are often exacerbated by influenza A virus infections; however, the underlying mechanisms remain largely unknown, and hence therapeutic options are limited. Using a physiologically relevant human lung airway-on-a-chip (Airway Chip) microfluidic culture model lined with [...] Read more.
Lung manifestations of chronic obstructive pulmonary disease (COPD) are often exacerbated by influenza A virus infections; however, the underlying mechanisms remain largely unknown, and hence therapeutic options are limited. Using a physiologically relevant human lung airway-on-a-chip (Airway Chip) microfluidic culture model lined with human airway epithelium from COPD or healthy donors interfaced with pulmonary microvascular endothelium, we observed that Airway Chips lined with COPD epithelium exhibit an increased sensitivity to influenza virus infection, as is observed clinically in COPD patients. Differentiated COPD airway epithelial cells display increased inflammatory cytokine production, barrier function loss, and mucus accumulation upon virus infection. Transcriptomic analysis revealed gene expression profiles characterized by upregulation of serine proteases that may facilitate viral entry and downregulation of interferon-related genes associated with antiviral immune responses. Importantly, treatment of influenza virus-infected COPD epithelium with a protease inhibitor, nafamostat, ameliorated the disease phenotype, as evidenced by dampened viral replication, reduced mucus accumulation, and improved tissue barrier integrity. These findings suggest that targeting host serine proteases may represent a promising therapeutic avenue against influenza-afflicted COPD exacerbations. Full article
Show Figures

Figure 1

17 pages, 2448 KB  
Article
Genetic Diversity and Molecular Evolution of Hepatitis E Virus Within the Genus Chirohepevirus in Bats
by Bo Wang, Peter Cronin, Marcus G. Mah, Xing-Lou Yang and Yvonne C. F. Su
Viruses 2025, 17(3), 339; https://doi.org/10.3390/v17030339 - 28 Feb 2025
Viewed by 1111
Abstract
Hepatitis E virus (HEV) is a major zoonotic pathogen causing hepatitis E, with strains identified in various animal species, including pigs, wild boar, rabbits, deer, camels, and rats. These variants are capable of crossing species barriers and infecting humans. HEV belongs to the [...] Read more.
Hepatitis E virus (HEV) is a major zoonotic pathogen causing hepatitis E, with strains identified in various animal species, including pigs, wild boar, rabbits, deer, camels, and rats. These variants are capable of crossing species barriers and infecting humans. HEV belongs to the family Hepeviridae, which has recently divided into two subfamilies: Orthohepevirinae and Parahepevirinae, and five genera: Paslahepevirus, Avihepevirus, Rocahepevirus, Chirohepevirus, and Piscihepevirus. Recent advances in high-throughput sequencing, particularly of bat viromes, have revealed numerous HEV-related viruses, raising concerns about their zoonotic potential. Bat-derived HEVs have been classified into the genus Chirohepevirus, which includes three distinct species. In this study, we analyzed 64 chirohepevirus sequences from 22 bat species across six bat families collected from nine countries. Twelve sequences represent complete or nearly complete viral genomes (>6410 nucleotides) containing the characteristic three HEV open reading frames (ORFs). These strains exhibited high sequence divergence (>25%) within their respective host genera or species. Phylogenetic analyses with maximum likelihood methods identified at least seven distinct subclades within Chirohepevirus, each potentially representing an independent species. Additionally, the close phylogenetic relationship between chirohepevirus strains and their bat hosts indicates a pattern of virus–host co-speciation. Our findings expand the known diversity within the family Hepeviridae and provide new insights into the evolution of bat-associated HEV. Continued surveillance of chirohepevirus will be essential for understanding its potential for zoonotic transmission and public health risks. Full article
Show Figures

Figure 1

16 pages, 1324 KB  
Review
Emerging Roles of TRIM56 in Antiviral Innate Immunity
by Dang Wang and Kui Li
Viruses 2025, 17(1), 72; https://doi.org/10.3390/v17010072 - 7 Jan 2025
Viewed by 2151
Abstract
The tripartite-motif protein 56 (TRIM56) is a RING-type E3 ubiquitin ligase whose functions were recently beginning to be unveiled. While the physiological role(s) of TRIM56 remains unclear, emerging evidence suggests this protein participates in host innate defense mechanisms that guard against viral infections. [...] Read more.
The tripartite-motif protein 56 (TRIM56) is a RING-type E3 ubiquitin ligase whose functions were recently beginning to be unveiled. While the physiological role(s) of TRIM56 remains unclear, emerging evidence suggests this protein participates in host innate defense mechanisms that guard against viral infections. Interestingly, TRIM56 has been shown to pose a barrier to viruses of distinct families by utilizing its different domains. Apart from exerting direct, restrictive effects on viral propagation, TRIM56 is implicated in regulating innate immune signaling pathways that orchestrate type I interferon response or autophagy, through which it indirectly impacts viral fitness. Remarkably, depending on viral infection settings, TRIM56 either operates in a canonical, E3 ligase-dependent fashion or adopts an enzymatically independent, non-canonical mechanism to bolster innate immune signaling. Moreover, the recent revelation that TRIM56 is an RNA-binding protein sheds new light on its antiviral mechanisms against RNA viruses. This review summarizes recent advances in the emerging roles of TRIM56 in innate antiviral immunity. We focus on its direct virus-restricting effects and its influence on innate immune signaling through two critical pathways: the endolysosome-initiated, double-stranded RNA-sensing TLR3-TRIF pathway and the cytosolic DNA-sensing, cGAS-STING pathway. We discuss the underpinning mechanisms of action and the questions that remain. Further studies understanding the complexity of TRIM56 involvement in innate immunity will add to critical knowledge that could be leveraged for developing antiviral therapeutics. Full article
(This article belongs to the Special Issue TRIM Proteins in Antiviral Immunity and Virus Pathogenesis)
Show Figures

Figure 1

2 pages, 143 KB  
Editorial
Exploring the Mechanisms for Virus Invasion at the Barrier of Host Defense Involving Signaling Pathways
by Bumsuk Hahm
Viruses 2024, 16(12), 1939; https://doi.org/10.3390/v16121939 - 19 Dec 2024
Cited by 1 | Viewed by 882
Abstract
Pathogenic viruses trigger or disrupt multiple signaling networks to establish an environment optimized for their own replication and productive infection [...] Full article
(This article belongs to the Special Issue Viral Strategies to Regulate Host Immunity or Signal Pathways)
25 pages, 2482 KB  
Review
The Immune Escape Strategy of Rabies Virus and Its Pathogenicity Mechanisms
by Abraha Bahlbi Kiflu
Viruses 2024, 16(11), 1774; https://doi.org/10.3390/v16111774 - 14 Nov 2024
Cited by 5 | Viewed by 8580
Abstract
In contrast to most other rhabdoviruses, which spread by insect vectors, the rabies virus (RABV) is a very unusual member of the Rhabdoviridae family, since it has evolved to be fully adapted to warm-blooded hosts and spread directly between them. There are differences [...] Read more.
In contrast to most other rhabdoviruses, which spread by insect vectors, the rabies virus (RABV) is a very unusual member of the Rhabdoviridae family, since it has evolved to be fully adapted to warm-blooded hosts and spread directly between them. There are differences in the immune responses to laboratory-attenuated RABV and wild-type rabies virus infections. Various investigations showed that whilst laboratory-attenuated RABV elicits an innate immune response, wild-type RABV evades detection. Pathogenic RABV infection bypasses immune response by antagonizing interferon induction, which prevents downstream signal activation and impairs antiviral proteins and inflammatory cytokines production that could eliminate the virus. On the contrary, non-pathogenic RABV infection leads to immune activation and suppresses the disease. Apart from that, through recruiting leukocytes into the central nervous system (CNS) and enhancing the blood–brain barrier (BBB) permeability, which are vital factors for viral clearance and protection, cytokines/chemokines released during RABV infection play a critical role in suppressing the disease. Furthermore, early apoptosis of neural cells limit replication and spread of avirulent RABV infection, but street RABV strains infection cause delayed apoptosis that help them spread further to healthy cells and circumvent early immune exposure. Similarly, a cellular regulation mechanism called autophagy eliminates unused or damaged cytoplasmic materials and destroy microbes by delivering them to the lysosomes as part of a nonspecific immune defense mechanism. Infection with laboratory fixed RABV strains lead to complete autophagy and the viruses are eliminated. But incomplete autophagy during pathogenic RABV infection failed to destroy the viruses and might aid the virus in dodging detection by antigen-presenting cells, which could otherwise elicit adaptive immune activation. Pathogenic RABV P and M proteins, as well as high concentration of nitric oxide, which is produced during rabies virus infection, inhibits activities of mitochondrial proteins, which triggers the generation of reactive oxygen species, resulting in oxidative stress, contributing to mitochondrial malfunction and, finally, neuron process degeneration. Full article
(This article belongs to the Special Issue Viral Infections and Immune Dysregulation 2024–2025)
Show Figures

Figure 1

19 pages, 7051 KB  
Article
Adipose-Derived Stem Cells as Carrier of Pro-Apoptotic Oncolytic Myxoma Virus: To Cross the Blood–Brain Barrier and Treat Murine Glioma
by Joanna Jazowiecka-Rakus, Kinga Pogoda-Mieszczak, Masmudur M. Rahman, Grant McFadden and Aleksander Sochanik
Int. J. Mol. Sci. 2024, 25(20), 11225; https://doi.org/10.3390/ijms252011225 - 18 Oct 2024
Cited by 4 | Viewed by 1691
Abstract
Treatment of glioblastoma is ineffective. Myx-M011L-KO/EGFP, a myxoma virus actively inducing apoptosis in BTICs linked to recurrence, offers innovative treatment. We loaded this construct into adipose-derived stem cells (ADSCs) to mitigate antiviral host responses and enable systemic delivery. The apoptotic and cytotoxic effects [...] Read more.
Treatment of glioblastoma is ineffective. Myx-M011L-KO/EGFP, a myxoma virus actively inducing apoptosis in BTICs linked to recurrence, offers innovative treatment. We loaded this construct into adipose-derived stem cells (ADSCs) to mitigate antiviral host responses and enable systemic delivery. The apoptotic and cytotoxic effects of the construct were studied using murine and human glioblastoma cell lines. Before implementing systemic delivery, we delivered the construct locally using ADSC to verify elimination of orthotopic murine glioma lesions. vMyx-M011L-KO/EGFP was cytotoxic to a murine cell line, preventing effective virus multiplication. In three human glioma cell lines, viral replication did occur, coupled with cell killing. The knock-out construct induced apoptotic cell death in these cultures. ADSCs infected ex vivo were shown to be sufficiently migratory to assure transfer of the therapeutic cargo to murine glioma lesions. Virus-loaded ADSCs applied to the artificial blood–brain barrier (BBB) yielded viral infection of glioma cells grown distally in the wells. Two rounds of local administration of this therapeutic platform starting 6 days post tumor implantation slowed down growth of orthotopic lesions and improved survival (total recovery < 20%). ADSCs infected ex vivo with vMyx-M011L-KO/EGFP show promise as a therapeutic tool in systemic elimination of glioma lesions. Full article
(This article belongs to the Special Issue Molecular Advances in New Combination Therapies for Cancer)
Show Figures

Figure 1

Back to TopTop