Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (319)

Search Parameters:
Keywords = viscoelastic creep

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 10004 KB  
Article
Deposition-Induced Thermo-Mechanical Strain Behaviour of Magnetite-Filled PLA Filament in Fused Filament Fabrication Under Varying Printing Conditions
by Boubakeur Mecheri and Sofiane Guessasma
Polymers 2025, 17(17), 2430; https://doi.org/10.3390/polym17172430 - 8 Sep 2025
Abstract
Residual stresses and internal strains in 3D printing can lead to issues such as cracking, warping, and delamination—challenges that are amplified when using functional composite materials like magnetic PLA filaments. This study investigates the thermo-mechanical strain evolution during fused filament fabrication (FFF) of [...] Read more.
Residual stresses and internal strains in 3D printing can lead to issues such as cracking, warping, and delamination—challenges that are amplified when using functional composite materials like magnetic PLA filaments. This study investigates the thermo-mechanical strain evolution during fused filament fabrication (FFF) of magnetite-filled PLA using an integrated methodology combining strain gauge sensors, high-resolution infrared thermal imaging, and synchrotron X-ray microtomography. Printing parameters, including nozzle temperature (190–220 °C), build platform temperature (30–100 °C), printing speed (30–60 mm/s), and cooling strategy (fan on/off) were systematically varied to evaluate their influence. Results reveal steep thermal gradients along the build direction (up to −1 °C/µm), residual strain magnitudes reaching 0.1 µε, and enhanced viscoelastic creep at elevated platform temperatures. The addition of magnetic particles modifies heat distribution and strain evolution, leading to strong sensitivity to process conditions. These findings provide valuable insight into the complex thermo-mechanical interactions governing the structural integrity of magnetically functionalized PLA composites in additive manufacturing. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

17 pages, 2503 KB  
Article
Modeling and Validation of Oocyte Mechanical Behavior Using AFM Measurement and Multiphysics Simulation
by Yue Du, Yu Cai, Zhanli Yang, Ke Gao, Mingzhu Sun and Xin Zhao
Sensors 2025, 25(17), 5479; https://doi.org/10.3390/s25175479 - 3 Sep 2025
Viewed by 620
Abstract
Mechanical models are capable of simulating the deformation and stress distribution of oocytes under external forces, thereby providing insights into the underlying mechanisms of intracellular mechanical responses. Interactions with micromanipulation tools involve forces like compression and punction, which are effectively analyzed using principles [...] Read more.
Mechanical models are capable of simulating the deformation and stress distribution of oocytes under external forces, thereby providing insights into the underlying mechanisms of intracellular mechanical responses. Interactions with micromanipulation tools involve forces like compression and punction, which are effectively analyzed using principles of solid mechanics. Alternatively, fluid–structure interactions, such as shear stress at fluid junctions or pressure gradients within microchannels, are best described by a multiphase flow model. Developing the two models instead of a single comprehensive model is necessary due to the distinct nature of cell–tool interactions and cell–fluid interactions. In this study, we developed a finite element (FE) model of porcine oocytes that accounts for the viscoelastic properties of the zona pellucida (ZP) and cytoplasm for the case when the oocytes interacted with a micromanipulation tool. Atomic force microscopy (AFM) was employed to measure the Young’s modulus and creep behavior of these subcellular components that were incorporated into the FE model. When the oocyte was solely interacting with the fluids, we simulated oocyte deformation in microfluidic channels by modeling the oocyte-culture-medium system as a three-phase flow, considering the non-Newtonian behavior of the oocyte’s components. Our results show that the Young’s modulus of the ZP and cytoplasm were determined to be 7 kPa and 1.55 kPa, respectively, highlighting the differences in the mechanical properties between these subcomponents. Using the developed layered FE model, we accurately simulated oocyte deformation during their passage through a narrow-necked micropipette, with a deformation error of approximately 5.2% compared to experimental results. Using the three-phase flow model, we effectively simulated oocyte deformation in microfluidic channels under various pressures, validating the model’s efficacy through close agreement with experimental observations. This work significantly contributes to assessing oocyte quality and serves as a valuable tool for advancing cell mechanics studies. Full article
Show Figures

Figure 1

38 pages, 6285 KB  
Article
Synergy Effect of Synthetic Wax and Tall Oil Amidopolyamines for Slowing Down the Aging Process of Bitumen
by Mateusz M. Iwański, Szymon Malinowski, Krzysztof Maciejewski and Grzegorz Mazurek
Materials 2025, 18(17), 4135; https://doi.org/10.3390/ma18174135 - 3 Sep 2025
Viewed by 559
Abstract
Bitumen ages during production and in asphalt pavements, leading to structural issues and reduced durability of asphalt pavements. The alteration of bitumen’s viscoelastic properties, predominantly attributable to oxidation phenomena, is a hallmark of these processes. This study analyzed the use of a new [...] Read more.
Bitumen ages during production and in asphalt pavements, leading to structural issues and reduced durability of asphalt pavements. The alteration of bitumen’s viscoelastic properties, predominantly attributable to oxidation phenomena, is a hallmark of these processes. This study analyzed the use of a new generation of synthetic wax (SWLC), which was selected for its low carbon footprint, ability to reduce binder viscosity, and ability to enable the production of WMA. Tall oil amidopolyamines (TOAs), a renewable raw material-based adhesive and aging inhibitor, was also used in this study. It compensates for the unfavorable effect of stiffening the binder with synthetic wax. SWLC at concentrations of 1.0%, 1.5%, 2.0%, and 2.5% by mass in bitumen, in conjunction with TOAs at concentrations of 0.0%, 0.2%, 0.4%, and 0.6% by bitumen weight were tested at various concentrations. Short-term and long-term aging effects on penetration, softening point, and viscosity multiple creep and stress recovery tests (MSCR), oscillatory tests for the combined complex modulus |G*| and phase shift angle sin(δ) (DSR), and low-temperature characteristics Sm and mvalue (BBR) were analyzed. The chemical composition of the binders was then subjected to Fourier Infrared Spectroscopy (FTIR) analysis, which enabled the determination of carbonyl, sulfoxide, and aromaticity indexes. These results indicated that the additives used inhibit the oxidation and aromatization reactions of the bitumen components. The optimal SWLC and TOA content determined was 1.5% and 0.4% w/w, respectively. These additives reduce aging and positively affect rheological parameters. Full article
(This article belongs to the Special Issue Advances in Asphalt Materials (Third Volume))
Show Figures

Figure 1

13 pages, 1060 KB  
Article
Transcutaneous Electrical Nerve Stimulation for Muscle Recovery: Insights into Delayed Onset Muscle Soreness
by Sebastian Szajkowski, Jarosław Pasek and Grzegorz Cieślar
Clin. Pract. 2025, 15(9), 157; https://doi.org/10.3390/clinpract15090157 - 28 Aug 2025
Viewed by 465
Abstract
Background: Delayed onset muscle soreness (DOMS) frequently occurs after engaging in strenuous physical activity. The manifestation of DOMS is often associated with changes in the biomechanical and viscoelastic characteristics of the affected muscles. Materials and Methods: Forty participants were enrolled and randomly assigned [...] Read more.
Background: Delayed onset muscle soreness (DOMS) frequently occurs after engaging in strenuous physical activity. The manifestation of DOMS is often associated with changes in the biomechanical and viscoelastic characteristics of the affected muscles. Materials and Methods: Forty participants were enrolled and randomly assigned to two groups: the intervention group receiving transcutaneous electrical nerve stimulation (TENS, n = 20) and a control group (n = 20). A fatigue-inducing protocol targeting the gastrocnemius muscle was implemented to elicit DOMS. The effectiveness of TENS was assessed by evaluating alterations in the biomechanical and viscoelastic properties of the muscle. Pain intensity was recorded using the Numeric Rating Scale (NRS) at five time points: before the study began, three times during the intervention, and once at the conclusion of the study. Results: No statistically significant changes have been found regarding muscle tone (p = 0.162) and stiffness (p = 0.212) in Group 1. However, a statistically significant lower level of stiffness in Group 1 after the end of therapy has been detected (p = 0.008). Decrement values decreased statistically significantly, both in Group 1 (p = 0.015) and in Group 2 (p = 0.014). There were no statistically significant differences in decrement level between Group 1 and 2. Relaxation and creep decreased statistically insignificantly in both groups. At the end of the observation period (Day 4), statistically significant (p = 0.027) lower pain intensity was observed in Group 1. Conclusions: It has been demonstrated that TENS has had limited effectiveness in restoring baseline biomechanical and viscoelastic parameters of muscles that undergo changes during DOMS. TENS significantly relieves pain symptoms occurring in DOMS. Full article
Show Figures

Figure 1

16 pages, 1852 KB  
Article
Evaluation of Constitutive Models for Low-Temperature Performance of High-Modulus Modified Asphalt: A BBR Test-Based Study
by Chao Pu, Bingbing Lei, Zhiwei Yang and Peng Yin
Materials 2025, 18(17), 3963; https://doi.org/10.3390/ma18173963 - 24 Aug 2025
Viewed by 526
Abstract
High-modulus asphalt, with its excellent fatigue resistance and high-temperature resistance, is gradually becoming a preferred material for the development of durable asphalt pavements. However, its poor low-temperature performance has become one of the key bottlenecks restricting its wide application. In recent years, in-depth [...] Read more.
High-modulus asphalt, with its excellent fatigue resistance and high-temperature resistance, is gradually becoming a preferred material for the development of durable asphalt pavements. However, its poor low-temperature performance has become one of the key bottlenecks restricting its wide application. In recent years, in-depth analysis of the mechanism underlying the changes in the low-temperature performance of high-modulus asphalt has gradually become a research focus in the field of asphalt pavements. Accordingly, this study selected four representative high-modulus asphalts, conducted bending beam rheometer (BBR) tests to obtain their low-temperature creep parameters, and used three viscoelastic constitutive models to investigate their low-temperature constitutive relationships. Grey relational analysis (GRA) was further applied to evaluate the models. The results show that, when evaluating the low-temperature performance of high-modulus asphalt, the elastic and viscous parameters variation laws, for the three-parameter solid (TPS) model and four-parameter solid (FPS) model, are not obvious and have large fluctuations, and the accuracy of the fitting curves is relatively low, while the Burgers model has extremely high fitting accuracy, with small parameter fluctuations and significant regularity. The GRA model reveals that the Burgers model is more suitable than the TPS and FPS models for describing the low-temperature creep behavior of high-modulus asphalt, which further confirms the reliability of using the Burgers model to evaluate the low-temperature performance of high-modulus asphalt. Full article
(This article belongs to the Special Issue Advances in Road Materials and Pavement Design)
Show Figures

Figure 1

23 pages, 17844 KB  
Article
Evaluation of Surface Properties in Biosilica-Reinforced Biobased Polyester Nanocomposites
by Hifa Salah Adeen Embirsh, Ivana O. Mladenović, Vesna Radojević, Aleksandar Marinković and Marija M. Vuksanović
Appl. Sci. 2025, 15(17), 9244; https://doi.org/10.3390/app15179244 - 22 Aug 2025
Viewed by 391
Abstract
This study investigates the surface properties of bio-based unsaturated polyester resin (b-UPR) nanocomposites reinforced with biosilica nanoparticles derived from rice husk. The b-UPR matrix was synthesized from recycled polyethylene terephthalate (PET) and renewable monomers, providing a sustainable alternative to conventional polyester resins. Unmodified [...] Read more.
This study investigates the surface properties of bio-based unsaturated polyester resin (b-UPR) nanocomposites reinforced with biosilica nanoparticles derived from rice husk. The b-UPR matrix was synthesized from recycled polyethylene terephthalate (PET) and renewable monomers, providing a sustainable alternative to conventional polyester resins. Unmodified and modified biosilica particles with silanes: (3-trimethoxysilylpropyl methacrylate—MEMO, trimethoxyvinylsilane—VYNIL, and 3-aminopropyltrimethoxysilane with biodiesel—AMBD) were incorporated in different amounts to evaluate their influence on the wettability, topography, and viscoelastic behavior of the composites. Contact angle measurements revealed that the addition of modified biosilica significantly improved the hydrophobicity of the b-UPR surface. The greatest increase in the wetting angle, amounting to 79.9% compared to composites with unmodified silica, was observed in the composites containing 5 wt.% SiO2-AMBD. Atomic force microscopy (AFM) analysis indicated enhanced surface roughness and uniform dispersion of the nanoparticles. For the composite containing 1 wt.% of silica particles, the surface roughness increased by 25.5% with the AMBD modification and by 84.2% with the MEMO modification, compared to the unmodified system. Creep testing demonstrated that the reinforced nanocomposites exhibited improved dimensional stability under sustained load compared to the neat resin. These findings confirm that the integration of surface-modified biosilica not only enhances the mechanical properties but also optimizes the surface characteristics of bio-based polyester composites, broadening their potential for high-performance and sustainable applications. Full article
Show Figures

Figure 1

14 pages, 5327 KB  
Article
Discrete Modeling of Aging Creep in Concrete
by Lifu Yang and Madura Pathirage
Buildings 2025, 15(16), 2841; https://doi.org/10.3390/buildings15162841 - 11 Aug 2025
Viewed by 232
Abstract
Understanding concrete creep aging is essential for ensuring structural safety and long-term durability, while the lack of robust numerical models limits the ability to thoroughly investigate and accurately predict time-dependent deformation and cracking behaviors. This study proposes a numerical framework integrating a discrete [...] Read more.
Understanding concrete creep aging is essential for ensuring structural safety and long-term durability, while the lack of robust numerical models limits the ability to thoroughly investigate and accurately predict time-dependent deformation and cracking behaviors. This study proposes a numerical framework integrating a discrete model and the microprestress solidification (MPS) theory to describe the aging creep and quasi-static performance of concrete at early-age and beyond. Hydration kinetics were formulated into constitutive equations to consider the time-dependent evolution of elastic modulus, strength, and fracture properties. Derived from the MPS theory, a unified creep model is developed within the equivalent rheological framework based on strain additivity. This formulation accounts for both visco-elastic and purely viscous creep phases while coupling environmental humidity effects with aging through the hydration degree. The proposed model is validated against experimental datasets encompassing diverse curing conditions, loading histories, and environmental exposures. The simulation results demonstrate that extended curing age enhances concrete strength (compression and fracture), while increased curing temperature has minimal impact due to the competing effects of microstructural refinement and thermal microcracking; both drying-induced transient creep and thermally induced microcracking contribute to increased creep deformation, driven by changes in microprestress resulting from variations in the chemical potential of nanopore water. The proposed numerical model can provide an effective tool to design and predict the long-term performance of concrete under various environmental conditions. Full article
(This article belongs to the Special Issue Advanced Research on Concrete Materials in Construction)
Show Figures

Figure 1

27 pages, 11648 KB  
Article
Machine-Learning-Enabled Comparative Modelling of the Creep Behaviour of Unreinforced PBT and Short-Fibre Reinforced PBT Using Prony and Fractional Derivative Models
by Eduard Klatt, Bernd Zimmering, Oliver Niggemann and Natalie Rauter
Appl. Mech. 2025, 6(3), 60; https://doi.org/10.3390/applmech6030060 - 11 Aug 2025
Viewed by 367
Abstract
This study presents an approach based on data-driven methods for determining the parameters needed to model time-dependent material behaviour. The time-dependent behaviour of the thermoplastic polymer polybutylene terephthalate is investigated. The material was examined under two conditions, one with and one without the [...] Read more.
This study presents an approach based on data-driven methods for determining the parameters needed to model time-dependent material behaviour. The time-dependent behaviour of the thermoplastic polymer polybutylene terephthalate is investigated. The material was examined under two conditions, one with and one without the inclusion of reinforcing short fibres. Two modelling approaches are proposed to represent the time-dependent response. The first approach is the generalised Maxwell model formulated through the classical exponential Prony series, and the second approach is a model based on fractional calculus. In order to quantify the comparative capabilities of both models, experimental data from tensile creep tests on fibre-reinforced polybutylene terephthalate and unreinforced polybutylene terephthalate specimens are analysed. A central contribution of this work is the implementation of a machine-learning-ready parameter identification framework that enables the automated extraction of model parameters directly from time-series data. This framework enables the robust fitting of the Prony-based model, which requires multiple characteristic times and stiffness parameters, as well as the fractional model, which achieves high accuracy with significantly fewer parameters. The fractional model benefits from a novel neural solver for fractional differential equations, which not only reduces computational complexity but also permits the interpretation of the fractional order and stiffness coefficient in terms of physical creep resistance. The methodological framework is validated through a comparative assessment of predictive performance, parameter cheapness, and interpretability of each model, thereby providing a comprehensive understanding of their applicability to long-term material behaviour modelling in polymer-based composite materials. Full article
Show Figures

Figure 1

21 pages, 2909 KB  
Article
Novel Fractional Approach to Concrete Creep Modeling for Bridge Engineering Applications
by Krzysztof Nowak, Artur Zbiciak, Piotr Woyciechowski, Damian Cichocki and Radosław Oleszek
Materials 2025, 18(15), 3720; https://doi.org/10.3390/ma18153720 - 7 Aug 2025
Viewed by 518
Abstract
The article presents research on concrete creep in bridge structures, focusing on the influence of concrete mix composition and the use of advanced rheological models with fractional-order derivatives. Laboratory tests were performed on nine mixes varying in blast furnace slag content (0%, 25%, [...] Read more.
The article presents research on concrete creep in bridge structures, focusing on the influence of concrete mix composition and the use of advanced rheological models with fractional-order derivatives. Laboratory tests were performed on nine mixes varying in blast furnace slag content (0%, 25%, and 75% of cement mass) and air-entrainment. The results were used to calibrate fractal rheological models—Kelvin–Voigt and Huet–Sayegh—where the viscous element was replaced with a fractal element. These models showed high agreement with experimental data and improved the accuracy of creep prediction. Comparison with Eurocode 2 revealed discrepancies up to 64%, especially for slag-free concretes used in prestressed bridge structures. The findings highlight the important role of mineral additives in reducing creep strains and the need to consider individual mix characteristics in design calculations. In the context of modern bridge construction technologies, such as balanced cantilever or incremental launching, reliable modeling of early-age creep is particularly important. The proposed modeling approach may enhance the precision of long-term structural behavior analyses and contribute to improved safety and durability of concrete infrastructure. Full article
Show Figures

Graphical abstract

15 pages, 3175 KB  
Article
Creep Deformation Mechanisms of Gas-Bearing Coal in Deep Mining Environments: Experimental Characterization and Constitutive Modeling
by Xiaolei Sun, Xueqiu He, Liming Qiu, Qiang Liu, Limin Qie and Qian Sun
Processes 2025, 13(8), 2466; https://doi.org/10.3390/pr13082466 - 4 Aug 2025
Viewed by 320
Abstract
The impact mechanism of long-term creep in gas-containing coal on coal and gas outbursts has not been fully elucidated and remains insufficiently understood for the purpose of disaster engineering control. This investigation conducted triaxial creep experiments on raw coal specimens under controlled confining [...] Read more.
The impact mechanism of long-term creep in gas-containing coal on coal and gas outbursts has not been fully elucidated and remains insufficiently understood for the purpose of disaster engineering control. This investigation conducted triaxial creep experiments on raw coal specimens under controlled confining pressures, axial stresses, and gas pressures. Through systematic analysis of coal’s physical responses across different loading conditions, we developed and validated a novel creep damage constitutive model for gas-saturated coal through laboratory data calibration. The key findings reveal three characteristic creep regimes: (1) a decelerating phase dominates under low stress conditions, (2) progressive transitions to combined decelerating–steady-state creep with increasing stress, and (3) triphasic decelerating–steady–accelerating behavior at critical stress levels. Comparative analysis shows that gas-free specimens exhibit lower cumulative strain than the 0.5 MPa gas-saturated counterparts, with gas presence accelerating creep progression and reducing the time to failure. Measured creep rates demonstrate stress-dependent behavior: primary creep progresses at 0.002–0.011%/min, decaying exponentially to secondary creep rates below 0.001%/min. Steady-state creep rates follow a power law relationship when subject to deviatoric stress (R2 = 0.96). Through the integration of Burgers viscoelastic model with the effective stress principle for porous media, we propose an enhanced constitutive model, incorporating gas adsorption-induced dilatational stresses. This advancement provides a theoretical foundation for predicting time-dependent deformation in deep coal reservoirs and informs monitoring strategies concerning gas-bearing strata stability. This study contributes to the theoretical understanding and engineering monitoring of creep behavior in deep coal rocks. Full article
Show Figures

Figure 1

17 pages, 6127 KB  
Article
Road Performance and Modification Mechanism of Waste Polyethylene Terephthalate-Modified Asphalt
by Ruiduo Li, Menghao Wang, Dingbin Tan, Yuzhou Sun, Liqin Li, Yanzhao Yuan and Fengzhan Mu
Coatings 2025, 15(8), 902; https://doi.org/10.3390/coatings15080902 - 2 Aug 2025
Viewed by 505
Abstract
The incorporation of waste polyethylene terephthalate (PET) as a modifier for asphalt presents a promising approach to addressing the environmental pollution associated with waste plastics while simultaneously extending the service life of road surfaces. This study investigates the fundamental physical properties and rheological [...] Read more.
The incorporation of waste polyethylene terephthalate (PET) as a modifier for asphalt presents a promising approach to addressing the environmental pollution associated with waste plastics while simultaneously extending the service life of road surfaces. This study investigates the fundamental physical properties and rheological properties of asphalt modified with waste PET at both high and low temperatures. Utilizing the theory of fractional derivatives, performance evaluation indicators, such as the deformation factor and viscoelasticity factor, have been developed for the assessment of waste PET-modified asphalt. The underlying mechanism of this modification was examined through scanning electron microscopy and Fourier transform infrared spectroscopy. The results indicate that the addition of waste PET enhances the high-temperature stability of the base asphalt but reduces its resistance to cracking at low temperatures. The fractional derivative model effectively describes the dynamic shear rheological properties of waste PET-modified asphalt, achieving a maximum correlation coefficient of 0.99991. Considering the performance of modified asphalt at both high and low temperatures, the optimal concentration of waste PET was determined to be 6%. At this concentration, the minimum creep stiffness of the PET-modified asphalt was approximately 155 MPa at −6 °C. Additionally, the rutting factor of the waste PET-modified asphalt achieved a maximum value of 527.12 KPa at 52 °C. The interaction between waste PET and base asphalt was primarily physical, with mutual adsorption leading to the formation of a spatial network structure that enhanced the deformation resistance of the asphalt. This study provides a theoretical foundation and technical support for the engineering application of waste PET as a modifier in asphalt. Full article
Show Figures

Figure 1

28 pages, 6128 KB  
Article
Viscoelastic Creep of 3D-Printed Polyethylene Terephthalate Glycol Samples
by Leons Stankevics, Olga Bulderberga, Jevgenijs Sevcenko, Roberts Joffe and Andrey Aniskevich
Polymers 2025, 17(15), 2075; https://doi.org/10.3390/polym17152075 - 29 Jul 2025
Viewed by 1048
Abstract
This article explores the viscoelastic properties of polyethylene terephthalate glycol samples created by fused filament fabrication, emphasising the anisotropy introduced during fabrication. The samples were fabricated with filament direction within samples aligned along the principal axis or perpendicular. A group of samples was [...] Read more.
This article explores the viscoelastic properties of polyethylene terephthalate glycol samples created by fused filament fabrication, emphasising the anisotropy introduced during fabrication. The samples were fabricated with filament direction within samples aligned along the principal axis or perpendicular. A group of samples was loaded with constant stress for 5 h, and a recovery phase with no applied stress was observed. Another group of samples was loaded for 20 h without an additional deformation recovery phase. The continuous constant stress application results on the sample were analysed, and an overall effect of anisotropy on the samples was observed. Several models describing viscoelastic deformation were considered to adhere to experimental data, with the Prony series and general cubic theory models used in the final analysis. The models could describe experimental results up to 50% and 70% of sample strength, respectively. The analysis confirmed the nonlinear behaviour of printed samples under constant stress and the significant effect of anisotropy introduced by the 3D printing process on the material’s elastic properties. The viscoelastic properties in both directions were described using the same parameters. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

16 pages, 1993 KB  
Article
A Fractional Derivative Insight into Full-Stage Creep Behavior in Deep Coal
by Shuai Yang, Hongchen Song, Hongwei Zhou, Senlin Xie, Lei Zhang and Wentao Zhou
Fractal Fract. 2025, 9(7), 473; https://doi.org/10.3390/fractalfract9070473 - 21 Jul 2025
Cited by 1 | Viewed by 400
Abstract
The time-dependent creep behavior of coal is essential for assessing long-term structural stability and operational safety in deep coal mining. Therefore, this work develops a full-stage creep constitutive model. By integrating fractional calculus theory with statistical damage mechanics, a nonlinear fractional-order (FO) damage [...] Read more.
The time-dependent creep behavior of coal is essential for assessing long-term structural stability and operational safety in deep coal mining. Therefore, this work develops a full-stage creep constitutive model. By integrating fractional calculus theory with statistical damage mechanics, a nonlinear fractional-order (FO) damage creep model is constructed through serial connection of elastic, viscous, viscoelastic, and viscoelastic–plastic components. Based on this model, both one-dimensional and three-dimensional (3D) fractional creep damage constitutive equations are acquired. Model parameters are identified using experimental data from deep coal samples in the mining area. The result curves of the improved model coincide with experimental data points, accurately describing the deceleration creep stage (DCS), steady-state creep stage (SCS), and accelerated creep stage (ACS). Furthermore, a sensitivity analysis elucidates the impact of model parameters on coal creep behavior, thereby confirming the model’s robustness and applicability. Consequently, the proposed model offers a solid theoretical basis for evaluating the sustained stability of deep coal mining and has great application potential in deep underground engineering. Full article
Show Figures

Figure 1

22 pages, 2429 KB  
Article
Integrated Physical–Mechanical Characterization of Fruits for Enhancing Post-Harvest Quality and Handling Efficiency
by Mohamed Ghonimy, Raed Alayouni, Garsa Alshehry, Hassan Barakat and Mohamed M. Ibrahim
Foods 2025, 14(14), 2521; https://doi.org/10.3390/foods14142521 - 18 Jul 2025
Viewed by 766
Abstract
Quality and mechanical resilience are crucial for reducing losses in fruit production and for supporting food chains. Indeed, integrating empirical data with rheological models bridges gaps in fruit processing equipment design. Therefore, the objective of this research is to analyze the relationship between [...] Read more.
Quality and mechanical resilience are crucial for reducing losses in fruit production and for supporting food chains. Indeed, integrating empirical data with rheological models bridges gaps in fruit processing equipment design. Therefore, the objective of this research is to analyze the relationship between the mechanical and physical properties of seven economically important fruits—nectarine, kiwi, cherry, apple, peach, pear, and apricot—to assess their mechanical behavior and post-harvest quality. Standardized compression, creep, and puncture tests were conducted to establish mechanical parameters, such as rupture force, elasticity, and deformation energy. Physical characteristics including size, weight, density, and moisture content were also measured. The results indicated significant differences among the various categories of fruits; apples and pears were most suitable for mechanical harvesting and long storage periods, whereas cherries and apricots were least resistant and susceptible to injury. Correlations were high among the physical measurements, tissue firmness, and viscoelastic properties, thereby confirming structural properties’ contribution in influencing fruit quality and handling efficiency. The originality of this research is in its holistic examination of physical and mechanical properties under standardized testing conditions, thus offering an integrated framework for enhancing post-harvest operations. These findings offer practical insights for optimizing harvesting, packaging, transportation, and quality monitoring strategies based on fruit-specific mechanical profiles. Full article
Show Figures

Figure 1

23 pages, 3933 KB  
Article
Evaluations on the Properties of Polymer and Nanomaterials Modified Bitumen Under Different Aging Conditions
by Shaban Ismael Albrka Ali, Khalifa Salem Gallouz, Ikenna D. Uwanuakwa, Mustafa Alas and Mohd Rosli Mohd Hasan
Nanomaterials 2025, 15(14), 1071; https://doi.org/10.3390/nano15141071 - 10 Jul 2025
Viewed by 458
Abstract
This research evaluates the rheological and mechanical properties of polymer- and nanomaterials-modified bitumen by incorporating nanosilica (NSA), nanoclay (NCY), and Acrylonitrile Styrene Acrylate (ASA) at 5% by weight of the bitumen. The samples were prepared at 165 °C for one hour to obtain [...] Read more.
This research evaluates the rheological and mechanical properties of polymer- and nanomaterials-modified bitumen by incorporating nanosilica (NSA), nanoclay (NCY), and Acrylonitrile Styrene Acrylate (ASA) at 5% by weight of the bitumen. The samples were prepared at 165 °C for one hour to obtain homogeneous blends. All samples were subjected to short- and long-term aging to simulate the effects of different operating conditions. The research conducted a series of tests, including consistency, frequency sweep, and multiple creep stress and recovery (MSCR) using the dynamic shear rheometer (DSR) and bending beam rheometer (BBR). The results showed that all modified bitumen outperformed the neat bitumen. The frequency sweep showed a higher complex modulus (G*) and lower phase angle (δ), indicating enhanced viscoelastic properties and, thus, higher resistance to permanent deformation. The BBR test revealed that the bitumen modified with NCY5% has a creep stiffness of 47.13 MPa, a 51.5% improvement compared to the neat bitumen, while the NSA5% has the highest m-value, a 28.5% enhancement compared with the neat bitumen. The MSCR showed that the modified blends have better recovery properties and, therefore, better resistance to permanent deformation under repeated loadings. The aging index demonstrated that the modified bitumen is less vulnerable to aging and maintains their good flexibility and resistance to permanent deformations. Finally, these results showed that adding 5% polymer and nanomaterials improved the bitumen’s’ performance before and after aging by reducing permanent deformation and enhancing crack resistance at low temperatures, thus extending the pavement service life and making them an effective alternative for improving pavement performance in various climatic conditions and under high traffic loads. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

Back to TopTop