Advanced Research on Concrete Materials in Construction

A special issue of Buildings (ISSN 2075-5309). This special issue belongs to the section "Building Materials, and Repair & Renovation".

Deadline for manuscript submissions: 30 September 2025 | Viewed by 2435

Special Issue Editors


E-Mail Website
Guest Editor
Department of Engineering & Construction, University of East London, London E16 2RD, UK
Interests: cementitious materials; geopolymer; low carbon concrete; fire resistance; microstructural characterization; fiber reinforced composites; multiscale modelling

E-Mail
Guest Editor
Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
Interests: geopolymers; alkali activated materials; functional building materials; corrosion resistance; superhydrophobic materials; organic-inorganic hybrids; sulphate aluminum cement; arine concrete

Special Issue Information

Dear Colleagues,

Concrete remains the most widely used construction material, yet its environmental impact and challenges related to its performance necessitate continuous innovation. Further research on concrete materials is essential in order to achieve sustainability, durability, and resilience in modern infrastructure. The development of low-carbon alternatives, optimized mix designs, and enhanced recycling techniques plays an essential role in reducing carbon emissions and resource depletion. Additionally, understanding reaction mechanisms and microstructural evolution is key to improving concrete’s long-term performance.

The main aim of this Special Issue is to explore the latest advancements in cementitious materials regarding both experimental and modeling research. The scope of this Special Issue includes, but is not limited to, the following topics:

  • Low-carbon and eco-friendly concrete;
  • The recycling and reuse of construction materials;
  • Sustainable mix design strategies;
  • Cement hydration and reaction mechanisms;
  • Microstructural characterization and performance analysis;
  • The durability and long-term behavior of concrete.

We invite researchers and practitioners to contribute their insights and findings to this Special Issue in order to develop the next generation of sustainable cementitious materials.

Dr. Wenlin Tu
Dr. Shengqian Ruan
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Buildings is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • low-carbon materials
  • recycling
  • sustainability
  • mix design
  • mechanical performance
  • microstructure

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

23 pages, 14404 KB  
Article
Early-Age Properties and Reaction of Hydrophobic Portland Cement and Alkali-Activated Fly Ash–Slag Pastes with Alkyl Silanes
by Rongfeng Gao, Jiaxi Mao, Shengqian Ruan, Wenlin Tu, Yansong Wang and Dongming Yan
Buildings 2025, 15(16), 2966; https://doi.org/10.3390/buildings15162966 - 21 Aug 2025
Viewed by 411
Abstract
Cementitious materials are susceptible to water ingress due to their hydrophilicity and porous microstructure, which can cause premature destruction and compromise long-term durability. Integral hydrophobic modification using alkyl silanes is an effective strategy for enhancing water resistance, while the influence of different silanes [...] Read more.
Cementitious materials are susceptible to water ingress due to their hydrophilicity and porous microstructure, which can cause premature destruction and compromise long-term durability. Integral hydrophobic modification using alkyl silanes is an effective strategy for enhancing water resistance, while the influence of different silanes on early-age properties (within the first 7 d) of various binder systems remains unclear. This study investigates the rheology, flowability, setting behavior, reaction kinetics, compressive strength, and hydrophobicity of ordinary Portland cement (OPC) and alkali-activated fly ash–slag (AAFS) pastes incorporating alkyl silanes of varying alkyl chain lengths, i.e., methyl-(C1TMS), butyl-(C4TMS), octyl-(C8TMS), and dodecyl-trimethoxysilane (C12TMS). In OPC, C1TMS reduced yield stress and plastic viscosity by 33.6% and 21.0%, respectively, and improved flowability by 27.6%, whereas C4TMS, C8TMS, and C12TMS showed the opposite effects. In contrast, the effect of alkyl silanes on rheology and flowability of AAFS was less pronounced. Silanes delayed setting of OPC and AAFS by 5.6–164.4%, with shorter alkyl chains causing greater retardation. C1TMS and C4TMS inhibited early-age heat release and decreased the 1-day compressive strength by 14.8–35.7% in OPC and 82.0–84.5% in AAFS, whereas longer-chain silanes had comparatively minor effects. The hydrophobic performance in both binder systems was strongly correlated with alkyl chain length. C8TMS exhibited the best hydrophobicity in OPC, achieving a water contact angle of 145° and a 75.7% reduction in water sorptivity, while C4TMS demonstrated the highest hydrophobicity in AAFS. This study provides fundamental guidance for the rational selection of alkyl silanes in OPC and AAFS systems, offering insights into the design of multifunctional water-resistant cementitious composites for marine structures, building facades, and other applications with waterproofing requirements. Full article
(This article belongs to the Special Issue Advanced Research on Concrete Materials in Construction)
Show Figures

Figure 1

22 pages, 3665 KB  
Article
Comparative Study of Linear and Non-Linear ML Algorithms for Cement Mortar Strength Estimation
by Sebghatullah Jueyendah, Zeynep Yaman, Turgay Dere and Türker Fedai Çavuş
Buildings 2025, 15(16), 2932; https://doi.org/10.3390/buildings15162932 - 19 Aug 2025
Viewed by 318
Abstract
The compressive strength (Fc) of cement mortar (CM) is a key parameter in ensuring the mechanical reliability and durability of cement-based materials. Traditional testing methods are labor-intensive, time-consuming, and often lack predictive flexibility. With the increasing adoption of machine learning (ML) in civil [...] Read more.
The compressive strength (Fc) of cement mortar (CM) is a key parameter in ensuring the mechanical reliability and durability of cement-based materials. Traditional testing methods are labor-intensive, time-consuming, and often lack predictive flexibility. With the increasing adoption of machine learning (ML) in civil engineering, data-driven approaches offer a rapid, cost-effective alternative for forecasting material properties. This study investigates a wide range of supervised linear and nonlinear ML regression models to predict the Fc of CM. The evaluated models include linear regression, ridge regression, lasso regression, decision trees, random forests, gradient boosting, k-nearest neighbors (KNN), and twelve neural network (NN) architectures, developed by combining different optimizers (L-BFGS, Adam, and SGD) with activation functions (tanh, relu, logistic, and identity). Model performance was assessed using the root mean squared error (RMSE), coefficient of determination (R2), and mean absolute error (MAE). Among all models, NN_tanh_lbfgs achieved the best results, with an almost perfect fit in training (R2 = 0.9999, RMSE = 0.0083, MAE = 0.0063) and excellent generalization in testing (R2 = 0.9946, RMSE = 1.5032, MAE = 1.2545). NN_logistic_lbfgs, gradient boosting, and NN_relu_lbfgs also exhibited high predictive accuracy and robustness. The SHAP analysis revealed that curing age and nano silica/cement ratio (NS/C) positively influence Fc, while porosity has the strongest negative impact. The main novelty of this study lies in the systematic tuning of neural networks via distinct optimizer–activation combinations, and the integration of SHAP for interpretability—bridging the gap between predictive performance and explainability in cementitious materials research. These results confirm the NN_tanh_lbfgs as a highly reliable model for estimating Fc in CM, offering a robust, interpretable, and scalable solution for data-driven strength prediction. Full article
(This article belongs to the Special Issue Advanced Research on Concrete Materials in Construction)
Show Figures

Figure 1

14 pages, 5327 KB  
Article
Discrete Modeling of Aging Creep in Concrete
by Lifu Yang and Madura Pathirage
Buildings 2025, 15(16), 2841; https://doi.org/10.3390/buildings15162841 - 11 Aug 2025
Viewed by 206
Abstract
Understanding concrete creep aging is essential for ensuring structural safety and long-term durability, while the lack of robust numerical models limits the ability to thoroughly investigate and accurately predict time-dependent deformation and cracking behaviors. This study proposes a numerical framework integrating a discrete [...] Read more.
Understanding concrete creep aging is essential for ensuring structural safety and long-term durability, while the lack of robust numerical models limits the ability to thoroughly investigate and accurately predict time-dependent deformation and cracking behaviors. This study proposes a numerical framework integrating a discrete model and the microprestress solidification (MPS) theory to describe the aging creep and quasi-static performance of concrete at early-age and beyond. Hydration kinetics were formulated into constitutive equations to consider the time-dependent evolution of elastic modulus, strength, and fracture properties. Derived from the MPS theory, a unified creep model is developed within the equivalent rheological framework based on strain additivity. This formulation accounts for both visco-elastic and purely viscous creep phases while coupling environmental humidity effects with aging through the hydration degree. The proposed model is validated against experimental datasets encompassing diverse curing conditions, loading histories, and environmental exposures. The simulation results demonstrate that extended curing age enhances concrete strength (compression and fracture), while increased curing temperature has minimal impact due to the competing effects of microstructural refinement and thermal microcracking; both drying-induced transient creep and thermally induced microcracking contribute to increased creep deformation, driven by changes in microprestress resulting from variations in the chemical potential of nanopore water. The proposed numerical model can provide an effective tool to design and predict the long-term performance of concrete under various environmental conditions. Full article
(This article belongs to the Special Issue Advanced Research on Concrete Materials in Construction)
Show Figures

Figure 1

27 pages, 28656 KB  
Article
Experimental Study and FEM Analysis on the Strengthening of Masonry Brick Walls Using Expanded Steel Plates and Shotcrete with and Without Glass Fiber Reinforcement
by Zeynep Yaman, Alper Cumhur, Elif Ağcakoca, Muhammet Zeki Özyurt, Muhammed Maraşlı, Mohammad Saber Sadid, Abdulsalam Akrami and Azizullah Rasuly
Buildings 2025, 15(15), 2781; https://doi.org/10.3390/buildings15152781 - 6 Aug 2025
Viewed by 632
Abstract
In this study, an effective strengthening method was investigated to improve the seismic performance of masonry brick walls. The strengthening method comprised the use of shotcrete, which was applied in both glass fiber-reinforced and unreinforced forms for steel plates and tie rods. Thirteen [...] Read more.
In this study, an effective strengthening method was investigated to improve the seismic performance of masonry brick walls. The strengthening method comprised the use of shotcrete, which was applied in both glass fiber-reinforced and unreinforced forms for steel plates and tie rods. Thirteen wall specimens constructed with vertical perforated masonry block bricks were tested under diagonal compression in accordance with ASTM E519 (2010). Reinforcement plates with different thicknesses (1.5 mm, 2 mm, and 3 mm) were anchored using 6 mm diameter tie rods. A specially designed steel frame and an experimental loading program with controlled deformation increments were employed to simulate the effects of reinforced concrete beam frame system on walls under the effect of diagonal loads caused by seismic loads. In addition, numerical simulations were conducted using three-dimensional finite element models in Abaqus Explicit software to validate the experimental results. The findings demonstrated that increasing the number of tie rods enhanced the shear strength and overall behavior of the walls. Steel plates effectively absorbed tensile stresses and limited crack propagation, while the fiber reinforcement in the shotcrete further improved wall strength and ductility. Overall, the proposed strengthening techniques provided significant improvements in the seismic resistance and energy absorption capacity of masonry walls, offering practical and reliable solutions to enhance the safety and durability of existing masonry structures. Full article
(This article belongs to the Special Issue Advanced Research on Concrete Materials in Construction)
Show Figures

Figure 1

27 pages, 12274 KB  
Article
Mechanical Properties and Microstructure Damage of Limestone Concrete Under Triaxial Stress
by Kaide Liu, Songxin Zhao, Dingbo Wang, Wenping Yue, Chaowei Sun, Yu Xia and Qiyu Wang
Buildings 2025, 15(11), 1924; https://doi.org/10.3390/buildings15111924 - 2 Jun 2025
Cited by 1 | Viewed by 504
Abstract
This study takes limestone crushed stone concrete as the research object and systematically investigates its mechanical property changes and microstructural damage characteristics under different confining pressures using triaxial compression tests, scanning electron microscope (SEM) tests, and digital image processing techniques. The results show [...] Read more.
This study takes limestone crushed stone concrete as the research object and systematically investigates its mechanical property changes and microstructural damage characteristics under different confining pressures using triaxial compression tests, scanning electron microscope (SEM) tests, and digital image processing techniques. The results show that, in terms of macro-mechanical properties, as the confining pressure increases, the peak strength increases by 192.66%, the axial peak strain increases by 143.66%, the elastic modulus increases by 133.98%, and the ductility coefficient increases by 54.61%. In terms of microstructure, the porosity decreases by 64.35%, the maximum pore diameter decreases by 75.69%, the fractal dimension decreases by 19.56%, and the interfacial transition zone cracks gradually extend into the aggregate interior. The optimization of the microstructure makes the concrete more compact, reduces stress concentration, and thereby enhances the macro-mechanical properties. Additionally, the failure characteristics of the specimens shift from diagonal shear failure to compressive flow failure. According to the Mohr–Coulomb strength criterion, the calculated cohesion is 6.96 MPa, the internal friction angle is 38.89°, and the breakage angle is 25.53°. A regression analysis established a quantitative relationship between microstructural characteristics and macro-mechanical properties, revealing the significant impact of microstructural characteristics on macro-mechanical properties. Under low confining pressure, early volumetric expansion and rapid volumetric strain occur, with microcracks mainly concentrated at the aggregate interface that are relatively wide. Under high confining pressure, volumetric expansion is delayed, volumetric strain increases slowly, and microcracks extend into the interior of the aggregate, becoming finer and more dispersed. Full article
(This article belongs to the Special Issue Advanced Research on Concrete Materials in Construction)
Show Figures

Figure 1

Back to TopTop