Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (352)

Search Parameters:
Keywords = voltage-gated sodium channels

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1966 KB  
Article
Modification of Closed-State Inactivation in Voltage-Gated Sodium Channel Nav1.7 by Two Novel Arachnid Toxins
by John W. Johnson, Hillary G. Rikli and Stephen R. Johnson
Toxins 2025, 17(9), 432; https://doi.org/10.3390/toxins17090432 - 29 Aug 2025
Viewed by 146
Abstract
Venomous invertebrates have provided a large diversity of toxins that selectively and potently modulate ion channels that are indispensable tools for elucidating the structure and underlying mechanisms of these channels. Voltage-gated sodium channels (VGSC) are responsible for the initiation and propagation of action [...] Read more.
Venomous invertebrates have provided a large diversity of toxins that selectively and potently modulate ion channels that are indispensable tools for elucidating the structure and underlying mechanisms of these channels. Voltage-gated sodium channels (VGSC) are responsible for the initiation and propagation of action potentials in excitable cells and represent an important target for a variety of diseases. The Nav1.7 isoform, located in the peripheral nervous system, is central to pain signaling and is under intense investigation as a target for the treatment of pain. Closed-state inactivation (CSI) has been implicated in various disease states, such as arrhythmias and neuropathic pain. The investigation of venom toxins and VGSC CSI is poorly understood. However, many scorpion and spider toxins bind to site 3, characterized by a delay in steady-state inactivation, and interact with domain IV of the channel alpha subunit. In this study, two novel toxins were isolated from the venoms of Heteroctenus junceus and Poecilotheria regalis that demonstrated similar activity to site 3 modulators. Both toxins were shown to inhibit CSI while enhancing the rate at which CSI can occur. Taken together, this study demonstrates the need for additional investigation in CSI as well as the ability for toxins to modulate this phenomenon. Full article
(This article belongs to the Section Animal Venoms)
Show Figures

Figure 1

23 pages, 606 KB  
Review
Possible Anti-Pain Vaccines: A Narrative Review of Emerging Strategies and Clinical Prospects
by Yuri Chaves Martins, Luciana Pereira De-Sousa, Peyton J. Murin, Hamed Sadeghipour and Cláudio Tadeu Daniel-Ribeiro
Vaccines 2025, 13(9), 909; https://doi.org/10.3390/vaccines13090909 - 27 Aug 2025
Viewed by 199
Abstract
Chronic pain affects millions of individuals globally and continues to pose a major burden on patients and healthcare systems. Traditional analgesics, such as opioids and nonsteroidal anti-inflammatory drugs, often provide only partial relief and are frequently associated with significant side effects and risks [...] Read more.
Chronic pain affects millions of individuals globally and continues to pose a major burden on patients and healthcare systems. Traditional analgesics, such as opioids and nonsteroidal anti-inflammatory drugs, often provide only partial relief and are frequently associated with significant side effects and risks of misuse. In recent years, vaccines that target molecules involved in pain signaling have emerged as an innovative therapeutic strategy. These vaccines aim to induce long-lasting immune responses against key mediators of nociception, including nerve growth factor (NGF), calcitonin gene-related peptide (CGRP), substance P, and voltage-gated sodium channels such as Nav1.7. By promoting the production of specific antibodies, anti-pain vaccines have the potential to achieve analgesic effects with longer duration, reduced need for frequent administration, and improved accessibility. Multiple vaccine platforms are under investigation, including virus-like particles, peptide-protein conjugates, and nucleic acid technologies. Although preclinical studies have shown promising efficacy and safety profiles, clinical evidence is still limited to early-stage trials, particularly for migraine. This narrative review summarizes current knowledge on therapeutic vaccines for pain, discusses the immunological and technological advances in the field, and outlines future directions. Full article
(This article belongs to the Section Vaccines, Clinical Advancement, and Associated Immunology)
Show Figures

Figure 1

25 pages, 1295 KB  
Review
Voltage-Gated Sodium Channel Dysfunction in Epilepsy: Zebrafish Models for Therapeutics
by Angela Gyamfi, Priyadharshini Manikandan, William A. Cisneros, Theodore R. Cummins and James A. Marrs
Biomedicines 2025, 13(9), 2078; https://doi.org/10.3390/biomedicines13092078 - 26 Aug 2025
Viewed by 385
Abstract
Voltage-gated sodium channels (VGSCs) play pivotal roles in cellular function, particularly in the regulation of electrical signaling. Structural defects in these channels cause deleterious effects in a myriad of cell types, leading to various diseases, like epilepsy, cardiac arrythmias, kidney disease, and certain [...] Read more.
Voltage-gated sodium channels (VGSCs) play pivotal roles in cellular function, particularly in the regulation of electrical signaling. Structural defects in these channels cause deleterious effects in a myriad of cell types, leading to various diseases, like epilepsy, cardiac arrythmias, kidney disease, and certain cancers. Over the past decade, significant efforts have been geared toward developing drugs that target the pore domains of these channels, called pore-blocking agents. This approach has seen several setbacks, commonly due to the lack of isoform-specific binding. Alternative targeting strategies are being used to reduce or eliminate the side effects of pore-blocking agents. Transgenic mouse models have proven useful in such studies, and subtype-selective inhibitors were developed. The zebrafish model system was also used to explore neurological, cardiovascular, and metabolic diseases caused by voltage-gated sodium channel dysfunction. Here, we delve into the growing literature on the structure and function of voltage-gated sodium channels, their role in epilepsy and its comorbidities, and the advancement in the use of zebrafish as a model system to explore these channels as therapeutic targets. Full article
(This article belongs to the Special Issue Zebrafish Models for Development and Disease—5th Edition)
Show Figures

Graphical abstract

19 pages, 2846 KB  
Article
Synovial Fluid Biomarker Profile After Intra-Articular Administration of Neosaxitoxin in Horses: A Feasibility Study
by Cristóbal Dörner, Néstor Lagos, Lissette Oyaneder, Bruno C. Menarim and Galia Ramírez-Toloza
Animals 2025, 15(16), 2453; https://doi.org/10.3390/ani15162453 - 21 Aug 2025
Viewed by 361
Abstract
Osteoarthritis (OA) is an inflammatory joint disease and the leading cause of musculoskeletal disability affecting human and veterinary patients. New therapeutics halting inflammation while preserving joint homeostasis remain a critical need. Voltage-gated sodium (NaV) channels regulate the pro-inflammatory response of macrophages in the [...] Read more.
Osteoarthritis (OA) is an inflammatory joint disease and the leading cause of musculoskeletal disability affecting human and veterinary patients. New therapeutics halting inflammation while preserving joint homeostasis remain a critical need. Voltage-gated sodium (NaV) channels regulate the pro-inflammatory response of macrophages in the synovium, the central driver of joint homeostasis. Neosaxitoxin (NeoSTX) is a phycotoxin that blocks NaV channels, conferring a unique potential to regulate joint inflammation. This study evaluated the safety of intra-articular administration of NeoSTX in horses. Sixteen horses were allocated into two groups (n = 8/each). One group received one intraarticular dose (20 µg/2 mL of saline) of NeoSTX into one tarsocrural joint, while the control group received 2 mL of saline (0.9% NaCl). No differences were observed between groups for systemic or local signs of inflammation, including objective measures of surface temperature and joint effusion. Concentrations of synovial fluid total nucleated and differential cell counts, total protein, glucose, calcium, and 23 cytokines/chemokines measured throughout this study did not differ between treatment groups. In this short-term study, intra-articular NeoSTX injection was shown to be well tolerated and likely safe. Ongoing studies should elucidate the role of NeoSTX in modulating synovial mechanisms of inflammation and its endogenous resolution. Full article
(This article belongs to the Section Equids)
Show Figures

Figure 1

45 pages, 1602 KB  
Review
Mechanisms and Genetic Drivers of Resistance of Insect Pests to Insecticides and Approaches to Its Control
by Yahya Al Naggar, Nedal M. Fahmy, Abeer M. Alkhaibari, Rasha K. Al-Akeel, Hend M. Alharbi, Amr Mohamed, Ioannis Eleftherianos, Hesham R. El-Seedi, John P. Giesy and Hattan A. Alharbi
Toxics 2025, 13(8), 681; https://doi.org/10.3390/toxics13080681 - 16 Aug 2025
Viewed by 986
Abstract
The escalating challenge of resistance to insecticides among agricultural and public health pests poses a significant threat to global food security and vector-borne disease control. This review synthesizes current understanding of the molecular mechanisms underpinning resistance, including well-characterized pathways such as target-site mutations [...] Read more.
The escalating challenge of resistance to insecticides among agricultural and public health pests poses a significant threat to global food security and vector-borne disease control. This review synthesizes current understanding of the molecular mechanisms underpinning resistance, including well-characterized pathways such as target-site mutations affecting nicotinic acetylcholine receptors (nAChRs), acetylcholinesterase (AChE), voltage-gated sodium channels (VGSCs), and γ-aminobutyric acid (GABA) receptors, and metabolic detoxification mediated by cytochrome P450 monooxygenases (CYPs), esterases, and glutathione S-transferases (GSTs). Emerging resistance mechanisms are also explored, including protein sequestration by odorant-binding proteins and post-transcriptional regulation via non-coding RNAs, such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Focused case studies on Aedes aegypti and Spodoptera frugiperda illustrate the complex interplay of genetic and biochemical adaptations driving resistance. In Ae. aegypti, voltage-gated sodium channel (VGSCs) mutations (V410L, V1016I, F1534C) combined with metabolic enzyme amplification confer resistance to pyrethroids, accompanied by notable fitness costs and ecological impacts on vector populations. In S. frugiperda, multiple resistance mechanisms, including overexpression of cytochrome P450 genes (e.g., CYP6AE43, CYP321A8), target-site mutations in ryanodine receptors (e.g., I4790K), and behavioral avoidance, have rapidly evolved across global populations, undermining the efficacy of diamide, organophosphate, and pyrethroid insecticides. The review further evaluates integrated pest management (IPM) strategies, emphasizing the role of biopesticides, biological control agents, including entomopathogenic fungi and parasitoids, and molecular diagnostics for resistance management. Taken together, this analysis underscores the urgent need for continuous molecular surveillance, the development of resistance-breaking technologies, and the implementation of sustainable, multifaceted interventions to safeguard the long-term efficacy of insecticides in both agricultural and public health contexts. Full article
(This article belongs to the Special Issue Impacts of Agrochemicals on Insects and Soil Organisms)
Show Figures

Graphical abstract

20 pages, 930 KB  
Review
Neurochemical Aspects of the Role of Thirst in Body Fluid Homeostasis and Their Significance in Health and Disease: A Literature Review
by Ewa Szczepanska-Sadowska
Int. J. Mol. Sci. 2025, 26(16), 7850; https://doi.org/10.3390/ijms26167850 - 14 Aug 2025
Viewed by 474
Abstract
Thirst is usually characterized as an unpleasant sensation provoking drinking of water. The purpose of the present review is to draw attention to the importance of thirst in overall regulation of body fluid homeostasis in health and pathology. Intensity of thirst is determined [...] Read more.
Thirst is usually characterized as an unpleasant sensation provoking drinking of water. The purpose of the present review is to draw attention to the importance of thirst in overall regulation of body fluid homeostasis in health and pathology. Intensity of thirst is determined by signals generated in multiple groups of osmosensitive neurons engaged in dipsogenic and antidipsogenic activities, which are located in the brain cortex, the insula, the amygdala, the median preoptic area, the hypothalamic nuclei and the organum vasculosum laminae terminalis. Water ingestion is also influenced by signals generated in the cardiovascular system, the gastrointestinal system, the pancreas, the liver and the kidney and by changes of body temperature. Regulation of thirst engages the autonomic nervous system and several neuroactive factors synthetized in the brain and the peripheral organs. Among them are components of the renin–angiotensin system, vasopressin, atrial natriuretic peptide, cholecystokinin, ghrelin, gaseous transmitters, cytokines and prostaglandins. Experimental studies provide evidence that elevation of fluid osmolality, which is the most frequent cause of thirst, influences function of the voltage-gated sodium channel and calcium-dependent kinase II subunit alpha. Regulation of thirst may be inappropriate in old age and under some pathological conditions including infections, heart failure, diabetes insipidus, diabetes mellitus, and psychogenic disorders. The molecular background of the abnormal regulation of thirst in the clinical disorders is not yet sufficiently recognized and requires further examination. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

14 pages, 1911 KB  
Article
Targeting Voltage-Gated Potassium Channels in Breast Cancer: Mechanistic Insights into 4-Aminopyridine-Induced Cell Death
by Esra Münire Cüce-Aydoğmuş, Pınar İyiol and Günseli Ayşe İnhan-Garip
Int. J. Mol. Sci. 2025, 26(16), 7768; https://doi.org/10.3390/ijms26167768 - 12 Aug 2025
Viewed by 350
Abstract
Cancer has recently been proposed as a type of channelopathy due to the aberrant expression of various ion channels. Voltage-gated potassium (K+) channels (VGKCs) are notably upregulated during tumor proliferation, while voltage-gated sodium (Na+) channels are predominantly associated with [...] Read more.
Cancer has recently been proposed as a type of channelopathy due to the aberrant expression of various ion channels. Voltage-gated potassium (K+) channels (VGKCs) are notably upregulated during tumor proliferation, while voltage-gated sodium (Na+) channels are predominantly associated with the invasive stage of cancer progression. Among these, the Kv10.1 channel has been found to be overexpressed in breast cancer, making it a promising therapeutic target. 4-Aminopyridine (4-AP), a non-selective voltage-gated potassium channel blocker, has emerged as a potential novel agent for breast cancer treatment. In this study, we aimed to elucidate the mechanism of action of 4-aminopyridine in breast cancer cells. To investigate the involvement of various cell death pathways, cycloheximide (CHX) (a paraptosis inhibitor), Z-VAD-FMK (a pan-caspase inhibitor), and 2-Aminoethoxydiphenyl borate (2-APB) (a phosphoinositide 3-kinase [PI3K] inhibitor) were employed. Experiments were conducted using the MCF-7 human breast cancer cell line and the L929 mouse fibroblast cell line as a healthy control. Assessments included cell viability assays, intracellular calcium (Ca2+) and K+ concentration measurements, and plasma membrane potential analysis. Our findings aim to contribute to the understanding of the therapeutic potential and cellular effects of VGKC blockers, particularly 4-aminopyridine, in breast cancer treatment strategies. Full article
(This article belongs to the Special Issue Molecular Mechanisms and New Therapies for Breast Cancer: 2nd Edition)
Show Figures

Figure 1

20 pages, 2793 KB  
Article
Modulation of Voltage-Gated Sodium Channels from Sensory Neurons by Isoeugenol
by David Ghim, Jehan Dib, Luiz Moreira-Junior and Joao Carvalho-de-Souza
Int. J. Mol. Sci. 2025, 26(16), 7734; https://doi.org/10.3390/ijms26167734 - 10 Aug 2025
Viewed by 343
Abstract
Isoeugenol is a phenylpropanoid that is commonly found in essential oils and has been commonly used as a flavoring agent in the culinary field and an anesthetic in fish. Yet despite its similarity to well-known eugenol, there is a lack of data regarding [...] Read more.
Isoeugenol is a phenylpropanoid that is commonly found in essential oils and has been commonly used as a flavoring agent in the culinary field and an anesthetic in fish. Yet despite its similarity to well-known eugenol, there is a lack of data regarding how isoeugenol would directly modulate neuronal excitability to interfere with pain signaling. Here, we studied the effects of isoeugenol on voltage-activated Na+ currents (INa) as a means of starting to close the gap regarding the inhibitory properties of isoeugenol on neuronal excitability. We used rat dorsal root ganglia neurons under whole cell voltage clamp for the isolation of INa.. We show that isoeugenol effectively inhibits INa fully, reversibly, and in a dose-dependent manner. Our detailed analysis also indicates the direct interaction of isoeugenol with voltage-gated Na+ channels (VGSC) is likely state-dependent, as the inhibitory activity is enhanced by membrane depolarization. This effect is beneficial for pain management, as the drug would act more effectively as neuronal activity is promoted by membrane depolarization. Our data indicates a direct inhibition of VGSC by isoeugenol might constitute the main mechanism whereby this phenylpropanoid produces analgesia. This study serves as a basis for future approaches to deeply investigate the therapeutic potential of this drug or its derivatives. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Voltage-Gating and Modulation in Ion Channels)
Show Figures

Figure 1

24 pages, 1538 KB  
Review
H+ and Confined Water in Gating in Many Voltage-Gated Potassium Channels: Ion/Water/Counterion/Protein Networks and Protons Added to Gate the Channel
by Alisher M. Kariev and Michael E. Green
Int. J. Mol. Sci. 2025, 26(15), 7325; https://doi.org/10.3390/ijms26157325 - 29 Jul 2025
Viewed by 449
Abstract
The mechanism by which voltage-gated ion channels open and close has been the subject of intensive investigation for decades. For a large class of potassium channels and related sodium channels, the consensus has been that the gating current preceding the main ionic current [...] Read more.
The mechanism by which voltage-gated ion channels open and close has been the subject of intensive investigation for decades. For a large class of potassium channels and related sodium channels, the consensus has been that the gating current preceding the main ionic current is a large movement of positively charged segments of protein from voltage-sensing domains that are mechanically connected to the gate through linker sections of the protein, thus opening and closing the gate. We have pointed out that this mechanism is based on evidence that has alternate interpretations in which protons move. Very little literature considers the role of water and protons in gating, although water must be present, and there is evidence that protons can move in related channels. It is known that water has properties in confined spaces and at the surface of proteins different from those in bulk water. In addition, there is the possibility of quantum properties that are associated with mobile protons and the hydrogen bonds that must be present in the pore; these are likely to be of major importance in gating. In this review, we consider the evidence that indicates a central role for water and the mobility of protons, as well as alternate ways to interpret the evidence of the standard model in which a segment of protein moves. We discuss evidence that includes the importance of quantum effects and hydrogen bonding in confined spaces. K+ must be partially dehydrated as it passes the gate, and a possible mechanism for this is considered; added protons could prevent this mechanism from operating, thus closing the channel. The implications of certain mutations have been unclear, and we offer consistent interpretations for some that are of particular interest. Evidence for proton transport in response to voltage change includes a similarity in sequence to the Hv1 channel; this appears to be conserved in a number of K+ channels. We also consider evidence for a switch in -OH side chain orientation in certain key serines and threonines. Full article
Show Figures

Graphical abstract

20 pages, 2271 KB  
Article
Single and Combined Effects of Meropenem, Valproic Acid, and Ketoprofen on Adult Zebrafish Behavior, Oxidative Stress, and Acetylcholinesterase Activity
by Ionut-Alexandru Chelaru, Roxana Strungaru-Jijie, Mircea Nicoara, Diana Mirila, Alin Ciobica and Dorel Ureche
Pharmaceuticals 2025, 18(8), 1096; https://doi.org/10.3390/ph18081096 - 24 Jul 2025
Viewed by 415
Abstract
Background: Pharmaceutical compounds frequently co-occur in environmental waters, but studies on their combined effects on animals and humans remain limited. The present study investigated the individual and combined short-term effects of ketoprofen (Kp, a nonsteroidal anti-inflammatory drug inhibiting cyclooxygenase-2), valproic acid (VPA, [...] Read more.
Background: Pharmaceutical compounds frequently co-occur in environmental waters, but studies on their combined effects on animals and humans remain limited. The present study investigated the individual and combined short-term effects of ketoprofen (Kp, a nonsteroidal anti-inflammatory drug inhibiting cyclooxygenase-2), valproic acid (VPA, an anticonvulsant acting as a voltage-gated sodium channel modulator), and meropenem (Mp, a β-lactam antibiotic) at environmentally relevant concentrations on zebrafish behavior, acetylcholinesterase (AChE) activity, and oxidative status. Methods: Adult zebrafish were exposed for 4 days to Kp, VPA, Mp, and their binary and ternary mixtures. Behavioral effects were assessed using 3D novel tank and social behavior tests, while the oxidative stress response was assessed through malondialdehyde (MDA) content, superoxide dismutase (SOD), and glutathione peroxidase (GPx) activities. Results: Zebrafish exposed to Mp showed a notable increase in immobility, whereas those exposed to VPA and Mp + Kp exhibited a significant augmentation of average velocity and counter-clockwise rotations. All treated groups exhibited a notable increase in the time spent near the walls (thigmotaxis), and except for the control and Mp-exposed zebrafish, the other groups mostly stayed in the bottom tank zone (geotaxis). Kp, VPA + Kp, and VPA + Mp + Kp treatments impaired social behavior, with zebrafish displaying less interest in conspecifics. Biochemical analysis demonstrated that both the individual drugs and their combination caused oxidative stress, characterized by decreased GPx activity and increased SOD activity and MDA levels. Moreover, AChE activity was more strongly inhibited in zebrafish exposed to the binary and ternary mixtures than to individual drugs. Conclusions: The results indicate that acute exposure to individual and/or combined pharmaceuticals induces behavioral changes, oxidative damage, and AChE inhibition in zebrafish, highlighting the need to assess the effects of pharmaceutical mixtures for comprehensive ecosystem risks evaluation. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

26 pages, 1786 KB  
Review
Saxitoxin: A Comprehensive Review of Its History, Structure, Toxicology, Biosynthesis, Detection, and Preventive Implications
by Huiyun Deng, Xinrui Shang, Hu Zhu, Ning Huang, Lianghua Wang and Mingjuan Sun
Mar. Drugs 2025, 23(7), 277; https://doi.org/10.3390/md23070277 - 2 Jul 2025
Viewed by 2215
Abstract
Saxitoxin (STX) is a potent toxin produced by marine dinoflagellates and freshwater or brackish water cyanobacteria, and is a member of the paralytic shellfish toxins (PSTs). As a highly specific blocker of voltage-gated sodium channels (NaVs), STX blocks sodium ion influx, thereby inhibiting [...] Read more.
Saxitoxin (STX) is a potent toxin produced by marine dinoflagellates and freshwater or brackish water cyanobacteria, and is a member of the paralytic shellfish toxins (PSTs). As a highly specific blocker of voltage-gated sodium channels (NaVs), STX blocks sodium ion influx, thereby inhibiting nerve impulse transmission and leading to systemic physiological dysfunctions in the nervous, respiratory, cardiovascular, and digestive systems. Severe exposure can lead to paralysis, respiratory failure, and mortality. STX primarily enters the human body through the consumption of contaminated shellfish, posing a significant public health risk as the causative agent of paralytic shellfish poisoning (PSP). Beyond its acute toxicity, STX exerts cascading impacts on food safety, marine ecosystem integrity, and economic stability, particularly in regions affected by harmful algal blooms (HABs). Moreover, the complex molecular structure of STX—tricyclic skeleton and biguanide group—and its diverse analogs (more than 50 derivatives) have made it the focus of research on natural toxins. In this review, we traced the discovery history, chemical structure, molecular biosynthesis, biological enrichment mechanisms, and toxicological actions of STX. Moreover, we highlighted recent advancements in the potential for detection and treatment strategies of STX. By integrating multidisciplinary insights, this review aims to provide a holistic understanding of STX and to guide future research directions for its prevention, management, and potential applications. Full article
(This article belongs to the Special Issue Marine Biotoxins 3.0)
Show Figures

Figure 1

18 pages, 3098 KB  
Article
(-)-Epigallocatechin-3-Gallate Suppresses Hyperexcitability in Rat Primary Nociceptive Neurons Innervating Inflamed Tissues: A Comparison with Lidocaine
by Syogo Utugi, Yukito Sashide and Mamoru Takeda
Metabolites 2025, 15(7), 439; https://doi.org/10.3390/metabo15070439 - 1 Jul 2025
Viewed by 415
Abstract
Objective: Given the side effects and reduced efficacy of conventional local anesthetics in inflammatory conditions, there is a compelling need for complementary alternative medicine (CAM), particularly those based on phytochemicals. While a previous study showed that in vivo local injection of (-)-epigallocatechin-3-gallate (EGCG) [...] Read more.
Objective: Given the side effects and reduced efficacy of conventional local anesthetics in inflammatory conditions, there is a compelling need for complementary alternative medicine (CAM), particularly those based on phytochemicals. While a previous study showed that in vivo local injection of (-)-epigallocatechin-3-gallate (EGCG) into the peripheral receptive field suppresses the excitability of rat trigeminal ganglion (TG) neurons in the absence of inflammation, the acute effects of EGCG in vivo, especially on TG neurons under inflammatory conditions, are still unknown. We aimed to determine if acute local EGCG administration into inflamed tissue effectively attenuates the excitability of nociceptive TG neurons evoked by mechanical stimulation. Methods: The escape reflex threshold was measured to assess hyperalgesia caused by complete Freund’s adjuvant (CFA)-induced inflammation. To assess neuronal activity, extracellular single-unit recordings were performed on TG neurons in anesthetized CFA-inflamed rats in response to orofacial mechanical stimulation. Results: The mechanical escape threshold was significantly lower in CFA-inflamed rats compared to before CFA injection. EGCG (1–10 mM) reversibly and dose-dependently inhibited the mean firing frequency of TG neurons evoked by both non-noxious and noxious mechanical stimuli (p < 0.05). For comparison, 1% lidocaine (37 mM), a local anesthetic, also caused reversible inhibition of the mean firing frequency in inflamed TG neurons responding to mechanical stimuli. Importantly, 10 mM EGCG produced a significantly greater magnitude of inhibition on TG neuronal discharge frequency than 1% lidocaine (noxious, lidocaine vs. EGCG, 19.7 ± 3.3% vs. 42.3 ± 3.4%, p < 0.05). Conclusions: Local injection of EGCG into inflamed tissue effectively suppresses the excitability of nociceptive primary sensory TG neurons, as indicated by these findings. Significantly, locally administered EGCG exerted a more potent local analgesic action compared to conventional voltage-gated sodium channel blockers. This heightened efficacy originates from EGCG’s ability to inhibit both generator potentials and action potentials directly at nociceptive primary nerve terminals. As a result, EGCG stands out as a compelling candidate for novel analgesic development, holding particular relevance for CAM strategies. Full article
(This article belongs to the Special Issue Flavonoids: Novel Therapeutic Potential for Chronic Diseases)
Show Figures

Figure 1

17 pages, 1618 KB  
Article
First Report of the L925I kdr Mutation Associated with Pyrethroid Resistance in Genetically Distinct Triatoma dimidiata, Vector of Chagas Disease in Mexico
by Mario C. Saucedo-Montalvo, Jesus A. Davila-Barboza, Selene M. Gutierrez-Rodriguez, Beatriz Lopez-Monroy, Susana Favela-Lara, Iram P. Rodriguez-Sanchez, Guadalupe del C. Reyes-Solis, Cristina Bobadilla-Utrera and Adriana E. Flores
Trop. Med. Infect. Dis. 2025, 10(7), 182; https://doi.org/10.3390/tropicalmed10070182 - 27 Jun 2025
Viewed by 566
Abstract
Triatoma dimidiata is a widely distributed vector of Trypanosoma cruzi in Mexico and Central America, found across a range of habitats from sylvatic to domestic. Vector control has relied heavily on indoor residual spraying with pyrethroids; however, reinfestation and emerging resistance have limited [...] Read more.
Triatoma dimidiata is a widely distributed vector of Trypanosoma cruzi in Mexico and Central America, found across a range of habitats from sylvatic to domestic. Vector control has relied heavily on indoor residual spraying with pyrethroids; however, reinfestation and emerging resistance have limited its long-term effectiveness. In this study, we analyzed the genetic diversity and population structure of T. dimidiata from Veracruz, Oaxaca, and Yucatan using mitochondrial markers (cyt b and ND4) and screened for knockdown resistance (kdr)-type mutations in the voltage-gated sodium channel (VGSC) gene. High haplotype diversity and regional differentiation were observed, with most genetic variation occurring between populations. The ND4 marker provided greater resolution than cyt b, revealing ten haplotypes and supporting evidence of recent population expansion. Haplotype networks showed clear geographic segregation, particularly between populations east and west of the Isthmus of Tehuantepec. The L925I mutation, highly associated with pyrethroid resistance, was detected for the first time in Mexican populations of T. dimidiata, albeit at low frequencies. These findings highlight the importance of integrating population genetic data and resistance surveillance into regionally adapted vector control strategies for Chagas disease. Full article
(This article belongs to the Section Vector-Borne Diseases)
Show Figures

Figure 1

14 pages, 3140 KB  
Article
Human Stem Cell-Derived Neural Organoids for the Discovery of Antiseizure Agents
by Hamed Salmanzadeh and Robert F. Halliwell
Receptors 2025, 4(3), 12; https://doi.org/10.3390/receptors4030012 - 20 Jun 2025
Viewed by 895
Abstract
Background: The development of cerebral organoids created from human pluripotent stem cells in 3D culture may greatly improve the discovery of neuropsychiatric medicines. Methods: In the current study we differentiated neural organoids from a human pluripotent stem cell line in vitro, [...] Read more.
Background: The development of cerebral organoids created from human pluripotent stem cells in 3D culture may greatly improve the discovery of neuropsychiatric medicines. Methods: In the current study we differentiated neural organoids from a human pluripotent stem cell line in vitro, recorded the development of neurophysiological activity using multielectrode arrays (MEAs) and characterized the neuropharmacology of synaptic signaling over 8 months in vitro. In addition, we investigated the ability of these organoids to display epileptiform activity in response to a convulsant agent and the effects of antiseizure medicines to inhibit this abnormal activity. Results: Single and bursts of action potentials from individual neurons and network bursts were recorded on the MEA plates and significantly increased and became more complex from week 7 to week 30, consistent with neural network formation. Neural spiking was reduced by the Na channel blocker tetrodotoxin but increased by the inhibitor of KV7 potassium channels XE991, confirming the involvement of voltage-gated sodium and potassium channels in action potential activity. The GABA antagonists bicuculline and picrotoxin each increased the spike rate, consistent with inhibitory synaptic signaling. In contrast, the glutamate receptor antagonist kynurenic acid inhibited the spike rate, consistent with excitatory synaptic transmission in the organoids. The convulsant 4-aminopyridine increased spiking, bursts and synchronized firing, consistent with epileptiform activity in vitro. The anticonvulsants carbamazepine, ethosuximide and diazepam each inhibited this epileptiform neural activity. Conclusions: Together, our data demonstrate that neural organoids form inhibitory and excitatory synaptic circuits, generate epileptiform activity in response to a convulsant agent and detect the antiseizure properties of diverse antiepileptic drugs, supporting their value in drug discovery. Full article
Show Figures

Figure 1

25 pages, 4951 KB  
Review
Advances in Structural Biology for Anesthetic Drug Mechanisms: Insights into General and Local Anesthesia
by Hanxiang Liu, Zheng Liu, Huixian Zhou, Rongkai Yan, Yuzhen Li, Xiaofeng Zhang, Lingyu Bao, Yixin Yang, Jinming Zhang and Siyuan Song
BioChem 2025, 5(2), 18; https://doi.org/10.3390/biochem5020018 - 12 Jun 2025
Viewed by 1459
Abstract
Anesthesia is a cornerstone of modern medicine, enabling surgery, pain management, and critical care. Despite its widespread use, the precise molecular mechanisms of anesthetic action remain incompletely understood. Recent advancements in structural biology, including cryo-electron microscopy (Cryo-EM), X-ray crystallography, and computational modeling, have [...] Read more.
Anesthesia is a cornerstone of modern medicine, enabling surgery, pain management, and critical care. Despite its widespread use, the precise molecular mechanisms of anesthetic action remain incompletely understood. Recent advancements in structural biology, including cryo-electron microscopy (Cryo-EM), X-ray crystallography, and computational modeling, have provided high-resolution insights into anesthetic–target interactions. This review examines key molecular targets, including GABA_A receptors, NMDA receptors, two-pore-domain potassium (K2P) channels (e.g., TREK-1), and voltage-gated sodium (Nav) channels. General anesthetics modulate GABA_A and NMDA receptors, affecting inhibitory and excitatory neurotransmission, while local anesthetics primarily block Nav channels, preventing action potential propagation. Structural studies have elucidated anesthetic binding sites and gating mechanisms, providing a foundation for drug optimization. Advances in computational drug design and AI-assisted modeling have accelerated the development of safer, more selective anesthetics, paving the way for precision anesthesia. Future research aims to develop receptor-subtype-specific anesthetics, Nav1.7-selective local anesthetics, and investigate the neural mechanisms of anesthesia-induced unconsciousness and postoperative cognitive dysfunction (POCD). By integrating structural biology, AI-driven drug discovery, and neuroscience, anesthesia research is evolving toward safer, more effective, and personalized strategies, enhancing clinical outcomes and patient safety. Full article
Show Figures

Figure 1

Back to TopTop