Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,372)

Search Parameters:
Keywords = wall deposition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 10960 KB  
Article
Integrated Fatigue Evaluation of As-Built WAAM Steel Through Experimental Testing and Finite Element Simulation
by Sanjay Gothivarekar, Steven Brains, Bart Raeymaekers and Reza Talemi
Appl. Sci. 2025, 15(20), 10936; https://doi.org/10.3390/app152010936 (registering DOI) - 11 Oct 2025
Abstract
Additive Manufacturing (AM) has attracted considerable interest over the past three decades, driven by growing industrial demand. Among metal AM techniques, Wire and Arc Additive Manufacturing (WAAM), a Directed Energy Deposition (DED) variant, has emerged as a prominent method for producing large-scale components [...] Read more.
Additive Manufacturing (AM) has attracted considerable interest over the past three decades, driven by growing industrial demand. Among metal AM techniques, Wire and Arc Additive Manufacturing (WAAM), a Directed Energy Deposition (DED) variant, has emerged as a prominent method for producing large-scale components with high deposition rates and cost efficiency. However, WAAM parts typically exhibit rough surface profiles, which can induce stress concentrations and promote fatigue crack initiation under cyclic loading. This study presents an integrated experimental and numerical investigation into the fatigue performance of as-built WAAM steel. Fatigue specimens extracted from a WAAM-fabricated wall were tested under cyclic loading, followed by fractography to assess the influence of surface irregularities and subsurface defects on fatigue behaviour. Surface topography analysis identified critical stress-concentration regions and key surface roughness parameters. Additionally, 3D scanning was used to reconstruct the specimen topography, enabling detailed 2D and 3D finite element (FE) modelling to analyze stress distribution along the as-built surface and predict fatigue life. A Smith-Watson-Topper (SWT) critical plane-based approach was applied for multiaxial fatigue life estimation. The results reveal a good correlation between experimental fatigue data and numerically predicted results, validating the proposed combined methodology for assessing durability of as-built WAAM components. Full article
(This article belongs to the Special Issue Fatigue and Fracture Behavior of Engineering Materials)
13 pages, 1932 KB  
Article
Universal Platform Based on Carbon Nanotubes Functionalised with Carboxylic Acid Groups for Multi-Analyte Enzymatic Biosensing
by Edmundas Lukoševičius, Julija Kravčenko, Grėta Mikėnaitė, Augustas Markevičius and Gintautas Bagdžiūnas
Biosensors 2025, 15(10), 686; https://doi.org/10.3390/bios15100686 - 10 Oct 2025
Viewed by 17
Abstract
This work presents the development of carbon nanotubes functionalised with carboxylic acid groups (CNT-COOH) as an oxygen-sensitive electrochemical platform for parallel multi-analyte enzymatic biosensing. The platform was constructed by depositing carboxylic-acid-functionalised single-walled carbon nanotubes covalently onto nanostructured gold electrodes modified with a self-assembled [...] Read more.
This work presents the development of carbon nanotubes functionalised with carboxylic acid groups (CNT-COOH) as an oxygen-sensitive electrochemical platform for parallel multi-analyte enzymatic biosensing. The platform was constructed by depositing carboxylic-acid-functionalised single-walled carbon nanotubes covalently onto nanostructured gold electrodes modified with a self-assembled monolayer of 4-aminothiophenol. Atomic force microscopy characterization revealed that the nanotubes attached via their ends to the surface and had a predominantly horizontal orientation. Glucose oxidase, lactate oxidase, glutamate oxidase, and tyrosinase were immobilised onto the electrodes to create selective biosensor for lactate, glucose, glutamate, and dopamine, respectively. A key finding is that incorporating catalase significantly extends the linear detection range for analytes by mitigating the accumulation of hydrogen peroxide. The resulting multifunctional biosensor demonstrated its capability for the simultaneous and independent measurement of glucose, lactate as the key bioanalytes under uniform conditions in blood plasma samples, highlighting its potential for applications in health and food technologies. Full article
Show Figures

Figure 1

26 pages, 6711 KB  
Article
Vegetation–Debris Synergy in Alternate Sandbar Morphodynamics: Flume Experiments on the Impacts of Density, Layout, and Debris Geometry
by Saqib Habib, Muhammad Rizwan and Norio Tanaka
Water 2025, 17(19), 2915; https://doi.org/10.3390/w17192915 - 9 Oct 2025
Viewed by 100
Abstract
Predicting how vegetation–debris interactions reshape alternate sandbars under a steady subcritical flow remains poorly understood in laboratory-to-field scaling. This study quantified how vegetation density and layout interact with debris geometry to control scouring and deposition and developed an empirical tool to predict normalized [...] Read more.
Predicting how vegetation–debris interactions reshape alternate sandbars under a steady subcritical flow remains poorly understood in laboratory-to-field scaling. This study quantified how vegetation density and layout interact with debris geometry to control scouring and deposition and developed an empirical tool to predict normalized bed-level changes. Flume experiments investigated how vegetation–debris interactions regulate the hydromorphodynamics of non-migrating alternate sandbars under a steady subcritical flow (Q = 0.003 m3/s; slope = 1/200). Vegetation patches were configured in two spatial layouts—upstream (apex) and river line (edge), at varying densities, with and without debris (I-type: wall-like; U-type: horseshoe-shaped). Results indicated that dense upstream vegetation combined with I-type debris produced the strongest morphodynamic response, generating maximum scour, corresponding to the maximum bed-elevation changes (Δz) normalized by water depth (h) (dimensionless Δz/h) values of −1.55 and 1.05, and sustaining more than 70% of the downstream morphodynamic amplitude. In contrast, U-type debris promoted distributed deposition with a milder scour, while sparse vegetation yielded weaker, more transient responses. Debris geometry-controlled flow partitioning: the I-type enhanced frontal acceleration, whereas the U-type facilitated partial penetration and redistribution. To integrate these findings into predictive frameworks, an empirical regression model was developed to estimate Δz/h from the vegetation density, distribution, and debris geometry, with an additional blockage index to capture synergistic effects. The model achieved 87.5% prediction within ±20% error, providing a practical tool for anticipating scour and deposition intensity across eco-hydraulic configurations. These insights advance intelligent water management by linking morphodynamic responses with predictive modeling, supporting flood-resilient river engineering, adaptive channel stability assessments, and nature-based solutions. Full article
Show Figures

Figure 1

15 pages, 5237 KB  
Article
Effect of Pressure on Pyrolytic and Oxidative Coking of JP-10 in Near-Isothermal Flowing Reactor
by Qian Zhang, Maogang He, Yabin Jin, Zizhen Huang, Tiantian Xu and Long Li
Energies 2025, 18(19), 5276; https://doi.org/10.3390/en18195276 - 4 Oct 2025
Viewed by 297
Abstract
JP-10 (exo-tetrahydrodicyclopentadiene) is a high-energy-density hydrocarbon broadly used in advanced aerospace propulsion as a regenerative cooling fluid; in this study, we aimed to clarify how fuel pressure affects its thermal degradation (oxidative and pyrolytic) in near-isothermal flowing reactor. Experiments were performed under oxidative [...] Read more.
JP-10 (exo-tetrahydrodicyclopentadiene) is a high-energy-density hydrocarbon broadly used in advanced aerospace propulsion as a regenerative cooling fluid; in this study, we aimed to clarify how fuel pressure affects its thermal degradation (oxidative and pyrolytic) in near-isothermal flowing reactor. Experiments were performed under oxidative conditions (wall temperature 623.15 K, p = 0.708–6.816 MPa) and pyrolytic conditions (wall temperature 793.15 K, p = 2.706–7.165 MPa); carbon deposits were quantified by LECO analysis, oxidation activity was assessed by temperature-programmed oxidation (TPO), and morphology was performed by FESEM and EDS. Results show that oxidative coking is minimal (5.37–14.95 μg·cm2) and largely insensitive to pressure in the liquid phase (1.882–6.816 MPa), whereas at 0.708 MPa (gas/phase-change conditions), deposition increases, implicating phase and local heat-transfer effects. Under oxidative conditions, deposits are predominantly amorphous carbon with a disordered structure, formed at relatively low temperatures, with only a few fiber-like metal sulfides identified by EDS. In contrast, under pyrolysis conditions, the deposits are predominantly carbon nanotubes, exhibiting well-defined tubular morphology formed at elevated temperatures via metal-catalyzed growth. The pyrolysis coking yield is substantially higher (66.88–221.89 μg·cm−2) and increases with pressure. The findings imply that the pressure influences the coking of JP-10 via phase state under oxidative conditions and residence time under pyrolytic conditions, while basic morphologies of coke deposits remain similar; operationally, maintaining the working pressure higher than the saturated vapor pressure can mitigate oxidation coking associated with phase transitions, and minimizing residence time can mitigate pyrolytic coking. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
Show Figures

Figure 1

17 pages, 5383 KB  
Article
High-Temperature Sulfate Corrosion Resistance and Wear Performance of NiCr-Cr3C2 Coatings for the Water Wall of Power Plant Boilers
by Hang Zhang, Zhao Zhang, Cheng Zhou, Fangzhou Jin, Yongfeng Cai, Yifan Ni, Xinmin Ma, Chenghao Fan, Shulin Xiang and Dan Song
Coatings 2025, 15(10), 1152; https://doi.org/10.3390/coatings15101152 - 3 Oct 2025
Viewed by 304
Abstract
Water walls in power plant boilers are prone to failure under extreme conditions involving high temperature, corrosion, and wear, which severely threaten unit reliability and operational economy. In this work, a NiCr-Cr3C2 protective coating was deposited on SA213-T12 steel substrates [...] Read more.
Water walls in power plant boilers are prone to failure under extreme conditions involving high temperature, corrosion, and wear, which severely threaten unit reliability and operational economy. In this work, a NiCr-Cr3C2 protective coating was deposited on SA213-T12 steel substrates using high-velocity oxy-fuel (HVOF) spraying, with arc-sprayed PS45 coating as a reference. The NiCr-Cr3C2 coating exhibited a dense, low-porosity structure with homogeneous dispersion of Cr3C2 hard phases in the NiCr matrix, forming a typical cauliflower-like composite morphology. During high-temperature sulfate corrosion tests at 750 °C, the NiCr-Cr3C2 coating demonstrated superior corrosion resistance, with a weight gain of only 2.7 mg/cm2, significantly lower than that of the PS45 coating and the SA213-T12 substrate. The higher microhardness and lower friction coefficient also indicate excellent high-temperature wear resistance. The enhanced performance of the NiCr-Cr3C2 coating is attributed to the high Cr content, which promotes the formation of a continuous and protective scale composed of Cr2O3 and NiCr2O4, effectively inhibiting corrosive diffusion and penetration. This work demonstrates the application prospects of NiCr-Cr3C2 coatings on water walls of power plant boilers and guides the development of advanced HVOF coatings. Full article
(This article belongs to the Special Issue Anti-Corrosion Coatings: New Ideas to Make Them More Effective)
Show Figures

Figure 1

15 pages, 14001 KB  
Article
Single-Step Engineered Gelatin-Based Hydrogel for Integrated Prevention of Postoperative Adhesion and Promotion of Wound Healing
by Xinyu Wu, Lei Sun, Jianmei Chen, Meiling Su and Zongguang Liu
Gels 2025, 11(10), 797; https://doi.org/10.3390/gels11100797 - 2 Oct 2025
Viewed by 339
Abstract
Postoperative adhesion remains a major clinical challenge, often leading to chronic pain, functional disorders, and recurrent surgeries. Herein, we developed a multifunctional gelatin–polyphenol hydrogel (GPP20) featuring rapid gelation (within 5 min), strong tissue adhesion (lasting > 24 h under physiological conditions), and intrinsic [...] Read more.
Postoperative adhesion remains a major clinical challenge, often leading to chronic pain, functional disorders, and recurrent surgeries. Herein, we developed a multifunctional gelatin–polyphenol hydrogel (GPP20) featuring rapid gelation (within 5 min), strong tissue adhesion (lasting > 24 h under physiological conditions), and intrinsic wound healing capacity to achieve integrated prevention of postoperative adhesion. GPP20 was fabricated via dynamic crosslinking between gelatin and tea polyphenol, endowing it with injectability, self-healing, biodegradability, and excellent mechanical properties (shear stress of 14.2 N). In vitro studies demonstrated that GPP20 exhibited effective ROS scavenging (82% ABTS scavenging capability), which protects cells against oxidative stress, while possessing excellent hemocompatibility and in vivo safety. Notably, GPP20 significantly reduced postoperative cecum–abdominal wall adhesions through both physical barrier effects and modulation of inflammation and collagen deposition, demonstrating a comprehensive integrated prevention strategy. Furthermore, in full-thickness wound models, GPP20 accelerated tissue regeneration (85% wound closure rate on day 10) by promoting macrophage polarization toward the M2 phenotype and stimulating angiogenesis, thereby enhancing collagen deposition and re-epithelialization. Collectively, these findings demonstrate that GPP20 integrates anti-adhesion efficacy with regenerative support, offering a facile and clinically translatable strategy for postoperative care and wound healing. Full article
(This article belongs to the Special Issue Advances in Functional Gel (3rd Edition))
Show Figures

Figure 1

27 pages, 4884 KB  
Review
Dysregulated Lipid Metabolism as a Central Driver of Atherosclerotic Plaque Pathology
by Julia Emily Steinbeck, Rachel Anne Iannotti and Adil Rasheed
Lipidology 2025, 2(4), 17; https://doi.org/10.3390/lipidology2040017 - 30 Sep 2025
Viewed by 604
Abstract
It has long been recognized that elevated circulating lipid levels are among the strongest risk factors for the development of plaques within the arterial wall that are characteristic of atherosclerotic cardiovascular disease. Indeed, decades of studies have identified the deposition of low-density lipoprotein [...] Read more.
It has long been recognized that elevated circulating lipid levels are among the strongest risk factors for the development of plaques within the arterial wall that are characteristic of atherosclerotic cardiovascular disease. Indeed, decades of studies have identified the deposition of low-density lipoprotein as an initiator of this disease, which coordinates the vascular and immune dysfunction that fuels the advancement of the atherosclerotic plaque. However, in the vessel wall, deposited cholesterol and fatty acids are dynamic in nature and engage signaling pathways. Shifting from metabolic-related pathways, lipid modifications and their conversion to intermediates engage signaling cascades that further perpetuate the inflammatory milieu of the atherosclerotic plaque and its progression towards the fatal end-stage events associated with cardiovascular disease, including myocardial infarction. In this review, we will cover the cellular and molecular mechanisms that preserve homeostasis and advance disease, including how lipid species induce endothelial dysfunction and drive the development of macrophage foam cells. We will additionally discuss ongoing therapeutic strategies to combat the hyperlipidemia that underlies atherogenesis. Full article
Show Figures

Figure 1

16 pages, 5574 KB  
Article
Investigation of In-Flight Alumina Particle Interaction with a Plasma Jet in a Thermal Plasma Reactor
by Viktorija Grigaitienė, Mindaugas Milieška, Romualdas Kėželis and Vitas Valinčius
Crystals 2025, 15(10), 851; https://doi.org/10.3390/cryst15100851 - 29 Sep 2025
Viewed by 160
Abstract
The present study presents the results of an analytical and experimental investigation on the behaviour of Al2O3 particles injected into the plasma jet. The dependence of the temperature of the particles and velocity profiles on particle size was estimated by [...] Read more.
The present study presents the results of an analytical and experimental investigation on the behaviour of Al2O3 particles injected into the plasma jet. The dependence of the temperature of the particles and velocity profiles on particle size was estimated by numerically simulating the specific plasma jet in the plasma chemical reactor. The velocity of the particle was investigated experimentally using the ParticleMaster shadowgraphy laser imaging system. The heat flux from the plasma jet to the particles was estimated numerically, and the results were compared with the experimental measurements. Mineral fibre and granules were produced during the plasma spraying process. The studies performed showed that the interaction of the plasma jet and dispersed particles in the reactor mainly depends on the particle’s size, velocity, and temperature of the plasma flow. The modelling and measurements were performed under plasma conditions chosen below the full melting temperature of alumina to avoid particle deposition on the walls while still representative of the reactor environment where finer fractions contribute to melt and fibre formation. The heat flux to the particles inside the reactor increased with the increase in the particle-plasma mass ratio in the reactor. Full article
(This article belongs to the Section Hybrid and Composite Crystalline Materials)
Show Figures

Figure 1

31 pages, 8619 KB  
Review
A Critical Review: Gel-Based Edible Inks for 3D Food Printing: Materials, Rheology–Geometry Mapping, and Control
by Zhou Qin, Yang Yang, Zhaomin Zhang, Fanfan Li, Ziqing Hou, Zhihua Li, Jiyong Shi and Tingting Shen
Gels 2025, 11(10), 780; https://doi.org/10.3390/gels11100780 - 29 Sep 2025
Viewed by 478
Abstract
Edible hydrogels are the central material class in 3D food printing because they reconcile two competing needs: (i) low resistance to flow under nozzle shear and (ii) fast recovery of elastic structure after deposition to preserve geometry. This review consolidates the recent years [...] Read more.
Edible hydrogels are the central material class in 3D food printing because they reconcile two competing needs: (i) low resistance to flow under nozzle shear and (ii) fast recovery of elastic structure after deposition to preserve geometry. This review consolidates the recent years of progress on hydrogel formulations—gelatin, alginate, pectin, carrageenan, agar, starch-based gels, gellan, and cellulose derivatives, xanthan/konjac blends, protein–polysaccharide composites, and emulsion gels alongside a critical analysis of printing technologies relevant to food: extrusion, inkjet, binder jetting, and laser-based approaches. For each material, this review connects gelation triggers and compositional variables to rheology signatures that govern printability and then maps these to process windows and post-processing routes. This review consolidates a decision-oriented workflow for edible-hydrogel printability that links formulation variables, process parameters, and geometric fidelity through standardized test constructs (single line, bridge, thin wall) and rheology-anchored gates (e.g., yield stress and recovery). Building on these elements, a “printability map/window” is formalized to position inks within actionable operating regions, enabling recipe screening and process transfer. Compared with prior reviews, the emphasis is on decisions: what to measure, how to interpret it, and how to adjust inks and post-set enablers to meet target fidelity and texture. Reporting minima and a stability checklist are identified to close the loop from design to shelf. Full article
(This article belongs to the Special Issue Recent Advance in Food Gels (3rd Edition))
Show Figures

Figure 1

17 pages, 1705 KB  
Article
Effect of Dietary Proline on the Growth Performance, Collagen Deposition, and Texture Quality of Sea Cucumbers’ Body Wall (Apostichopus japonicus)
by Rujian Xu, Zitong Wang, Haijing Liu, Ruixue Li, Xianyu Wang, Hongbing Yang, Jun Ding, Yaqing Chang and Rantao Zuo
Fishes 2025, 10(10), 482; https://doi.org/10.3390/fishes10100482 - 26 Sep 2025
Viewed by 218
Abstract
Sea cucumber (Apostichopus japonicus) is an important economically cultured species in the northern coastal regions of China. Its body wall is rich in collagen, which directly determines product quality and market value. However, with the expansion of aquaculture scale, issues such [...] Read more.
Sea cucumber (Apostichopus japonicus) is an important economically cultured species in the northern coastal regions of China. Its body wall is rich in collagen, which directly determines product quality and market value. However, with the expansion of aquaculture scale, issues such as insufficient collagen deposition have led to inconsistent quality among cultured individuals. Therefore, there is an urgent need to improve growth performance and body wall quality through nutritional regulation. As functional nutrients, amino acids play key roles in collagen synthesis, yet relevant research on A. japonicus remains limited. This study was conducted to investigate the effects of dietary proline on the growth performance, body wall collagen deposition and organoleptic quality of sea cucumber (initial body weight: 30.20 ± 2.02 g). Three kinds of feed with equal levels of nitrogen and other lipids, and supplemented with different concentrations of proline (0%, 1.5%, 3%) in the basal diet, were named P0, P1.5, and P3, and the experiment was conducted for 60 days. The results showed that supplementation with 3% proline significantly increased final body weight and weight gain rate (p < 0.05), reaching 66.39 g and 115.30%, respectively. Collagen content in the body wall increased by approximately 18.5% compared to the control group. Histological analysis of the body wall showed that the collagen fibers in the P1.5 and P3 groups were thicker, with an increased proportion of type I collagen. Texture profile analysis indicated that hardness, cohesiveness, and chewiness were significantly improved in the P3 group (p < 0.05). In summary, supplementation with 1.5% and 3% proline effectively enhanced growth, collagen deposition, and body wall quality. Compared to the P0 group, the relative expression levels of collagen type I alpha 2 chain (COL1A1), Sma- and Mad-related protein 1(SMAD1), and sp-smad2/3 (SMAD2/3) in the body wall tissue were significantly upregulated in both the P1.5 and P3 groups (p < 0.05). Full article
(This article belongs to the Special Issue Advances in Aquaculture Feed Additives)
Show Figures

Figure 1

21 pages, 5385 KB  
Article
Research on the Mechanism and Process of Water-Jet-Guided Laser Annular Cutting for Hole Making in Inconel 718
by Qian Liu, Guoyong Zhao, Yugang Zhao, Shuo Yu and Guiguan Zhang
Micromachines 2025, 16(10), 1090; https://doi.org/10.3390/mi16101090 - 26 Sep 2025
Viewed by 395
Abstract
Nickel-based superalloys, serving as the preferred materials for hot-end structural components in aerospace engines, pose considerable challenges for the fabrication of high-quality gas film holes on their surfaces due to their inherent high hardness and strength. Water-jet-guided laser processing technology has exhibited notable [...] Read more.
Nickel-based superalloys, serving as the preferred materials for hot-end structural components in aerospace engines, pose considerable challenges for the fabrication of high-quality gas film holes on their surfaces due to their inherent high hardness and strength. Water-jet-guided laser processing technology has exhibited notable potential in the realm of gas film hole fabrication; however, its engineering application is hindered by the lack of synergy between processing quality and efficiency. To tackle this issue, this study achieves efficient coupling between a 1064 nm high-power laser and a stable water jet, leveraging a multi-focal water–light coupling mode. Furthermore, an “inside-to-outside” multi-pass ring-cutting drilling strategy is introduced, and the controlled variable method is employed to investigate the influence of laser single-pulse energy, scanning speed, and pulse frequency on the surface morphology and geometric accuracy of micro-holes. Building upon this foundation, micro-holes fabricated using optimized process parameters are analyzed and validated using scanning electron microscopy and energy-dispersive spectroscopy. The findings reveal that single-pulse energy is a pivotal parameter for achieving micro-hole penetration. By moderately increasing the scanning speed and pulse frequency, melt deposition and thermal accumulation effects can be effectively mitigated, thereby enhancing the surface morphology and machining precision of micro-holes. Specifically, when the single-pulse energy is set at 0.8 mJ, the scanning speed at 25 mm/s, and the pulse frequency at 300 kHz, high-quality micro-holes with an entrance diameter of 820 μm and a taper angle of 0.32° can be fabricated in approximately 60 s. The micro-morphology and element distribution of the micro-holes affirm that water-jet-guided laser processing exhibits exceptional performance in minimizing recast layers, narrowing the heat-affected zone, and preserving the smoothness of the hole wall. Full article
(This article belongs to the Special Issue Ultra-Precision Micro Cutting and Micro Polishing)
Show Figures

Figure 1

10 pages, 2737 KB  
Article
4-Coumarate CoA Ligase Family in Soybean Responds to Heterodera glycines
by Hui Wang, Shumei Liu, Shunbin Zhang, Fengjiao Fan, Chuanwen Yang, Yuxi Duan, Qiumin Chen and Chen Liu
Curr. Issues Mol. Biol. 2025, 47(10), 795; https://doi.org/10.3390/cimb47100795 - 25 Sep 2025
Viewed by 245
Abstract
Soybean cyst nematode (SCN) development depends on syncytium formation, which requires cell-wall degradation and fusion. Lignin, the main barrier in cell walls, is critical for SCN resistance. 4-Coumarate: CoA ligase (4CL) drives the phenylpropanoid pathway by converting p-coumaric acid to p-coumaroyl-CoA, supplying lignin [...] Read more.
Soybean cyst nematode (SCN) development depends on syncytium formation, which requires cell-wall degradation and fusion. Lignin, the main barrier in cell walls, is critical for SCN resistance. 4-Coumarate: CoA ligase (4CL) drives the phenylpropanoid pathway by converting p-coumaric acid to p-coumaroyl-CoA, supplying lignin precursors. Here, resistant cv. Huipizhiheidou accumulated more lignin than susceptible Williams 82 after SCN inoculation. SCN stress induced distinct Gm4CL-family expression profiles across cultivars; Gm4CL3 and Gm4CL4 were markedly upregulated in Huipizhiheidou. Transient expression of Gm4CL3 in tobacco thickened leaf cell walls, implying enhanced wall reinforcement against SCN. Thus, 4CLs, especially Gm4CL3, may promote lignin deposition and secondary wall thickening to strengthen soybean SCN resistance. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

15 pages, 7089 KB  
Article
Investigation on the Effect of Dynamic Focus Feeding and Widening Path in Nanosecond Laser Drilling
by Jianke Di and Jian Li
Micromachines 2025, 16(10), 1081; https://doi.org/10.3390/mi16101081 - 25 Sep 2025
Viewed by 274
Abstract
Laser trepan drilling and laser helical drilling are typical methods for fabrication of micro through-holes through scanning laser beam. In the drilling process, the subsequent laser pulse may be occluded by the edge and the sputter deposition at the edge of the previous [...] Read more.
Laser trepan drilling and laser helical drilling are typical methods for fabrication of micro through-holes through scanning laser beam. In the drilling process, the subsequent laser pulse may be occluded by the edge and the sputter deposition at the edge of the previous drilled trench. Dynamic focus feeding and widening path can be employed to lessen the occlusion effect and both of them are always employed in laser helical drilling. However, Widening the trench needs to remove more volume of material and may bring certain negative effects such as lowering the recoil pressure as well as less splashing melt due to the limited constraint of trench wall. The effects of dynamic feeding the focal plane and widening the scanning path on the quality and efficiency in the nanosecond laser drilling process were investigated through laser drilling holes with diameter of 500 μm on a 300 μm thick GH4169 plate. Results show that dynamic focus feeding is beneficial in both drilling efficiency and drilling quality. Through laser helical drilling with dynamic focus feeding, micro through-hole can be fabricated in 5 s, and both smaller tilting angle of 0.073 rad and smaller heat-affected zone of 0.63 mm in radius can be obtained. Widening scanning path is helpful to perforating rapidly but leads to much more recast layer coating. the quality of the micro through-holes depends not only on the utilization efficiency of the laser energy, but also on high temperature spatter deposition, which is the source of the difference between different drilling strategies. Due to the low cost in equipment and the better hole quality, the laser drilling, especially laser helical drilling, has potential applications ranging from aerospace fields to normal fields such as the agricultural machinery industry. Full article
(This article belongs to the Special Issue Recent Advances in Micro/Nanofabrication, 2nd Edition)
Show Figures

Figure 1

16 pages, 2802 KB  
Article
Isolation of a Novel Streptomyces Species from the Tuha Basin and Genomic Insights into Its Environmental Adaptability
by Xiaomin Niu, Yujie Wu, Xue Yu, Shiyu Wu, Gaosen Zhang, Guangxiu Liu, Tuo Chen and Wei Zhang
Microorganisms 2025, 13(10), 2238; https://doi.org/10.3390/microorganisms13102238 - 24 Sep 2025
Viewed by 365
Abstract
Mining novel Streptomyces species from extreme environments provides a valuable strategy for the discovery of new antibiotics. Here, we report a strain of Streptomyces sp. HMX87T, which exhibits antimicrobial activity and was isolated from desert soil collected in the Tuha Basin, [...] Read more.
Mining novel Streptomyces species from extreme environments provides a valuable strategy for the discovery of new antibiotics. Here, we report a strain of Streptomyces sp. HMX87T, which exhibits antimicrobial activity and was isolated from desert soil collected in the Tuha Basin, China. Molecular taxonomic analysis revealed that the 16S rRNA gene sequence of strain HMX87T shares the highest similarity with those of Streptomyces bellus CGMCC 4.1376T (98.5%) and Streptomyces coerulescens DSM 40146T (98.43%). In phylogenetic trees, it formed a distinct branch. The average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH) values between strain HMX87T and the above two type strains were below the thresholds of 95% and 70%, respectively, confirming that strain HMX87T represents a novel species within the genus Streptomyces, for which the name Streptomyces hamibioticus sp. nov. is proposed. Physiologically, the strain HMX87T grew at temperatures ranging from 25 to 37 °C, tolerated pH values from 5 to 12, and survived in NaCl concentrations of 0% to 8% (w/v). Chemotaxonomic characterization indicated the presence of LL-diaminopimelic acid (LL-DAP) in the cell wall, ribose and galactose as whole-cell hydrolysate sugars, MK-9(H8) (66.3%) as the predominant menaquinone, and iso-C16:0 (25.94%) and anteiso-C15:0 (16.98%) as the major fatty acids characteristics that clearly distinguish it from its closest relatives. Whole-genome sequencing of strain HMX87T revealed an abundance of genes associated with high-temperature tolerance, salt-alkali resistance, and antimicrobial activity. The genomic features and secondary metabolic potential reflect its adaptation to extreme environmental conditions, including high temperature, salinity, alkalinity, strong ultraviolet radiation, and oligotrophic nutrients. The strain HMX87T has been deposited in the Czech Collection of Microorganisms (CCM 9454T) and the Guangdong Microbial Culture Collection Center (GDMCC 4.391T). The 16S rRNA gene and whole-genome sequences have been submitted to GenBank under accession numbers PQ182592 and PRJNA1206124, respectively. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

19 pages, 5908 KB  
Article
Assessing Lignocellulose Quality Across Growth Stages in Diverse Sugarcane Genotypes
by Frederik C. Botha and Robert J. Henry
Sustainability 2025, 17(18), 8481; https://doi.org/10.3390/su17188481 - 22 Sep 2025
Viewed by 240
Abstract
Sugarcane is a globally important C4 crop traditionally bred for sucrose yield. However, its potential as a bioenergy crop depends on understanding lignocellulosic quality across developmental stages and environments. This study investigates the variability in fibre composition and theoretical digestibility among 17 [...] Read more.
Sugarcane is a globally important C4 crop traditionally bred for sucrose yield. However, its potential as a bioenergy crop depends on understanding lignocellulosic quality across developmental stages and environments. This study investigates the variability in fibre composition and theoretical digestibility among 17 sugarcane genotypes grown at two contrasting locations in northern Queensland. Plants were sampled at maximum vegetative growth and at peak sucrose accumulation. Fibre traits, including glucan, xylan, and lignin content, were quantified, and digestibility was estimated using cell wall composition ratios. The results revealed that digestibility declined with plant age, primarily due to increased lignin and xylan deposition. However, several genotypes maintained relatively high digestibility even at later stages. The study also identified substantial genotype–environment interactions influencing biomass quality. These findings suggest that harvesting sugarcane earlier in the cropping cycle, particularly when sucrose is not the main product, could improve fibre digestibility and biomass yield per unit time. This supports the use of sugarcane in circular bioeconomy systems and highlights opportunities for developing dual-purpose cropping strategies that align with sustainability goals. Full article
Show Figures

Graphical abstract

Back to TopTop