Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (102)

Search Parameters:
Keywords = water-reuse policy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1820 KB  
Article
A Framework for Building Sustainability Assessment for Developing Countries Using F-Delphi: Moroccan Housing Case Study
by Noussaiba Rharbi, Antonio García Martínez, Abdelghani El Asli, Safae Oulmouden and Hicham Mastouri
Sustainability 2025, 17(20), 9338; https://doi.org/10.3390/su17209338 - 21 Oct 2025
Viewed by 391
Abstract
International building sustainability assessment tools (BSATs) offer a comprehensive framework for assessing environmental, economic, and social sustainability. However, these tools cannot fill the gap between their standards and the regional needs of developing countries such as Morocco. This paper presents a new framework [...] Read more.
International building sustainability assessment tools (BSATs) offer a comprehensive framework for assessing environmental, economic, and social sustainability. However, these tools cannot fill the gap between their standards and the regional needs of developing countries such as Morocco. This paper presents a new framework to assess the sustainability of buildings in Morocco. The methodology proposed is the Fuzzy Delphi method to minimize the list of indicators with the help of 14 local experts and give an appropriate weight to the indicators and sub-indicators. The two-round analysis found a balanced weighting for the environmental, economic, and social dimensions, with the social pillar ranked highest in importance. A hierarchical framework of six consensus-based categories and 63 sub-indicators was developed. Consensus was measured using the dispersion threshold approach ≤ 0.2. The results show that waste and pollution (0.80), adaptability and resilience (0.78), and resources (0.75) are prioritized over the innovation category. Notably, sewage management, water reuse, and public infrastructure emerged as critical sub-indicators. A comparative evaluation against local BSATs from the region—Ethiopia, Sub-Saharan Africa, Saudi Arabia, and Oman—revealed convergence in core indicators like energy and water, yet divergence in economic and resilience criteria, reflecting regional specificities. This work contributes to the literature by presenting a validated, expert-driven assessment tool that aligns with local needs, offering a practical basis for national green certification and sustainable housing policy in Morocco and similar contexts. Full article
(This article belongs to the Section Green Building)
Show Figures

Figure 1

20 pages, 1282 KB  
Systematic Review
Identifying Circularity in Nature-Based Solutions: A Systematic Review
by Héctor Guadalupe Ramírez-Escamilla, María Concepción Martínez-Rodríguez, Diego Domínguez-Solís, Ana Laura Cervantes-Nájera and Lorena Elizabeth Campos-Villegas
Sustainability 2025, 17(19), 8722; https://doi.org/10.3390/su17198722 - 28 Sep 2025
Viewed by 627
Abstract
Nature-Based Solutions (NBS) represent an alternative for achieving environmental and resilience goals in diverse global contexts with varying needs. As such, NBS can be understood as processes involving actions that promote circular economy (CE) strategies within their function. Therefore, this research aims to [...] Read more.
Nature-Based Solutions (NBS) represent an alternative for achieving environmental and resilience goals in diverse global contexts with varying needs. As such, NBS can be understood as processes involving actions that promote circular economy (CE) strategies within their function. Therefore, this research aims to conduct a systematic literature review to identify and analyze the main NBS applied and explore how they are associated with CE strategies. This study performs a systematic literature review of NBS and their relationship with the CE using the PRISMA methodology, analyzing a total of 32 articles retrieved from the SCOPUS database. The main NBS include constructed wetlands, green infrastructure, and soil restoration and enrichment solutions. Constructed wetlands are linked to strategies such as recycling and reuse due to their role in treating urban and domestic wastewater for reuse, thereby increasing water availability. Green infrastructure is associated with strategies like redesign and reduction, as it involves the use of lower-impact materials and designs for rainwater harvesting and thermal comfort improvement. Soil enrichment and remediation solutions are connected to reuse and recycling strategies, as most derive from organic waste composting or microorganisms. NBS and CE strategies highlight how these solutions not only provide direct environmental benefits but also, when analyzed from a sustainability perspective, can offer social and economic benefits. Furthermore, understanding their relationship will facilitate their integration into regulations for transitioning toward circularity in industries and cities. The contribution of this article lies in synthesizing and systematizing the evidence on how NBS operationalizes CE strategies, identifying the main mechanisms and gaps, and proposing a conceptual model that can guide future research and policy design. Full article
(This article belongs to the Special Issue Green Innovation, Circular Economy and Sustainability Transition)
Show Figures

Figure 1

28 pages, 1509 KB  
Review
Life After Adsorption: Regeneration, Management, and Sustainability of PFAS Adsorbents in Water Treatment
by Magdalena Andrunik and Marzena Smol
Water 2025, 17(19), 2813; https://doi.org/10.3390/w17192813 - 25 Sep 2025
Viewed by 2117
Abstract
Per- and polyfluoroalkyl substances (PFASs) represent one of the most challenging classes of persistent organic pollutants, and adsorption is currently one of the most widely deployed method for their removal from water. However, the long-term sustainability of adsorption-based treatment depends on how adsorbents [...] Read more.
Per- and polyfluoroalkyl substances (PFASs) represent one of the most challenging classes of persistent organic pollutants, and adsorption is currently one of the most widely deployed method for their removal from water. However, the long-term sustainability of adsorption-based treatment depends on how adsorbents are regenerated, managed after exhaustion, and integrated into broader environmental and regulatory frameworks. This review synthesises recent advances in regeneration strategies for PFAS-saturated adsorbents, including thermal, solvent-based, chemical, hybrid, and emerging methods, and provides a targeted analysis of policy and regulatory frameworks governing PFAS management in water. Evidence from the literature is critically assessed with attention to regeneration efficiencies, adsorbent stability, secondary waste generation, and long-term reuse potential. Life cycle assessment (LCA) studies are also examined to evaluate the environmental and cost implications of different management options. The analysis highlights that while solvent and chemical regeneration achieve high short-term recovery, thermal processes offer partial destructive potential, and electrochemical methods are emerging as promising but unproven alternatives. Persistent challenges include incomplete PFAS desorption, performance decline over multiple cycles, energy intensity, and secondary waste burdens. Advancing sustainable PFAS treatment requires integrated evaluation frameworks linking technical performance with environmental impact and cost, supported by policy drivers that incentivize regeneration and safe end-of-life management. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

22 pages, 856 KB  
Article
Farmers’ Safe Behavior of Using Wastewater for Irrigation: The Case of Northeast Iran
by Sasan Esfandiari Bahraseman, Ali Firozzare, Arash Durandish, Hiva Khalili Mararndi, Christine Fürst, Rando Värnik, Iulia Ajtai and Hossein Azadi
Water 2025, 17(16), 2485; https://doi.org/10.3390/w17162485 - 21 Aug 2025
Viewed by 1261
Abstract
In countries facing physical water shortages, the safe use of treated wastewater can increase agricultural yields. However, farmers’ willingness to reuse water in agriculture is very low. Therefore, the purpose of this study is to determine the factors that influence 217,215 Iranian farmers [...] Read more.
In countries facing physical water shortages, the safe use of treated wastewater can increase agricultural yields. However, farmers’ willingness to reuse water in agriculture is very low. Therefore, the purpose of this study is to determine the factors that influence 217,215 Iranian farmers who use treated wastewater to adopt safe irrigation practices. This study, which developed the Theory of Planned Behavior (TPB) by including risk perception (RP) and knowledge factors, is a groundbreaking endeavor in the field of the safe use of treated wastewater at the farm level in Iran and around the world. The final model analysis was conducted based on structural equation modeling (SEM). The findings reveal that attitudes, perceived behavioral control (PBC), RP, and knowledge significantly influence farmers’ behaviors regarding safe wastewater use, while subjective norms did not impact intentions. The subjective norm in this study includes the perceived social pressure by farmers (through family, friends, the farming community, and local authorities) to perform or not perform safe behavior in using treated wastewater for irrigation. Notably, PBC was the most important component in the original TPB model, because intention has a beneficial impact on behavior. In the extended model, knowledge and risk perception emerged as critical elements. Therefore, intervention policies should prioritize enhancing farmers’ knowledge, risk perception, and perceived behavioral control to promote safe treated wastewater usage. This study offers valuable insights for developing countries in agricultural practices. Full article
(This article belongs to the Section Water, Agriculture and Aquaculture)
Show Figures

Figure 1

16 pages, 722 KB  
Article
From Desalination to Governance: A Comparative Study of Water Reuse Strategies in Southern European Hospitality
by Eleonora Santos
Sustainability 2025, 17(15), 6725; https://doi.org/10.3390/su17156725 - 24 Jul 2025
Viewed by 994
Abstract
As climate change intensified water scarcity in Southern Europe, tourism-dependent regions such as Portugal’s Algarve faced growing pressure to adapt their water management systems. This study investigated how hotel groups in the Algarve have adopted and communicated water reuse technologies—specifically desalination and greywater [...] Read more.
As climate change intensified water scarcity in Southern Europe, tourism-dependent regions such as Portugal’s Algarve faced growing pressure to adapt their water management systems. This study investigated how hotel groups in the Algarve have adopted and communicated water reuse technologies—specifically desalination and greywater recycling—under environmental, institutional, and reputational constraints. A comparative qualitative case study was conducted involving three hotel groups—Vila Vita Parc, Pestana Group, and Vila Galé—selected through purposive sampling based on organizational capacity and technology adoption stage. The analysis was supported by a supplementary mini-case from Mallorca, Spain. Publicly accessible documents, including sustainability reports, media coverage, and policy frameworks, were thematically coded using organizational environmental behavior theory and the OECD Principles on Water Governance. The results demonstrated that (1) higher organizational capacity was associated with greater maturity in water reuse implementation; (2) communication transparency increased alongside technological advancement; and (3) early-stage adopters encountered stronger financial, regulatory, and operational barriers. These findings culminated in the development of the Maturity–Communication–Governance (MCG) Framework, which elucidates how internal resources, stakeholder signaling, and institutional alignment influence sustainable infrastructure uptake. This research offered policy recommendations to scale water reuse in tourism through financial incentives, regulatory simplification, and public–private partnerships. The study contributed to the literature on sustainable tourism and decentralized climate adaptation, aligning with UN Sustainable Development Goals 6.4, 12.6, and 13. Full article
Show Figures

Figure 1

49 pages, 4131 KB  
Review
Municipal Solid Waste Gasification: Technologies, Process Parameters, and Sustainable Valorization of By-Products in a Circular Economy
by Nicoleta Ungureanu, Nicolae-Valentin Vlăduț, Sorin-Ștefan Biriș, Mariana Ionescu and Neluș-Evelin Gheorghiță
Sustainability 2025, 17(15), 6704; https://doi.org/10.3390/su17156704 - 23 Jul 2025
Cited by 3 | Viewed by 5010
Abstract
Gasification of municipal solid waste and other biogenic residues (e.g., biomass and biowaste) is increasingly recognized as a promising thermochemical pathway for converting non-recyclable fractions into valuable energy carriers, with applications in electricity generation, district heating, hydrogen production, and synthetic fuels. This paper [...] Read more.
Gasification of municipal solid waste and other biogenic residues (e.g., biomass and biowaste) is increasingly recognized as a promising thermochemical pathway for converting non-recyclable fractions into valuable energy carriers, with applications in electricity generation, district heating, hydrogen production, and synthetic fuels. This paper provides a comprehensive analysis of major gasification technologies, including fixed bed, fluidized bed, entrained flow, plasma, supercritical water, microwave-assisted, high-temperature steam, and rotary kiln systems. Key aspects such as feedstock compatibility, operating parameters, technology readiness level, and integration within circular economy frameworks are critically evaluated. A comparative assessment of incineration and pyrolysis highlights the environmental and energetic advantages of gasification. The valorization pathways for main product (syngas) and by-products (syngas, ash, tar, and biochar) are also explored, emphasizing their reuse in environmental, agricultural, and industrial applications. Despite progress, large-scale adoption in Europe is constrained by economic, legislative, and technical barriers. Future research should prioritize scaling emerging systems, optimizing by-product recovery, and improving integration with carbon capture and circular energy infrastructures. Supported by recent European policy frameworks, gasification is positioned to play a key role in sustainable waste-to-energy strategies, biomass valorization, and the transition to a low-emission economy. Full article
(This article belongs to the Special Issue Sustainable Waste Process Engineering and Biomass Valorization)
Show Figures

Figure 1

37 pages, 863 KB  
Systematic Review
Sustainable Water Resource Management to Achieve Net-Zero Carbon in the Water Industry: A Systematic Review of the Literature
by Jorge Alejandro Silva
Water 2025, 17(14), 2136; https://doi.org/10.3390/w17142136 - 17 Jul 2025
Viewed by 1545
Abstract
With water scarcity becoming worse, and demand increasing, the urgency for the water industry to hit net-zero carbon is accelerating. Even as a multitude of utilities have pledged to reach net-zero by 2050, advancing beyond the energy–water nexus remains a heavy lift. This [...] Read more.
With water scarcity becoming worse, and demand increasing, the urgency for the water industry to hit net-zero carbon is accelerating. Even as a multitude of utilities have pledged to reach net-zero by 2050, advancing beyond the energy–water nexus remains a heavy lift. This paper, using a systematic literature review that complies with Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA), aims to propose sustainable water resource management (SWRM) strategies that may assist water utilities in decarbonizing their value chains and achieving net-zero carbon. In total, 31 articles were included from SCOPUS, ResearchGate, ScienceDirect, and Springer. The findings show that water utilities are responsible for 3% of global greenhouse gas emissions and could reduce these emissions by more than 45% by employing a few strategies, including the electrification of transport fleets, the use of renewables, advanced oxidation processes (AOPs) and energy-efficient technologies. A broad-based case study from Scottish Water shows a 254,000-ton CO2 reduction in the period since 2007, indicative of the potential of these measures. The review concludes that net-zero carbon is feasible through a mix of decarbonization, wastewater reuse, smart systems and policy-led innovation, especially if customized to both large and small utilities. To facilitate a wider and a more scalable transition, research needs to focus on development of low-cost and flexible strategies for underserved utilities. Full article
Show Figures

Figure 1

31 pages, 1708 KB  
Systematic Review
Circular Economy and Water Sustainability: Systematic Review of Water Management Technologies and Strategies (2018–2024)
by Gary Christiam Farfán Chilicaus, Luis Edgardo Cruz Salinas, Pedro Manuel Silva León, Danny Alonso Lizarzaburu Aguinaga, Persi Vera Zelada, Luis Alberto Vera Zelada, Elmer Ovidio Luque Luque, Rolando Licapa Redolfo and Emma Verónica Ramos Farroñán
Sustainability 2025, 17(14), 6544; https://doi.org/10.3390/su17146544 - 17 Jul 2025
Cited by 1 | Viewed by 2912
Abstract
The transition toward a circular water economy addresses accelerating water scarcity and pollution. A PRISMA-2020 systematic review of 50 peer-reviewed articles (January 2018–April 2024) mapped current technologies and management strategies, seeking patterns, barriers, and critical bottlenecks. Bibliometric analysis revealed the following three dominant [...] Read more.
The transition toward a circular water economy addresses accelerating water scarcity and pollution. A PRISMA-2020 systematic review of 50 peer-reviewed articles (January 2018–April 2024) mapped current technologies and management strategies, seeking patterns, barriers, and critical bottlenecks. Bibliometric analysis revealed the following three dominant patterns: (i) rapid diffusion of membrane bioreactors, constructed wetlands, and advanced oxidation processes; (ii) research geographically concentrated in Asia and the European Union; (iii) industry’s marked preference for by-product valorization. Key barriers—high energy costs, fragmented regulatory frameworks, and low social acceptance—converge as critical constraints during scale-up. The following three practical action lines emerge: (1) adopt progressive tariffs and targeted tax credits that internalize environmental externalities; (2) harmonize water-reuse regulations with comparable circularity metrics; (3) create multi-actor platforms that co-design projects, boosting local legitimacy. These findings provide policymakers and water-sector practitioners with a clear roadmap for accelerating Sustainable Development Goals 6, 9, and 12 through circular, inclusive, low-carbon water systems. Full article
Show Figures

Figure 1

29 pages, 8743 KB  
Article
Coupled Simulation of the Water–Food–Energy–Ecology System Under Extreme Drought Events: A Case Study of Beijing–Tianjin–Hebei, China
by Huanyu Chang, Naren Fang, Yongqiang Cao, Jiaqi Yao and Zhen Hong
Water 2025, 17(14), 2103; https://doi.org/10.3390/w17142103 - 15 Jul 2025
Viewed by 882
Abstract
The Beijing–Tianjin–Hebei (BTH) region is one of China’s most water-scarce yet economically vital areas, facing increasing challenges due to climate change and intensive human activities. This study develops an integrated Water–Food–Energy–Ecology (WFEE) simulation and regulation model to assess the system’s stability under coordinated [...] Read more.
The Beijing–Tianjin–Hebei (BTH) region is one of China’s most water-scarce yet economically vital areas, facing increasing challenges due to climate change and intensive human activities. This study develops an integrated Water–Food–Energy–Ecology (WFEE) simulation and regulation model to assess the system’s stability under coordinated development scenarios and extreme climate stress. A 500-year precipitation series was reconstructed using historical drought and flood records combined with wavelet analysis and machine learning models (Random Forest and Support Vector Regression). Results show that during the reconstructed historical megadrought (1633–1647), with average precipitation anomalies reaching −20% to −27%, leading to a regional water shortage rate of 16.9%, food self-sufficiency as low as 44.7%, and a critical reduction in ecological river discharge. Under future recommended scenario with enhanced water conservation, reclaimed water reuse, and expanded inter-basin transfers, the region could maintain a water shortage rate of 2.6%, achieve 69.3% food self-sufficiency, and support ecological water demand. However, long-term water resource degradation could still reduce food self-sufficiency to 62.9% and ecological outflows by 20%. The findings provide insights into adaptive water management, highlight the vulnerability of highly coupled systems to prolonged droughts, and support regional policy decisions on resilience-oriented water infrastructure planning. Full article
(This article belongs to the Special Issue Advanced Perspectives on the Water–Energy–Food Nexus)
Show Figures

Figure 1

20 pages, 2051 KB  
Review
Unfired Bricks from Wastes: A Review of Stabiliser Technologies, Performance Metrics, and Circular Economy Pathways
by Yuxin (Justin) Wang and Hossam Abuel-Naga
Buildings 2025, 15(11), 1861; https://doi.org/10.3390/buildings15111861 - 28 May 2025
Cited by 4 | Viewed by 3307
Abstract
Unfired bricks offer a sustainable alternative to traditional fired bricks by enabling the large-scale reuse of industrial, construction, and municipal wastes while significantly reducing energy consumption and greenhouse gas emissions. This review contributes to eliminating knowledge fragmentation by systematically organising stabiliser technologies, performance [...] Read more.
Unfired bricks offer a sustainable alternative to traditional fired bricks by enabling the large-scale reuse of industrial, construction, and municipal wastes while significantly reducing energy consumption and greenhouse gas emissions. This review contributes to eliminating knowledge fragmentation by systematically organising stabiliser technologies, performance metrics, and sustainability indicators across a wide variety of unfired brick systems. It thus provides a coherent reference framework to support further development and industrial translation. Emphasis is placed on the role of stabilisers—including cement, lime, geopolymers, and microbial or bio-based stabilisers—in improving mechanical strength, moisture resistance, and durability. Performance data are analysed in relation to compressive strength, water absorption, drying shrinkage, thermal conductivity, and resistance to freeze–thaw and wet–dry cycles. The findings indicate that properly stabilised unfired bricks can achieve compressive strengths above 20 MPa and water absorption rates below 10%, with notable improvements in insulation and acoustic properties. Additionally, life-cycle comparisons reveal up to 90% reductions in CO2 emissions and energy use relative to fired clay bricks. Despite technical and environmental advantages, broader adoption remains limited due to standardisation gaps and market unfamiliarity. The paper concludes by highlighting the importance of hybrid stabiliser systems, targeted certification frameworks, and waste valorisation policies to support the transition toward low-carbon, resource-efficient construction practices. Full article
(This article belongs to the Special Issue Recycling of Waste in Material Science and Building Engineering)
Show Figures

Figure 1

26 pages, 7486 KB  
Article
Assessing Water Use Efficiency and Stress in Thailand’s River Basins: Trends, Challenges, and Policy Strategies
by Chaiyapong Thepprasit, Bawornrat Sukrakanchana and Nitirach Sa-nguanduan
Sustainability 2025, 17(10), 4477; https://doi.org/10.3390/su17104477 - 14 May 2025
Viewed by 2511
Abstract
Water use efficiency (WUE) and water stress (WS) are keys indicators of water sustainability, particularly in regions with rising demand and limited supply. In Thailand, increasing water use across sectors and climate variability have raised concerns about long-term availability. This study applied Sustainable [...] Read more.
Water use efficiency (WUE) and water stress (WS) are keys indicators of water sustainability, particularly in regions with rising demand and limited supply. In Thailand, increasing water use across sectors and climate variability have raised concerns about long-term availability. This study applied Sustainable Development Goal (SDG) indicators 6.4.1 (WUE) and 6.4.2 (WS) at the river basin level, covering 22 basins from 2015 to 2022, to provide a more localized perspective than national assessments. A modified version of the FAO’s monitoring framework was applied, using standardized formulas based on sectoral water withdrawals and economic productivity. Supplementary data were gathered through estimation techniques, field surveys, and stakeholder consultations. The results showed a 21.0% decline in WUE and a rise in WS from 9.68% to 13.8%, indicating increased pressure on water resources. A very strong negative correlation was found between WUE and WS (r = −0.97, p < 0.001), although causation could not be inferred. Regional differences were evident: basins such as Tha Chin and Chao Phraya showed worsening conditions, while the Peninsula–West Coast remained relatively stable. These findings suggest the need for targeted policies to improve water use efficiency, especially in agriculture, and to enhance monitoring systems. Increasing wastewater reuse and implementing efficiency measures could help to reduce stress in vulnerable basins and support Thailand’s progress to achieving SDG 6.4. Full article
Show Figures

Figure 1

18 pages, 1579 KB  
Article
A Comprehensive Environmental Cost–Benefit Analysis of Using Reclaimed Water for Irrigation in Southern Spain
by Antonia María Lorenzo López and Alfonso Expósito
Environments 2025, 12(4), 130; https://doi.org/10.3390/environments12040130 - 21 Apr 2025
Viewed by 3066
Abstract
Water scarcity and pollution are critical challenges affecting agriculture and aquatic ecosystems. This study evaluates the environmental benefits of using reclaimed water (RW) for irrigation in southern Spain by applying a comprehensive cost–benefit analysis (CBA) to a water reuse project. This method allows [...] Read more.
Water scarcity and pollution are critical challenges affecting agriculture and aquatic ecosystems. This study evaluates the environmental benefits of using reclaimed water (RW) for irrigation in southern Spain by applying a comprehensive cost–benefit analysis (CBA) to a water reuse project. This method allows us to assess financial feasibility and environmental externalities of RW use for irrigation, with particular focus on the reduction in eutrophication and greenhouse gas emissions. Furthermore, the proposed CBA highlights the potential of RW to provide essential nutrients for crops, reduce reliance on synthetic fertilizers, and mitigate the ecological impact of fertilizer manufacturing and transportation. Results indicate that, while the direct financial returns of RW are limited, the integration of environmental benefits significantly improves the overall economic viability of water reuse projects. Furthermore, sensitivity analyses suggest that policy measures, such as adjusted water pricing and financial incentives, could enhance the adoption of RW in agriculture. This study supports the role of RW as a sustainable alternative for irrigation, contributing to water conservation, pollution reduction, and climate resilience. Future research should focus on long-term agronomic impacts, optimized pricing models, and policy frameworks that promote water reuse as a key strategy in sustainable water management. Full article
Show Figures

Figure 1

18 pages, 3188 KB  
Article
The Migration and Pollution Risk of Microplastics in Water, Soil, Sediments, and Aquatic Organisms in the Caohai Watershed, Southwest China
by Xu Wang, Xianliang Wu, Xingfu Wang, Pinhua Xia, Lan Zhang, Xianfei Huang and Zhenming Zhang
Water 2025, 17(8), 1168; https://doi.org/10.3390/w17081168 - 14 Apr 2025
Cited by 1 | Viewed by 1113
Abstract
The migration and driving factors of microplastics (MPs), as an emerging pollutant, have been reported in plateau lakes. However, whether MPs can accumulate to an extreme degree in the local aquatic organisms of plateau lakes remains unclear. Therefore, the present study mainly aims [...] Read more.
The migration and driving factors of microplastics (MPs), as an emerging pollutant, have been reported in plateau lakes. However, whether MPs can accumulate to an extreme degree in the local aquatic organisms of plateau lakes remains unclear. Therefore, the present study mainly aims to investigate the MPs accumulated in tissues of grass carp as well as reveal their migration processes and driving factors in the Caohai watershed, a typical plateau lake in southwest China. Density flotation (saturated NaCl solution) and laser direct infrared imaging spectrometry were used to analyze the relative abundance and morphological characteristics of MPs, respectively. The results showed that the MPs’ abundance in soil, water, and sediments ranged from 1.20 × 103 to 1.87 × 104 n/kg, from 9 to 223 n/L, and from 5.00 × 102 to 1.02 × 104 n/kg, respectively. The contents and composition of MPs in forestland soils were more plentiful in comparison with cultivated land soils and marshy grassland soils. Polyethylene (PE), polyvinylchloride (PVC), PA from caprolactam (PA6), and PA from hexamethylene diamine and adipic acid (PA66) were detected in grass carp, and PE was detected in all organs of grass carp. MP concentrations in the stomach, intestines, tissue, skin, and gills of grass carp ranged from 54.94 to 178.59 mg/kg. MP pollution probably mainly originated from anthropogenic factors (road traffic, farming activities, the habits of residents scattered around the study area, etc.) due to the Caohai watershed’s considerable proximity to Weining city. In addition, wind, land runoff, rivers, and atmospheric deposition in the locality directly and indirectly promoted MP migration. Our results suggested that although there is moderate MP pollution in soil, water, sediment, and grass carp in comparison with other areas, it is necessary to pay attention to PE and PVC migration via the various environmental media and the risks associated with consuming the local grass carp. The local government can make several policies to reuse and recycle agricultural film to alleviate local PE and PVC pollution. Full article
(This article belongs to the Special Issue Research on Microplastic Pollution in Water and Soil Environment)
Show Figures

Figure 1

23 pages, 3236 KB  
Technical Note
Techno-Economic and Feasibility Assessment of Membrane-Based Wastewater Treatment and Reuse in the Automotive Industry
by Sara Carvalho, Mário Eusébio and Svetlozar Velizarov
Separations 2025, 12(2), 30; https://doi.org/10.3390/separations12020030 - 26 Jan 2025
Cited by 3 | Viewed by 1367
Abstract
The gradual increase in water scarcity due to depletion and/or inadequate use of water resources has affected the automotive sector. In this context, possibilities for water reuse in the pre-treatment tunnel in an automotive painting process were studied and compared with the primary [...] Read more.
The gradual increase in water scarcity due to depletion and/or inadequate use of water resources has affected the automotive sector. In this context, possibilities for water reuse in the pre-treatment tunnel in an automotive painting process were studied and compared with the primary goal of finding the most appropriate and economically viable water recovery solutions, considering a circular economy metric approach. To this end, an experimental campaign of aqueous effluent characterization, with determinations of most relevant chemical and physical parameters, was conducted in a company in the automotive industry sector. To reduce alkalinity and remove surfactants from the effluent of the washing phase, a cation exchange on a weak-acid-based resin was proposed along with a microfiltration membrane system with a recovery efficiency of 88%. The inclusion of subsequent ultrafiltration and reverse osmosis steps proved to be the most suitable for removing salts and biocides from the water of the cooling towers, treating approximately 68% of the water. The techno-economic feasibility was comprehensively evaluated according to the type of treatment used. A cost of EUR 245 thousand was estimated for the treatment of water from the degreasing washing phase (EUR 1.06 per manufactured car), and a cost of EUR 582 thousand was estimated for the treatment of the cooling towers’ water (EUR 2.52 per car). The estimated water income after the treatment systems’ implementation was estimated to be equal to EUR 0.07 per car for the washing stage and EUR 0.13 per car for the cooling towers. Ultimately, this study clearly demonstrated the beneficial contribution of using membrane treatment in the automotive sector’s environmental policy, leading to water reuse and much lower effluent discharge according to the principles of the circular economy. Full article
(This article belongs to the Special Issue Membranes Used in Water Purification)
Show Figures

Graphical abstract

21 pages, 3119 KB  
Article
LCA and Emergy Approach to Evaluate the Environmental Performance of Plastic Bags from Fossil and Renewable Sources with the Function of Conditioning MSW
by Matheus Tavares Lacerda, Marcelo Vitor Fiatkoski, Marcell Mariano Corrêa Maceno, Feni Dalano Roosevelt Agostinho, Michele Rigon Spier, Mariana Kleina and Marcos Augusto Mendes Marques
Sustainability 2024, 16(24), 11293; https://doi.org/10.3390/su162411293 - 23 Dec 2024
Cited by 1 | Viewed by 1632
Abstract
This study aimed to compare the environmental performance of plastic bags made of three different polymers, considering two product functions: carrying goods and packing municipal solid waste. The three polymers studied were HDPE, LDPE, and thermoplastic starch (TPS). Life cycle assessment and emergy [...] Read more.
This study aimed to compare the environmental performance of plastic bags made of three different polymers, considering two product functions: carrying goods and packing municipal solid waste. The three polymers studied were HDPE, LDPE, and thermoplastic starch (TPS). Life cycle assessment and emergy accounting were used to evaluate the environmental performance of each scenario in analysis. To develop this research, eight scenarios were created to represent the customs of use and consumption in the Brazilian population. The LCA results showed that, in general, the scenarios with HDPE plastic bags presented the best environmental performances, while those with TPS presented the worst. The processes that contributed most to these results, representing 70% or more of the environmental impact in each impact category, are related to the use of raw materials, electricity, and water for the manufacture of plastic bags and the treatment in landfills. In other words, the fact that TPS has a mass around six times greater than that of HDPE and two times greater than that of LDPE ends up leaving this type of polymer with the worst environmental performance. In the comparative analysis of scenarios for the same polymer, scenarios that involve the use and reuse of plastic bags present the lowest potential environmental impacts. In contrast, those related to the use and disposal in landfills present the highest possible environmental impacts. The results of emergy accounting showed that the HDPE scenarios had the lowest total emergy flow, ranging from 1.77 × 1013 seJ to 2.40 × 1013 seJ. In contrast, the LDPE scenarios had the highest total emergy flow, ranging from 1.15 × 1014 to 1.21 × 1014 seJ. Although LDPE had the highest total emergy flow values, these results are similar to those obtained by the fossil resource scarcity impact category, which focuses on resource consumption analysis. Thus, through a real approach to the use of plastic bags and solid waste management in the Brazilian context, this study brings essential insights to direct public policies related to the consumption of plastic bags. Full article
(This article belongs to the Section Sustainable Products and Services)
Show Figures

Figure 1

Back to TopTop