Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (132)

Search Parameters:
Keywords = wearable and implantable sensors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 785 KB  
Systematic Review
A Systematic Review of Chest-Worn Sensors in Cardiac Assessment: Technologies, Advantages, and Limitations
by Ana Machado, D. Filipa Ferreira, Simão Ferreira, Natália Almeida-Antunes, Paulo Carvalho, Pedro Melo, Nuno Rocha and Matilde Rodrigues
Sensors 2025, 25(19), 6049; https://doi.org/10.3390/s25196049 - 1 Oct 2025
Abstract
This study reviews the scientific use of chest-strap wearables, analyzing their advantages and limitations, following PRISMA guidelines. Eligible studies assessed chest-strap devices in adults and reported physiological outcomes such as heart rate, heart rate variability, R–R intervals, or electrocardiographic waveform morphology. Studies involving [...] Read more.
This study reviews the scientific use of chest-strap wearables, analyzing their advantages and limitations, following PRISMA guidelines. Eligible studies assessed chest-strap devices in adults and reported physiological outcomes such as heart rate, heart rate variability, R–R intervals, or electrocardiographic waveform morphology. Studies involving implanted devices, wrist-worn wearables, or lacking validation against reference standards were excluded. Searches were conducted in PubMed, Scopus, Web of Science, and ScienceDirect for studies published in the last 10 years. The quality of the studies was assessed using the Mixed Methods Appraisal Tool, and results were synthesized narratively. Thirty-two studies were included. The most frequently evaluated devices were the Polar H10 and Zephyr BioHarness 3.0, which showed strong correlations with electrocardiography at rest and during light-to-moderate activity. Reported limitations included motion artefacts, poor strap placement, sweating, and degradation of the skin–electrode interface. None of the devices had CE or FDA approval for clinical use, and most studies were conducted in controlled settings, limiting generalizability. Ergonomic concerns such as discomfort during prolonged wear and restricted mobility were also noted. Overall, chest-strap sensors showed good validity and were widely used in validation studies. However, technical refinements and large-scale field trials are needed for broader clinical and occupational application. This review is registered in PROSPERO and is part of the SIREN project. Full article
Show Figures

Figure 1

23 pages, 3843 KB  
Article
Leveraging Reconfigurable Massive MIMO Antenna Arrays for Enhanced Wireless Connectivity in Biomedical IoT Applications
by Sunday Enahoro, Sunday Cookey Ekpo, Yasir Al-Yasir and Mfonobong Uko
Sensors 2025, 25(18), 5709; https://doi.org/10.3390/s25185709 - 12 Sep 2025
Viewed by 362
Abstract
The increasing demand for real-time, energy-efficient, and interference-resilient communication in smart healthcare environments has intensified interest in Biomedical Internet of Things (Bio-IoT) systems. However, ensuring reliable wireless connectivity for wearable and implantable biomedical sensors remains a challenge due to mobility, latency sensitivity, power [...] Read more.
The increasing demand for real-time, energy-efficient, and interference-resilient communication in smart healthcare environments has intensified interest in Biomedical Internet of Things (Bio-IoT) systems. However, ensuring reliable wireless connectivity for wearable and implantable biomedical sensors remains a challenge due to mobility, latency sensitivity, power constraints, and multi-user interference. This paper addresses these issues by proposing a reconfigurable massive multiple-input multiple-output (MIMO) antenna architecture, incorporating hybrid analog–digital beamforming and adaptive signal processing. The methodology combines conventional algorithms—such as Least Mean Square (LMS), Zero-Forcing (ZF), and Minimum Variance Distortionless Response (MVDR)—with a novel mobility-aware beamforming scheme. System-level simulations under realistic channel models (Rayleigh, Rician, 3GPP UMa) evaluate signal-to-interference-plus-noise ratio (SINR), bit error rate (BER), energy efficiency, outage probability, and fairness index across varying user loads and mobility scenarios. Results show that the proposed hybrid beamforming system consistently outperforms benchmarks, achieving up to 35% higher throughput, a 65% reduction in packet drop rate, and sub-10 ms latency even under high-mobility conditions. Beam pattern analysis confirms robust nulling of interference and dynamic lobe steering. This architecture is well-suited for next-generation Bio-IoT deployments in smart hospitals, enabling secure, adaptive, and power-aware connectivity for critical healthcare monitoring applications. Full article
(This article belongs to the Special Issue Challenges and Future Trends in Antenna Technology)
Show Figures

Figure 1

44 pages, 1983 KB  
Review
Next-Generation Chemical Sensors: The Convergence of Nanomaterials, Advanced Characterization, and Real-World Applications
by Abniel Machín and Francisco Márquez
Chemosensors 2025, 13(9), 345; https://doi.org/10.3390/chemosensors13090345 - 8 Sep 2025
Viewed by 483
Abstract
Chemical sensors have undergone transformative advances in recent years, driven by the convergence of nanomaterials, advanced fabrication strategies, and state-of-the-art characterization methods. This review emphasizes recent developments, with particular attention to progress achieved over the past decade, and highlights the role of the [...] Read more.
Chemical sensors have undergone transformative advances in recent years, driven by the convergence of nanomaterials, advanced fabrication strategies, and state-of-the-art characterization methods. This review emphasizes recent developments, with particular attention to progress achieved over the past decade, and highlights the role of the United States as a major driver of global innovation in the field. Nanomaterials such as graphene derivatives, MXenes, carbon nanotubes, metal–organic frameworks (MOFs), and hybrid composites have enabled unprecedented analytical performance. Representative studies report detection limits down to the parts-per-billion (ppb) and even parts-per-trillion (ppt) level, with linear ranges typically spanning 10–500 ppb for volatile organic compounds (VOCs) and 0.1–100 μM for biomolecules. Response and recovery times are often below 10–30 s, while reproducibility frequently exceeds 90% across multiple sensing cycles. Stability has been demonstrated in platforms capable of continuous operation for weeks to months without significant drift. In parallel, additive manufacturing, device miniaturization, and flexible electronics have facilitated the integration of sensors into wearable, stretchable, and implantable platforms, extending their applications in healthcare diagnostics, environmental monitoring, food safety, and industrial process control. Advanced characterization techniques, including in situ Raman spectroscopy, X-ray Photoelectron Spectroscopy (XPS, Atomic Force Microscopy (AFM), and high-resolution electron microscopy, have elucidated interfacial charge-transfer mechanisms, guiding rational material design and improved selectivity. Despite these achievements, challenges remain in terms of scalability, reproducibility of nanomaterial synthesis, long-term stability, and regulatory validation. Data privacy and cybersecurity also emerge as critical issues for IoT-integrated sensing networks. Looking forward, promising future directions include the integration of artificial intelligence and machine learning for real-time data interpretation, the development of biodegradable and eco-friendly materials, and the convergence of multidisciplinary approaches to ensure robust, sustainable, and socially responsible sensing platforms. Overall, nanomaterial-enabled chemical sensors are poised to become indispensable tools for advancing public health, environmental sustainability, and industrial innovation, offering a pathway toward intelligent and adaptive sensing systems. Full article
Show Figures

Graphical abstract

24 pages, 1835 KB  
Review
Multidomain Molecular Sensor Devices, Systems, and Algorithms for Improved Physiological Monitoring
by Lianna D. Soriano, Shao-Xiang Go, Lunna Li, Natasa Bajalovic and Desmond K. Loke
Micromachines 2025, 16(8), 900; https://doi.org/10.3390/mi16080900 - 31 Jul 2025
Viewed by 506
Abstract
Molecular sensor systems, e.g., implantables and wearables, provide extensive health-related monitoring. Glucose sensor systems have historically prevailed in wearable bioanalysis applications due to their continuous and reliable glucose monitoring, a feat not yet accomplished for other biomarkers. However, the advancement of reagentless detection [...] Read more.
Molecular sensor systems, e.g., implantables and wearables, provide extensive health-related monitoring. Glucose sensor systems have historically prevailed in wearable bioanalysis applications due to their continuous and reliable glucose monitoring, a feat not yet accomplished for other biomarkers. However, the advancement of reagentless detection methodologies may facilitate the creation of molecular sensor systems for multiple analytes. Improving the sensitivity and selectivity of molecular sensor systems is also crucial for biomarker detection under intricate physiological circumstances. The term multidomain molecular sensor systems is utilized to refer, in general, to both biological and chemical sensor systems. This review examines methodologies for enhancing signal amplification, improving selectivity, and facilitating reagentless detection in multidomain molecular sensor devices. The review also analyzes the fundamental components of multidomain molecular sensor systems, including substrate materials, bodily fluids, power, and decision-making units. The review article further investigates how extensive data gathered from multidomain molecular sensor systems, in conjunction with current data processing algorithms, facilitate biomarker detection for precision medicine. Full article
Show Figures

Figure 1

20 pages, 3332 KB  
Review
Nafion in Biomedicine and Healthcare
by Antonios Kelarakis
Polymers 2025, 17(15), 2054; https://doi.org/10.3390/polym17152054 - 28 Jul 2025
Viewed by 845
Abstract
Nafion has long been recognized as the gold standard for proton exchange membranes, due to its exceptional ion exchange capacity and its advanced performance in chemically aggressive environments. In recent years, a growing body of evidence has demonstrated that Nafion is equally well-suited [...] Read more.
Nafion has long been recognized as the gold standard for proton exchange membranes, due to its exceptional ion exchange capacity and its advanced performance in chemically aggressive environments. In recent years, a growing body of evidence has demonstrated that Nafion is equally well-suited in complex biological conditions owing to its structural robustness, responsive functionality and intrinsic biocompatibility. These characteristics have enabled its transition into the biomedical and healthcare sectors, where it is currently being explored for a diverse and expanding range of applications. To that end, Nafion has been systematically investigated as a key component in bioelectronic systems for energy harvest, sensors, wearable electronics, tissue engineering, lab-on-a-chip platforms, implants, controlled drug delivery systems and antimicrobial surface coatings. This review examines the distinctive structural and electrochemical characteristics that underpin Nafion’s performance in these biomedical contexts, provides an overview of recent advancements, emphasizes critical performance metrics and highlights the material’s growing potential to shape the future of biomedical technology. Full article
(This article belongs to the Section Smart and Functional Polymers)
Show Figures

Figure 1

13 pages, 442 KB  
Review
Sensor Technologies and Rehabilitation Strategies in Total Knee Arthroplasty: Current Landscape and Future Directions
by Theodora Plavoukou, Spiridon Sotiropoulos, Eustathios Taraxidis, Dimitrios Stasinopoulos and George Georgoudis
Sensors 2025, 25(15), 4592; https://doi.org/10.3390/s25154592 - 24 Jul 2025
Viewed by 1109
Abstract
Total Knee Arthroplasty (TKA) is a well-established surgical intervention for the management of end-stage knee osteoarthritis. While the procedure is generally successful, postoperative rehabilitation remains a key determinant of long-term functional outcomes. Traditional rehabilitation protocols, particularly those requiring in-person clinical visits, often encounter [...] Read more.
Total Knee Arthroplasty (TKA) is a well-established surgical intervention for the management of end-stage knee osteoarthritis. While the procedure is generally successful, postoperative rehabilitation remains a key determinant of long-term functional outcomes. Traditional rehabilitation protocols, particularly those requiring in-person clinical visits, often encounter limitations in accessibility, patient adherence, and personalization. In response, emerging sensor technologies have introduced innovative solutions to support and enhance recovery following TKA. This review provides a thematically organized synthesis of the current landscape and future directions of sensor-assisted rehabilitation in TKA. It examines four main categories of technologies: wearable sensors (e.g., IMUs, accelerometers, gyroscopes), smart implants, pressure-sensing systems, and mobile health (mHealth) platforms such as ReHub® and BPMpathway. Evidence from recent randomized controlled trials and systematic reviews demonstrates their effectiveness in tracking mobility, monitoring range of motion (ROM), detecting gait anomalies, and delivering real-time feedback to both patients and clinicians. Despite these advances, several challenges persist, including measurement accuracy in unsupervised environments, the complexity of clinical data integration, and digital literacy gaps among older adults. Nevertheless, the integration of artificial intelligence (AI), predictive analytics, and remote rehabilitation tools is driving a shift toward more adaptive and individualized care models. This paper concludes that sensor-enhanced rehabilitation is no longer a future aspiration but an active transition toward a smarter, more accessible, and patient-centered paradigm in recovery after TKA. Full article
(This article belongs to the Section Biosensors)
Show Figures

Figure 1

27 pages, 1218 KB  
Review
Advancements in Sensor Technology for Monitoring and Management of Chronic Coronary Syndrome
by Riccardo Cricco, Andrea Segreti, Aurora Ferro, Stefano Beato, Gaetano Castaldo, Martina Ciancio, Filippo Maria Sacco, Giorgio Pennazza, Gian Paolo Ussia and Francesco Grigioni
Sensors 2025, 25(15), 4585; https://doi.org/10.3390/s25154585 - 24 Jul 2025
Viewed by 991
Abstract
Chronic Coronary Syndrome (CCS) significantly impacts quality of life and increases the risk of adverse cardiovascular events, remaining the leading cause of mortality worldwide. The use of sensor technology in medicine is emerging as a promising approach to enhance the management and monitoring [...] Read more.
Chronic Coronary Syndrome (CCS) significantly impacts quality of life and increases the risk of adverse cardiovascular events, remaining the leading cause of mortality worldwide. The use of sensor technology in medicine is emerging as a promising approach to enhance the management and monitoring of patients across a wide range of diseases. Recent advancements in engineering and nanotechnology have enabled the development of ultra-small devices capable of collecting data on critical physiological parameters. Several sensors integrated in wearable and implantable devices, instruments for exhaled gas analysis, smart stents and tools capable of real time biochemical analysis have been developed, and some of them have demonstrated to be effective in CCS management. Their application in CCS could provide valuable insights into disease progression, ischemic events, and patient responses to therapy. Moreover, sensor technologies can support the personalization of treatment plans, enable early detection of disease exacerbations, and facilitate prompt interventions, potentially reducing the need for frequent hospital visits and unnecessary invasive diagnostic procedures such as coronary angiography. This review explores sensor integration in CCS care, highlighting technological advances, clinical potential, and implementation challenges. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

17 pages, 992 KB  
Article
Improving Vulnerability Management for Security-by-Design of Medical Devices
by Emanuele Raso, Francesca Nanni, Francesco Lestini, Lorenzo Bracciale, Giorgia Panico, Giuseppe Bianchi, Giancarlo Orengo, Gaetano Marrocco and Pierpaolo Loreti
Sensors 2025, 25(14), 4418; https://doi.org/10.3390/s25144418 - 16 Jul 2025
Viewed by 1097
Abstract
The healthcare industry is witnessing a rapid rise in the adoption of wearable and implantable medical devices, including advanced electrochemical sensors and other smart diagnostic technologies. These devices are increasingly used to enable real-time monitoring of physiological parameters, allowing for faster diagnosis and [...] Read more.
The healthcare industry is witnessing a rapid rise in the adoption of wearable and implantable medical devices, including advanced electrochemical sensors and other smart diagnostic technologies. These devices are increasingly used to enable real-time monitoring of physiological parameters, allowing for faster diagnosis and more personalized care plans. Their growing presence reflects a broader shift toward smart connected healthcare systems aimed at delivering immediate and actionable insights to both patients and medical professionals. At the same time, the healthcare industry is increasingly targeted by cyberattacks, primarily due to the high value of medical information; in addition, the growing integration of ICT technologies into medical devices has introduced new vulnerabilities that were previously absent in this sector. To mitigate these risks, new international guidelines advocate the adoption of best practices for secure software development, emphasizing a security-by-design approach in the design and implementation of such devices. However, the vast and fragmented nature of the information required to effectively support these development processes poses a challenge for the numerous stakeholders involved. In this paper, we demonstrate how key features of the Malware Information Sharing Platform (MISP) can be leveraged to systematically collect and structure vulnerability-related information for medical devices. We propose tailored structures, objects, and taxonomies specific to medical devices, facilitating a standardized data representation that enhances the security-by-design development of these devices. Full article
(This article belongs to the Special Issue Wearable and Implantable Electrochemical Sensors)
Show Figures

Figure 1

11 pages, 2217 KB  
Article
One-Pot Improvement of Stretchable PEDOT/PSS Alginate Conductivity for Soft Sensing Biomedical Processes
by Somayeh Zanganeh, Alberto Ranier Escobar, Hung Cao and Peter Tseng
Processes 2025, 13(7), 2173; https://doi.org/10.3390/pr13072173 - 8 Jul 2025
Viewed by 645
Abstract
Hydrogels have immense potential in soft electronics due to their similarity to biological tissues. However, for applications in fields like tissue engineering and wearable electronics, hydrogels must obtain electrical conductivity, stretchability, and implantability. This article explores recent advancements in the development of electrically [...] Read more.
Hydrogels have immense potential in soft electronics due to their similarity to biological tissues. However, for applications in fields like tissue engineering and wearable electronics, hydrogels must obtain electrical conductivity, stretchability, and implantability. This article explores recent advancements in the development of electrically conductive hydrogel composites with high conductivity, low Young’s modulus, and remarkable stretchability. By incorporating conductive particles into hydrogels, such as poly(3,4-ethylenedioxythiophene)/poly (styrenesulfonate) (PEDOT/PSS) researchers have enhanced their conductivity. This study presents a one-pot synthesis method for creating electrically conductive hydrogel composites by combining PEDOT/PSS with alginate. The hydrogel reveals changes in chemical composition upon treatment with dimethyl sulfoxide (DMSO). Additionally, surface morphology analysis via Field Emission Scanning Electron Microscopy (FESEM) and Atomic Force Microscopy (AFM) demonstrate the impact of DMSO treatment on PEDOT/PSS/alginate films. Furthermore, electrical conductivity measurements highlighted the effectiveness of the conductive hydrogels in Electromyography (EMG) and human motion detection. This study offers insights into the fabrication and characterization of stretchable, conductive hydrogels, advancing their potential for various soft sensing biomedical applications. The optimized PDOT/PSS/alginate composite under dry condition shows a conductivity of 0.098 S/cm and can be stretched without significant loss in conductivity or mechanical stability. This one-pot method provides a simple and effective way to improve the properties of conductive hydrogel-based sensors. Full article
Show Figures

Figure 1

15 pages, 3865 KB  
Article
Mechanically Tunable Composite Hydrogel for Multi-Gesture Motion Monitoring
by Jiabing Zhang, Zilong He, Bin Shen, Jiang Li, Yongtao Tang, Shuhuai Pang, Xiaolin Tian, Shuang Wang and Fengyu Li
Biosensors 2025, 15(7), 412; https://doi.org/10.3390/bios15070412 - 27 Jun 2025
Viewed by 533
Abstract
Intrinsic conductive ionic hydrogels, endowed with excellent mechanical properties, hold significant promise for applications in wearable and implantable electronics. However, the complexity of exercise and athletics calls for mechanical tunability, facile processability and high conductivity of wearable sensors, which remains a persistent challenge. [...] Read more.
Intrinsic conductive ionic hydrogels, endowed with excellent mechanical properties, hold significant promise for applications in wearable and implantable electronics. However, the complexity of exercise and athletics calls for mechanical tunability, facile processability and high conductivity of wearable sensors, which remains a persistent challenge. In this study, we developed a mechanically tunable and high ionic conductive hydrogel patch to approach multi-gesture or motion monitoring. Through adjustment of the ratio of amino trimethylene phosphonic acid (ATMP) and poly(vinyl alcohol) (PVA), the composite hydrogel attains tunable mechanical strength (varying from 50 kPa to 730 kPa), remarkable stretchability (reaching up to 1900% strain), high conductivity (measuring 15.43 S/m), and strong linear sensitivity (with a gauge factor of 2.34 within 100% strain). Benefitting with the tunable mechanical sensitivity, the composite hydrogel patch can perform subtle movement monitoring, such as epidermal pulses or pronounced muscle vibrations; meanwhile, it can also recognize and detect major motions, such as hand gestures. The mechanically tunable composite hydrogel contributes a versatile sensing platform for health or athletic monitoring, with wide and sensitive adoptability. Full article
(This article belongs to the Special Issue Wearable Sensors for Precise Exercise Monitoring and Analysis)
Show Figures

Figure 1

30 pages, 4171 KB  
Review
Two-Dimensional Materials for Biosensing: Emerging Bio-Converged Strategies for Wearable and Implantable Platforms
by Ki Ha Min, Koung Hee Kim and Seung Pil Pack
Chemosensors 2025, 13(6), 209; https://doi.org/10.3390/chemosensors13060209 - 8 Jun 2025
Cited by 1 | Viewed by 2303
Abstract
The development of functional biosensors is rapidly advancing in response to the growing demand for personalized and continuous healthcare monitoring. Two-dimensional (2D) nanostructured materials have attracted significant attention for next-generation biosensors due to their exceptional physicochemical properties, including a high surface-to-volume ratio, excellent [...] Read more.
The development of functional biosensors is rapidly advancing in response to the growing demand for personalized and continuous healthcare monitoring. Two-dimensional (2D) nanostructured materials have attracted significant attention for next-generation biosensors due to their exceptional physicochemical properties, including a high surface-to-volume ratio, excellent electrical conductivity, and mechanical flexibility. The integration of 2D materials with biological recognition elements offers synergistic improvements in sensitivity, stability, and overall sensor performance. These unique properties make 2D materials particularly well-suited for constructing wearable and implantable biosensors, which require conformal contact with soft tissues, mechanical adaptability to body movement, and reliable operation under physiological conditions. This review highlights recent advances in functionalized and composite 2D materials for wearable and implantable biosensing applications. We focus on key strategies in surface modification and hybrid nanostructure engineering aimed at optimizing performance in dynamic, body-integrated environments. Finally, we discuss current challenges and future directions for clinical translation, emphasizing the potential of 2D-material-based biosensors to drive progress in personalized and precision medicine. Full article
(This article belongs to the Special Issue Emerging 2D Materials for Sensing Applications)
Show Figures

Figure 1

15 pages, 11557 KB  
Article
Toward Versatile Transient Electronics: Electrospun Biocompatible Silk Fibroin/Carbon Quantum Dot-Based Green-Emission, Water-Soluble Piezoelectric Nanofibers
by Zhipei Xia, Chubao Liu, Juan Li, Biyao Huang, Chu Pan, Yu Lai, Zhu Liu, Dongling Wu, Sen Liang, Xuanlun Wang, Weiqing Yang and Jun Lu
Polymers 2025, 17(11), 1579; https://doi.org/10.3390/polym17111579 - 5 Jun 2025
Viewed by 811
Abstract
The rapid development of wearable electronics requires multifunctional, transient electronic devices to reduce the ecological footprint and ensure data security. Unfortunately, existing transient electronic materials need to be degraded in chemical solvents or body fluids. Here, we report green luminescent, water-soluble, and biocompatible [...] Read more.
The rapid development of wearable electronics requires multifunctional, transient electronic devices to reduce the ecological footprint and ensure data security. Unfortunately, existing transient electronic materials need to be degraded in chemical solvents or body fluids. Here, we report green luminescent, water-soluble, and biocompatible piezoelectric nanofibers developed by electrospinning green carbon quantum dots (G-CQDs), mulberry silk fibroin (SF), and polyvinyl alcohol (PVA). The introduction of G-CQDs significantly enhances the piezoelectric output of silk fibroin-based fiber materials. Meanwhile, the silk fibroin-based hybrid fibers maintain the photoluminescent response of G-CQDs without sacrificing valuable biocompatibility. Notably, the piezoelectric output of a G-CQD/PVA/SF fiber-based nanogenerator is more than three times higher than that of a PVA/SF fiber-based nanogenerator. This is one of the highest levels of state-of-the-art piezoelectric devices based on biological organic materials. As a proof of concept, in the actual scenario of a rope skipping exercise, the G-CQD/PVA/SF fiber-based nanogenerator is further employed as a self-powered wearable sensor for real-time sensing of athletic motions. It demonstrates high portability, good flexibility, and stable piezoresponse for smart sports applications. This class of water-disposable, piezo/photoactive biological materials could be compelling building blocks for applications in a new generation of versatile, transient, wearable/implantable devices. Full article
(This article belongs to the Special Issue Polymer-Based Wearable Electronics)
Show Figures

Figure 1

15 pages, 4087 KB  
Article
A 0.4 V CMOS Current-Controlled Tunable Ring Oscillator for Low-Power IoT and Biomedical Applications
by Md Anas Abdullah, Mohamed B. Elamien and M. Jamal Deen
Electronics 2025, 14(11), 2209; https://doi.org/10.3390/electronics14112209 - 29 May 2025
Cited by 1 | Viewed by 1631
Abstract
This work presents a current-controlled CMOS ring oscillator (CCRO) optimized for ultra-low-voltage applications in next-generation energy-constrained systems. Leveraging bulk voltage tuning in 22 nm FDSOI differential inverter stages, the topology enables frequency adjustment while operating MOSFETs in the subthreshold region—critical for minimizing power [...] Read more.
This work presents a current-controlled CMOS ring oscillator (CCRO) optimized for ultra-low-voltage applications in next-generation energy-constrained systems. Leveraging bulk voltage tuning in 22 nm FDSOI differential inverter stages, the topology enables frequency adjustment while operating MOSFETs in the subthreshold region—critical for minimizing power in sub-1 V environments. Simulations at 0.4 V supply demonstrate robust performance: a three-stage oscillator achieves a 537–800 MHz tuning range with bias current (IBIAS) modulation from 30–130 nA, while a four-stage configuration spans 388–587 MHz. At 70 nA IBIAS, the three-stage design delivers a nominal frequency of 666.8 MHz with just 10.23 µW power dissipation, underscoring its suitability for ultra-low-power IoT and biomedical applications. The oscillator’s linear frequency sensitivity (2.63 MHz/nA) allows precise, dynamic control over performance–power tradeoffs. To address diverse application needs, the design integrates three tunability mechanisms: programmable capacitor arrays for coarse frequency adjustments, configurable stage counts (three- or four-stage topologies), and supply voltage scaling. This multi-modal approach extends the operational range to 1 MHz–1 GHz, ensuring compatibility with low-speed sensor interfaces and high-speed edge-computing tasks. The CCRO’s subthreshold operation at 0.4 V—coupled with nanoampere-level current consumption—makes it uniquely suited for battery-less systems, wearable health monitors, and implantable medical devices where energy efficiency and adaptive clocking are paramount. By eliminating traditional voltage-controlled oscillators’ complexity, this topology offers a compact, scalable solution for emerging ultra-low-power technologies. Full article
Show Figures

Figure 1

32 pages, 2380 KB  
Review
Nanosensors and Microsensors for Body Fluid Monitoring: Various Analyte Detection and Construction Solutions
by Nikola Lenar and Beata Paczosa-Bator
Int. J. Mol. Sci. 2025, 26(11), 5001; https://doi.org/10.3390/ijms26115001 - 22 May 2025
Cited by 2 | Viewed by 1800
Abstract
This review provides a comprehensive overview of the recent advancements in nanosensors and microsensors for body fluid monitoring. The principles behind sensor technologies, their applications in healthcare, and the types of body fluids that they analyze are described in the scope of this [...] Read more.
This review provides a comprehensive overview of the recent advancements in nanosensors and microsensors for body fluid monitoring. The principles behind sensor technologies, their applications in healthcare, and the types of body fluids that they analyze are described in the scope of this paper. Additionally, this review discusses emerging trends, challenges, and future perspectives in this field. The first two sections explore various body fluids and their diagnostic significance and discuss the fundamentals and classification of nanosensors and microsensors. The main aim of this paper is to highlight recent advancements in nanosensors for body fluid monitoring and to examine the role of microsensors in healthcare diagnostics. Innovative solutions such as microfluidic-based sensors, lab-on-a-chip systems, MEMS-based sensors, and wearable and implantable sensors are discussed in this section. Various construction solutions for microsensors and nanosensors have also been compiled and compared based on their target analytes, which are widely present in body fluids. The following sections review technologies and trends, including AI integration and flexible sensors, and discuss challenges and future perspectives in the development and application of sensors. The conclusion includes a summary of key findings and the future outlook for nanosensors and microsensors in personalized medicine. Full article
(This article belongs to the Special Issue Cutting-Edge Research on Nanosensors and Microsensors)
Show Figures

Figure 1

23 pages, 4534 KB  
Review
Branding a New Technological Outlook for Future Orthopaedics
by Nicole Tueni and Farid Amirouche
Bioengineering 2025, 12(5), 494; https://doi.org/10.3390/bioengineering12050494 - 7 May 2025
Cited by 1 | Viewed by 1741
Abstract
Orthopedics is undergoing a transformative shift driven by personalized medical technologies that enhance precision, efficiency, and patient outcomes. Virtual surgical planning, robotic assistance, and real-time 3D navigation have revolutionized procedures like total knee arthroplasty and hip replacement, offering unparalleled accuracy and reducing recovery [...] Read more.
Orthopedics is undergoing a transformative shift driven by personalized medical technologies that enhance precision, efficiency, and patient outcomes. Virtual surgical planning, robotic assistance, and real-time 3D navigation have revolutionized procedures like total knee arthroplasty and hip replacement, offering unparalleled accuracy and reducing recovery times. Integrating artificial intelligence, advanced imaging, and 3D-printed patient-specific implants further elevates surgical precision, minimizes intraoperative complications, and supports individualized care. In sports orthopedics, wearable sensors and motion analysis technologies are revolutionizing diagnostics, injury prevention, and rehabilitation, enabling real-time decision-making and improved patient safety. Health-tracking devices are advancing recovery and supporting preventative care, transforming athletic performance management. Concurrently, breakthroughs in biologics, biomaterials, and bioprinting are reshaping treatments for cartilage defects, ligament injuries, osteoporosis, and meniscal damage. These innovations are poised to establish new benchmarks for regenerative medicine in orthopedics. By combining cutting-edge technologies with interdisciplinary collaboration, the field is redefining surgical standards, optimizing patient care, and paving the way for a highly personalized and efficient future. Full article
(This article belongs to the Special Issue Advanced Engineering Technologies in Orthopaedic Research)
Show Figures

Figure 1

Back to TopTop