Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (64)

Search Parameters:
Keywords = weld solidification cracking

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 18687 KB  
Article
Influence of Stirring Pin Geometry on Weld Appearance and Microstructure in Wire-Based Friction-Stir Additive Manufacturing of EN AW-6063 Aluminium
by Stefan Donaubauer, Stefan Weihe and Martin Werz
J. Manuf. Mater. Process. 2025, 9(9), 306; https://doi.org/10.3390/jmmp9090306 - 5 Sep 2025
Viewed by 710
Abstract
Additive manufacturing of metal components is predominantly based on fusion-welding processes involving melting and solidification. However, processing high-strength aluminium alloys presents challenges, including reduced mechanical properties and increased susceptibility to hot cracking. To address these issues, alternative solid-state processing methods for aluminium are [...] Read more.
Additive manufacturing of metal components is predominantly based on fusion-welding processes involving melting and solidification. However, processing high-strength aluminium alloys presents challenges, including reduced mechanical properties and increased susceptibility to hot cracking. To address these issues, alternative solid-state processing methods for aluminium are being explored worldwide. One such method is wire-based friction-stir additive manufacturing, which builds on the principles of friction-stir welding. This study focused on assessing a range of pin tool designs to promote improved mixing between the filler material and substrate. The best results were achieved using a two-stirring-probe configuration, which was then employed to fabricate a multilayer wall made of EN AW-6063 aluminium alloy. The resulting structure showed significant grain refinement, with the deposited layers having an average grain size approximately four times smaller than that of the substrate, indicating dynamic recrystallisation. Tensile testing of the intermediate layer revealed a strength of 147 MPa and 10% elongation, corresponding to 77% of the filler wire strength. These findings highlight the potential of the W-FSAM process for producing near-net-shape, high-quality lightweight metal components with refined microstructures and reliable mechanical performance. Full article
Show Figures

Figure 1

14 pages, 12121 KB  
Article
Influence of Cold Metal Transfer Parameters on Weld Bead Geometry, Mechanical Properties, and Corrosion Performance of Dissimilar Aluminium Alloys
by Balram Yelamasetti, Mohammed Zubairuddin, Sri Phani Sushma I, Mohammad Faseeulla Khan, Syed Quadir Moinuddin and Hussain Altammar
Crystals 2025, 15(8), 722; https://doi.org/10.3390/cryst15080722 - 13 Aug 2025
Cited by 1 | Viewed by 673
Abstract
Aluminium alloys are known for their high strength-to-weight-ratio offering a wide range of applications in the aerospace and automotive industries. However, challenges exist like porosity, oxidation, solidification shrinkage, hot cracking, etc., in joining aluminium alloys. To address these challenges, there is a necessity [...] Read more.
Aluminium alloys are known for their high strength-to-weight-ratio offering a wide range of applications in the aerospace and automotive industries. However, challenges exist like porosity, oxidation, solidification shrinkage, hot cracking, etc., in joining aluminium alloys. To address these challenges, there is a necessity to understand the process parameters for the welding/joining of aluminium alloys. The present study aims to investigate the effect of cold metal transfer (CMT) welding process parameters (i.e., welding speed and wire feed rate) on mechanical properties for dissimilar AA6061-AA6082 alloys weld joints. Two different welding conditions viz. CMT1 (speed: 0.5 m/min with feed: 5 m/min) and CMT2 (speed: 0.3 m/min with feed: 3 m/min), were considered. The weldments were deployed for testing different mechanical properties such as tensile, impact, hardness, corrosion tests and bead profile geometries. The results reveal that CMT1 has better mechanical properties (tensile_233 MPa; impact_8 J; corrosion rate_0.01368 mm/year) than CMT2, showing the welding speed and wire feed rate play a significant role in the joint performance. The heat affected zone and fusion zone are narrow for CMT1 when compared with CMT2. The present study provides insights into the CMT process and dissimilar joining of aluminium alloys that might be helpful for additive manufacturing of dissimilar aluminium alloys as future research directions. Full article
(This article belongs to the Special Issue Advanced Welding and Additive Manufacturing)
Show Figures

Figure 1

130 pages, 2839 KB  
Review
Issues Relative to the Welding of Nickel and Its Alloys
by Adam Rylski and Krzysztof Siczek
Materials 2025, 18(15), 3433; https://doi.org/10.3390/ma18153433 - 22 Jul 2025
Viewed by 869
Abstract
Nickel is used in aerospace, military, energy, and chemical sectors. Commercially pure (CP) Ni, and its alloys, including solid-solution strengthened (SSS), precipitation strengthened (PS), and specialty alloys (SA), are widely utilized, typically at elevated temperatures, in corrosive settings and in cryogenic milieu. Ni [...] Read more.
Nickel is used in aerospace, military, energy, and chemical sectors. Commercially pure (CP) Ni, and its alloys, including solid-solution strengthened (SSS), precipitation strengthened (PS), and specialty alloys (SA), are widely utilized, typically at elevated temperatures, in corrosive settings and in cryogenic milieu. Ni or Ni-based alloys frequently require welding realized, inter alia, via methods using electric arc and beam power. Tungsten inert gas (TIG) and Electron-beam welding (EBW) have been utilized most often. Friction stir welding (FSW) is the most promising solid-state welding technique for connecting Ni and its alloys. The primary weldability issues related to Ni and its alloys are porosity, as well as hot and warm cracking. CP Ni exhibits superior weldability. It is vulnerable to porosity and cracking during the solidification of the weld metal. Typically, SSS alloys demonstrate superior weldability when compared to PS Ni alloys; however, both types may experience weld metal solidification cracking, liquation cracking in the partially melted and heat-affected zones, as well as ductility-dip cracking (DDC). Furthermore, PS alloys are prone to strain-age cracking (SAC). The weldability of specialty Ni alloys is limited, and brazing might provide a solution. Employing appropriate filler metal, welding settings, and minimal restraint can reduce or avert cracking. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

23 pages, 4322 KB  
Article
Thermal, Metallurgical, and Mechanical Analysis of Single-Pass INC 738 Welded Parts
by Cherif Saib, Salah Amroune, Mohamed-Saïd Chebbah, Ahmed Belaadi, Said Zergane and Barhm Mohamad
Metals 2025, 15(6), 679; https://doi.org/10.3390/met15060679 - 18 Jun 2025
Viewed by 567
Abstract
This study presents numerical analyses of the thermal, metallurgical, and mechanical processes involved in welding. The temperature fields were computed by solving the transient heat transfer equation using the ABAQUS/Standard 2024 finite element solver. Two types of moving heat sources were applied: a [...] Read more.
This study presents numerical analyses of the thermal, metallurgical, and mechanical processes involved in welding. The temperature fields were computed by solving the transient heat transfer equation using the ABAQUS/Standard 2024 finite element solver. Two types of moving heat sources were applied: a surface Gaussian distribution and a volumetric model, both implemented via DFLUX subroutines to simulate welding on butt-jointed plates. The simulation accounted for key welding parameters, including current, voltage, welding speed, and plate dimensions. The thermophysical properties of the INC 738 LC nickel superalloy were used in the model. Solidification characteristics, such as dendritic arm spacing, were estimated based on cooling rates around the weld pool. The model also calculated transverse residual stresses and applied a hot cracking criterion to identify regions vulnerable to cracking. The peak transverse stress, recorded in the heat-affected zone (HAZ), reached 1.1 GPa under Goldak’s heat input model. Additionally, distortions in the welded plates were evaluated for both heat source configurations. Full article
Show Figures

Figure 1

13 pages, 5305 KB  
Article
Applicability of Hf-Free 247LC as a Filler Metal for Hot Crack-Free 247LC Superalloy Welds Assisted by Varestraint Testing
by Seong-Jin Lee and Eun-Joon Chun
Materials 2025, 18(6), 1284; https://doi.org/10.3390/ma18061284 - 14 Mar 2025
Viewed by 631
Abstract
In this study, based on previous fundamental research on weldability, we ultimately aim to propose a filler metal that enables hot crack-free repair welding of 247LC superalloy while minimizing compositional modification. First, we investigated the liquation cracking susceptibility of two candidate filler metals, [...] Read more.
In this study, based on previous fundamental research on weldability, we ultimately aim to propose a filler metal that enables hot crack-free repair welding of 247LC superalloy while minimizing compositional modification. First, we investigated the liquation cracking susceptibility of two candidate filler metals, namely Hf-free and B-free 247LC superalloy welds, by individually removing Hf and B and performing a spot-Varestraint test. As a result, the liquation cracking temperature range (LCTR) of B-free 247LC was 370 K and 230 K for Hf-free 247LC. The results indicated a significant reduction in the liquation cracking temperature range (LCTR) to 230 K for the Hf-free alloy, from 620 K for the Hf-containing standard 247LC alloy. Direct microstructural analysis of the liquation cracking surfaces revealed a higher liquation initiation temperature at the γ/MC interface in the Hf-free alloy, ranging from 1460 to 1600 K, compared to that of the original 247LC alloy composition, which contributed to the reduced LCTR. These findings indicate that Hf-free 247LC superalloys offer enhanced weldability—particularly for manufacturing and repairing critical components of tools with high-temperature applications, such as gas-turbine blades. Finally, assuming the Hf-free 247LC alloy as a filler metal and the original 247LC alloy composition as a base metal, double square groove welding was performed. This clearly confirmed the possibility of hot crack-free welding with Hf-free 247LC filler metal, effectively suppressing both liquation and solidification cracking simultaneously. Full article
Show Figures

Figure 1

12 pages, 10747 KB  
Communication
Microstructure and Mechanical Properties of Inconel 718 Alloy Fabricated Using Wire Feeding Oscillated Double-Pulsed GTA-AM
by Gang Zhang, Cheng Zhang, Yu Shi and Ding Fan
Metals 2025, 15(3), 248; https://doi.org/10.3390/met15030248 - 26 Feb 2025
Cited by 1 | Viewed by 2154
Abstract
To address anisotropy challenges in electric arc-based additive manufacturing of Inconel 718 alloy, this study develops a novel wire feeding oscillated double-pulsed gas tungsten arc welding additive manufacturing method (DP-GTA-AM) enabling precise thermal-mass transfer control. Series of crack-free thin-walled Inconel 718 alloy parts [...] Read more.
To address anisotropy challenges in electric arc-based additive manufacturing of Inconel 718 alloy, this study develops a novel wire feeding oscillated double-pulsed gas tungsten arc welding additive manufacturing method (DP-GTA-AM) enabling precise thermal-mass transfer control. Series of crack-free thin-walled Inconel 718 alloy parts were successfully obtained by this proposed approach, and the microstructure and mechanical properties of the parts were thoroughly studied. The results indicate that the microstructure changes from dendrites and cellular crystals in the bottom to equiaxed grains in the midsection and entirely equiaxed crystals in the top, resulting in notable grain refinement. With an average grain size of 61.76 μm and an average length of 83.31 μm of large angle grain boundaries, the density of the <001> direction reaches 19.45. The difference in tensile strength and ductility between the horizontal and the vertical directions decreases to 6.3 MPa and 0.38%, which significantly diminishes anisotropy. Fractographic analysis confirms quasi-cleavage failure with homogeneous dimple distribution, demonstrating effective anisotropy mitigation through controlled solidification dynamics. Full article
(This article belongs to the Special Issue Advance in Wire-Based Additive Manufacturing of Metal Materials)
Show Figures

Figure 1

17 pages, 10684 KB  
Article
Alternatives to Reduce Hot Cracking Susceptibility of IN718 Casting Alloy Laser Beam Welds with a Mushroom Shape
by Leire García-Sesma, Pedro Álvarez, Eider Gorostegui-Colinas, I. Huarte and Fernando Santos
Metals 2024, 14(9), 1067; https://doi.org/10.3390/met14091067 - 18 Sep 2024
Viewed by 1929
Abstract
Reducing hot cracking is essential for ensuring seamless production of nickel superalloys, which are extensively used in welded structures for aircraft engines. The prevalence of hot cracking in precipitation-strengthened alloy 718 is primarily governed by two factors: firstly, the chemical composition and the [...] Read more.
Reducing hot cracking is essential for ensuring seamless production of nickel superalloys, which are extensively used in welded structures for aircraft engines. The prevalence of hot cracking in precipitation-strengthened alloy 718 is primarily governed by two factors: firstly, the chemical composition and the coarse microstructure formed during solidification, and secondly, the activation of hot cracking mechanisms, which is particularly critical in mushroom-shaped welding morphologies. In this study, different nickel-based superalloys welded using laser beam welding (LBW), more specifically bead on plate welding (BoP), specimens are compared. The cracking susceptibility of both wrought and two investment casting 718 alloys with tailored chemical compositions is examined through the application of both continuous and pulsed LBW. Additionally, various pre-weld treatments, including with and without Pre-HIP (hot isostatic pressing), are analyzed. The influences of chemical composition, LBW parameters and pre- and post-welding treatments on both internal and external cracks determined by conventional and advanced non-destructive tests are studied. A clear reduction of hot cracking susceptibility and overall welding quality improvement was observed in a tailored 718 alloy with relatively high Ni (55.6% wt) and Co (1.11% wt) contents. Full article
Show Figures

Figure 1

15 pages, 11104 KB  
Article
FEM-Based Conductive Heat Transfer Analytical Description of Solidification Rate and Temperature Gradient during Lateral Laser Beam Oscillation Welding of Aluminum Alloy
by Jason Cheon, Cheolhee Kim, Sanghoon Kang and Minjung Kang
Materials 2024, 17(13), 3248; https://doi.org/10.3390/ma17133248 - 2 Jul 2024
Cited by 1 | Viewed by 1838
Abstract
This study investigates the feasibility of utilizing the finite element method (FEM)-based conductive heat transfer (CHT) analysis simulation to determine temperature gradients and solidification rates at the solid–liquid interface during laser beam oscillation welding. By comparing experimental observations with FEM-based CHT analysis, the [...] Read more.
This study investigates the feasibility of utilizing the finite element method (FEM)-based conductive heat transfer (CHT) analysis simulation to determine temperature gradients and solidification rates at the solid–liquid interface during laser beam oscillation welding. By comparing experimental observations with FEM-based CHT analysis, the underlying microstructural evolution and grain formation during welding were examined. FEM-based CHT enables the calculation of temperature gradients (G) and solidification rates (R), offering insights into the formation of equiaxed structures, which are crucial for suppressing hot cracking. Columnar-to-equiaxed structure transition thresholds, such as G/R and G3/R, accurately predict the emergence of fully equiaxed grain structures, validated by electron backscatter diffraction. This research provides valuable insights into temperature gradients and solidification rates in oscillation welding, guiding process design for achieving refined equiaxed structures and minimizing hot cracks. Full article
Show Figures

Figure 1

16 pages, 27791 KB  
Article
Tailoring Weldability for Microstructures in Laser-Welded Near-α Titanium Alloy: Insights on Mechanical Properties
by Shiwei Zhang, Baoqiang Cong, Zhi Zeng, Ying Liu and Lu Chai
Metals 2024, 14(6), 690; https://doi.org/10.3390/met14060690 - 11 Jun 2024
Cited by 3 | Viewed by 1756
Abstract
With the development of lightweight aerospace structures, the use of the high-quality and efficient laser welding of near-α titanium alloys has received widespread attention and favor thanks to its superior comprehensive performance. The welding experiment of 3 mm thick TA15 titanium alloy was [...] Read more.
With the development of lightweight aerospace structures, the use of the high-quality and efficient laser welding of near-α titanium alloys has received widespread attention and favor thanks to its superior comprehensive performance. The welding experiment of 3 mm thick TA15 titanium alloy was carried out by YAG laser welding, and the material weldability, microstructure, microhardness, and mechanical properties of welded joints were systematically studied. The results indicated that laser welding of TA15 titanium alloy can produce well-formed welded joints without defects such as cracks and porosity. The welded metal used was a typical basket-weave microstructure composed of a large number of α′ martensitic phases and a small number of high-temperature residual β phases, and the heat-affected zone was a staggered arrangement of undissolved α phase and needle-like α′ martensite. The microhardness of the welded joint showed a hump distribution, and the hardness of WM fluctuated between 410 and 450 HV since the martensitic transformation occurred during the solidification of the weld under thermal cycling, and the β phase changed to the needle-like α′ phase. The tensile test indicated that the fracture position was located in the base metal area, and the fracture morphology showed the equiaxial dimple morphology of different sizes in a ductile fracture mode. The welded metal had the lowest impact performance (average value of 5.3 J) because the weld area was predominantly coarse α′ martensite. This experiment conducted systematic, in-depth, and extensive research on welding processes, hardness, tensile, impact, and fracture mechanisms. Based on the special product applications in the aerospace field, it was more targeted and conducive to promoting the application of the welding process in this material. Full article
(This article belongs to the Special Issue Advanced Welding Technology in Metals III)
Show Figures

Figure 1

18 pages, 9553 KB  
Article
Maximising the Deposition Rate of 5356 Aluminium Alloy by CMT-Twin-Based WAAM While Reducing Segregation-Related Problems by Local IR Thermography
by Lexuri Vazquez, Amaia Iturrioz, Pablo Lopez de Uralde and Pedro Alvarez
Metals 2023, 13(11), 1890; https://doi.org/10.3390/met13111890 - 14 Nov 2023
Cited by 8 | Viewed by 2840
Abstract
The CMT-Twin-based wire and arc additive manufacturing (WAAM) process for 5356 aluminium alloy has been investigated focusing on the optimisation of welding parameters to maximise the deposition rate while avoiding segregation-related problems during solidification. For that, different conditions have been studied regarding interpass [...] Read more.
The CMT-Twin-based wire and arc additive manufacturing (WAAM) process for 5356 aluminium alloy has been investigated focusing on the optimisation of welding parameters to maximise the deposition rate while avoiding segregation-related problems during solidification. For that, different conditions have been studied regarding interpass dwell time and the use of forced cooling. The larger heat input produced by the double-wire CMT-Twin process, compared to the single-wire CMT, creates vast segregations for less intensive cooling conditions and short dwell times that can induce cracks and reduce ductility. Thermography has been applied to set a maximum local temperature between consecutive layers avoiding those segregations and pores, and to optimise the total manufacturing time by varying the interpass dwell time along the height of the wall. Only a constant interpass long dwell time of 240 s and the new optimised strategy were effective in avoiding merged segregations, reducing the latest total manufacturing time by 36%. Obtained tensile properties are comparable to other works using WAAM for this alloy, showing lower properties in the vertical orientation. The use of CMT-Twin-based welding technology together with variable interpass dwell time controlled by thermography is an interesting alternative to build up parts with wall thicknesses around of 10 mm in a reduced time. Full article
(This article belongs to the Special Issue Hybrid Metal Additive Manufacturing)
Show Figures

Figure 1

15 pages, 10509 KB  
Article
Effect of Laser Welding Parameters with Different Fillers on Solidification Cracking and Mechanical Properties of AA7075
by Mohammed Alkhabbat, François Nadeau, Fatemeh Mirakhorli, Thien-My Dao and Xuan-Tan Pham
Metals 2023, 13(10), 1704; https://doi.org/10.3390/met13101704 - 7 Oct 2023
Cited by 4 | Viewed by 2643
Abstract
AA7075 is considered a ‘non-weldable’ alloy using fusion welding methods. In this study, laser welding is applied in pulse mode to weld 2 mm thick AA7075 aluminum alloy plates using different fillers. The aim is to identify the influence of welding parameters and [...] Read more.
AA7075 is considered a ‘non-weldable’ alloy using fusion welding methods. In this study, laser welding is applied in pulse mode to weld 2 mm thick AA7075 aluminum alloy plates using different fillers. The aim is to identify the influence of welding parameters and fillers on solidification cracking susceptibility during laser welding using the circular patch test (CPT). X-ray radiography was used to detect and measure cracks in the CPT samples. Furthermore, the effects of the laser welding process and chemical composition of fillers on the accumulated crack length (CCL), microstructure, and mechanical properties were investigated. Moreover, the mechanical behavior and local deformation of the fusion zone (FZ) were investigated using micro-flat tensile tests with digital image correlation. The mechanical properties of the FZ were correlated with the CCL as well as with the microstructure of the FZ, which was investigated experimentally. The results show that the chemical composition of fillers and welding speed affect the CCL of solidification cracks. Changes in the microstructure were observed within the fusion zone, and the structure became uniform and finer with the formation of Mg2Si and magnesium-rich, copper, and zinc (η-phase) particles. Full article
(This article belongs to the Special Issue Fundamentals and Applications of Laser Welding)
Show Figures

Figure 1

15 pages, 12313 KB  
Article
Solidification and Liquation Cracking in Welds of High Entropy CoCrFeNiCux Alloys
by Ping Yu, Sindo Kou and Chun-Ming Lin
Materials 2023, 16(16), 5621; https://doi.org/10.3390/ma16165621 - 14 Aug 2023
Cited by 4 | Viewed by 2077
Abstract
High entropy CoCrFeNiCux alloys with a Cu molar ratio of x ≈ 0, 0.5, 1, 1.5 and 2 were arc welded. Solidification cracking occurred in the fusion zones of alloys with x ≈ 0.5, 1 and 1.5. Cu-rich material was observed around [...] Read more.
High entropy CoCrFeNiCux alloys with a Cu molar ratio of x ≈ 0, 0.5, 1, 1.5 and 2 were arc welded. Solidification cracking occurred in the fusion zones of alloys with x ≈ 0.5, 1 and 1.5. Cu-rich material was observed around cracks, increasing in quantity with increasing Cu content. Liquation cracking occurred in the partially melted zone next to the fusion zone, and it propagated into the fusion zone as solidification cracking. A recently proposed index for the susceptibility to solidification cracking was tried, i.e., |dT/d(fS)1/2| near (fS)1/2 = 1, where T is temperature and fS the solid fraction. The index was higher in alloys with x ≈ 0.5, 1.0 and 1.5, consistent with the solidification cracking observed. Full article
(This article belongs to the Special Issue Advances in Welding of Alloy and Composites)
Show Figures

Figure 1

32 pages, 11370 KB  
Article
Investigating the Detection Capability of Acoustic Emission Monitoring to Identify Imperfections Produced by the Metal Active Gas (MAG) Welding Process
by James Marcus Griffin, Steven Jones, Bama Perumal and Carl Perrin
Acoustics 2023, 5(3), 714-745; https://doi.org/10.3390/acoustics5030043 - 20 Jul 2023
Cited by 7 | Viewed by 4880
Abstract
Welding inspection is a critical process that can be severely time-consuming, resulting in productivity delays, especially when destructive or invasive processes are required. This paper defines the novel approach to investigate the physical correlation between common imperfections found in arc welding and the [...] Read more.
Welding inspection is a critical process that can be severely time-consuming, resulting in productivity delays, especially when destructive or invasive processes are required. This paper defines the novel approach to investigate the physical correlation between common imperfections found in arc welding and the propensity to determine these through the identification of signatures using acoustic emission sensors. Through a set of experiments engineered to induce prominent imperfections (cracks and other anomalies) using a popular welding process and the use of AE technology (both airborne and contact), it provides confirmation that the verification of physical anomalies can indeed be identified through variations in obtained noise frequency signatures. This in situ information provides signals during and after solidification to inform operators of the deposit/HAZ integrity to support the advanced warning of unwanted anomalies and of whether the weld/fabrication process should be halted to undertake rework before completing the fabrication. Experimentation was carried out based on an acceptable set of parameters where extracted data from the sensors were recorded, analysed, and compared with the resultant microstructure. This may allow signal phenomena to be captured and catalogued for future use in referencing against known anomalies. Full article
Show Figures

Figure 1

24 pages, 18030 KB  
Article
In-Situ Production of Metal Matrix Composites Layers by TIG Surface Alloying to Improve Wear Resistance of Ductile Cast Iron Using a Buffer-Layer and Post Weld Heat Treatment
by Rafael Magalhães Triani, José Benedito Tosoni Decarlis Rodrigues Neto, Pedro Gabriel Bonella De Oliveira, Galtiere Corrêa Rêgo, Amadeu Lombardi Neto and Luiz Carlos Casteletti
Coatings 2023, 13(7), 1137; https://doi.org/10.3390/coatings13071137 - 22 Jun 2023
Cited by 6 | Viewed by 2418
Abstract
A TIG surface alloying process was applied to modify the surface of ductile cast iron samples. Using this process, in-situ metal matrix composite (MMC) layers were produced on samples to improve their wear resistance. These layers were made by melting substrate surface and [...] Read more.
A TIG surface alloying process was applied to modify the surface of ductile cast iron samples. Using this process, in-situ metal matrix composite (MMC) layers were produced on samples to improve their wear resistance. These layers were made by melting substrate surface and powders as additional material into this melt pool. The efficiency of preheating of the samples to prevent cold cracks during solidification was verified. Moreover, a buffer layer produced in situ to decrease the mismatches between the chemical and physical properties of the materials was also tested. Post-weld heat treatment (PWHT) was used to increase the tribological characteristics of the layers and eliminate adverse effects of the heat-affected zone (HAZ) created by the fusion of the substrate surface. The results showed that, in the samples without preheating, the formation of cold cracks occurred. Additionally, layers produced without a buffer layer showed defects, such as shrinkage and porosity. However, using both preheating and a buffer layer prevented cold cracks, discontinuities, shrinkage, and porosity defects in the layers. Furthermore, PWHT allowed for the transformation of brittle martensite into tempered martensite at the HAZ. MMC layers presented high hardness of up to 1230 HV and wear resistance up to 5.8 times greater compared to the substrate samples without layers. Full article
Show Figures

Figure 1

11 pages, 3387 KB  
Article
Pulsed Laser Spot Welding Thermal-Shock-Induced Microcracking of Inconel 718 Thin Sheet Alloy
by Mingli Shi, Xin Ye, Yuanhao Wang and Di Wu
Materials 2023, 16(10), 3775; https://doi.org/10.3390/ma16103775 - 17 May 2023
Cited by 1 | Viewed by 1724
Abstract
This paper investigates the change in solidification microcrack susceptibility under the influence of thermal-shock-induced effects for pulsed laser spot welding molten pools with different waveforms, powers, frequencies, and pulse widths. During the welding process, the temperature of the molten pool under the effect [...] Read more.
This paper investigates the change in solidification microcrack susceptibility under the influence of thermal-shock-induced effects for pulsed laser spot welding molten pools with different waveforms, powers, frequencies, and pulse widths. During the welding process, the temperature of the molten pool under the effect of thermal shock changes sharply, triggering pressure waves, creating cavities in the molten pool paste area, and forming crack sources during solidification. The microstructure near the cracks was analyzed using a SEM (scanning electron microscope) and EDS (electronic differential system), and it was found that bias precipitation occurred during the rapid solidification of the melt pool, and a large amount of Nb elements were enriched in the interdendritic and grain boundaries, which eventually formed a liquid film with a low melting point, known as a Laves phase. When cavities appear in the liquid film, the chance of crack source formation is further increased. Using a slow rise and slow fall waveform is good for reducing cracks; reducing the peak laser power to 1000 w is good for reducing cracks in the solder joint; increasing the pulse width to 20 ms reduces the degree of crack damage; reducing the pulse frequency to 10 hz reduces the degree of crack damage. Full article
Show Figures

Figure 1

Back to TopTop