Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (179)

Search Parameters:
Keywords = wind rights

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 3536 KB  
Article
Water Demand and Conservation in Arid Urban Environments: Numerical Analysis of Evapotranspiration in Arizona
by Jaden Lu and Zbigniew J. Kabala
Water 2025, 17(19), 2835; https://doi.org/10.3390/w17192835 - 27 Sep 2025
Viewed by 250
Abstract
Water management in arid regions, such as Arizona, is critical due to increasing demands from the urban, agricultural, and recreational sectors. In this study, Finite element analysis software COMSOL Multiphysics (COMSOL 6.3) is used to quantify water demands in Chandler, Arizona. Evapotranspiration from [...] Read more.
Water management in arid regions, such as Arizona, is critical due to increasing demands from the urban, agricultural, and recreational sectors. In this study, Finite element analysis software COMSOL Multiphysics (COMSOL 6.3) is used to quantify water demands in Chandler, Arizona. Evapotranspiration from vegetation and pools is studied. Factors are divided into environmental (temperature, humidity, wind speed) and soil-related properties (moisture content, hydraulic conductivity), which are modeled and used to estimate annual water losses. This study represents the first comprehensive investigation of the usage across several main categories at Arizona. Results indicate that pools contribute 61% of surface water evaporation. Annual water demand in Chandler for 2024 peaks at 425,000 m3 in June, with irrigation for vegetation dominating consumption. Validation against experimental data confirms model accuracy. This simulation work aims to provide scalable insights for water management in arid urban environments. Based on the simulation, various solutions were proposed to reduce water consumption and minimize water loss. Some active measures include the optimization of irrigation time and frequency based on dynamic and real-time environmental conditions. The proposed solution can help minimize the water consumption while maintaining the water demands for plant life sustenance. Other passive measures include the modification of localized environmental conditions to reduce water evaporation. In particular, it was found that fence installation can significantly change the water vapor flow and distribution close to the water surface and suppress the water evaporation by simply lowering the wind speed right above the water surface. A logical takeaway is that evaporation would also decrease when pools are built with deeper water surfaces. Full article
Show Figures

Figure 1

20 pages, 47004 KB  
Article
Upper Ocean Response to Typhoon Khanun in the South China Sea from Multiple-Satellite Observations and Numerical Simulations
by Fengcheng Guo, Xia Chai, Yongze Li and Dongyang Fu
J. Mar. Sci. Eng. 2025, 13(9), 1718; https://doi.org/10.3390/jmse13091718 - 5 Sep 2025
Viewed by 472
Abstract
This study examines the upper-ocean response to Typhoon Khanun, which traversed the northern South China Sea in October 2017, by integrating multi-satellite observations with numerical simulations from the Regional Ocean Modeling System (ROMS). For the ROMS simulations, an Arakawa C-grid was adopted with [...] Read more.
This study examines the upper-ocean response to Typhoon Khanun, which traversed the northern South China Sea in October 2017, by integrating multi-satellite observations with numerical simulations from the Regional Ocean Modeling System (ROMS). For the ROMS simulations, an Arakawa C-grid was adopted with a 4-km horizontal resolution and 40 vertical terrain-following σ-layers, covering the domain of 105° E to 119° E and 15° N to 23° N. Typhoons significantly influence ocean dynamics, altering sea surface temperature (SST), sea surface salinity (SSS), and ocean currents, thereby modulating air–sea exchange processes and marine ecosystem dynamics. High-resolution satellite datasets, including GHRSSST for SST, SMAP for SSS, GPM IMERG for precipitation, and GLORYS12 for sea surface height, were combined with ROMS simulations configured at a 4-km horizontal resolution with 40 vertical layers to analyze ocean changes from 11 to 18 October 2017. The results show that Typhoon Khanun induced substantial SST cooling, with ROMS simulations indicating a maximum decrease of 1.94 °C and satellite data confirming up to 1.5 °C, primarily on the right side of the storm track due to wind-driven upwelling and vertical mixing. SSS exhibited a complex response: nearshore regions, such as the Beibu Gulf, experienced freshening of up to 0.1 psu driven by intense rainfall, while the right side of the storm track showed a salinity increase of 0.6 psu due to upwelling of saltier deep water. Ocean currents intensified significantly, reaching speeds of 0.5–1 m/s near coastal areas, with pronounced vertical mixing in the upper 70 m driven by Ekman pumping and wave-current interactions. By effectively capturing typhoon-induced oceanic responses, the integration of satellite data and the ROMS model enhances understanding of typhoon–ocean interaction mechanisms, providing a scientific basis for risk assessment and disaster management in typhoon-prone regions. Future research should focus on refining model parameterizations and advancing data assimilation techniques to improve predictions of typhoon–ocean interactions, providing valuable insights for disaster preparedness and environmental management in typhoon-prone regions. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

30 pages, 598 KB  
Review
The Long and Winding Road to Understanding Autism
by Jorge Manzo, María Elena Hernández-Aguilar, María Rebeca Toledo-Cárdenas, Deissy Herrera-Covarrubias, Genaro A. Coria-Avila, Hugo M. Libreros-Jiménez, Lauro Fernández-Cañedo and Lizbeth A. Ortega-Pineda
NeuroSci 2025, 6(3), 84; https://doi.org/10.3390/neurosci6030084 - 3 Sep 2025
Viewed by 1045
Abstract
Autism Spectrum Disorder presents one of the most complex challenges in contemporary neuroscience. This review adopts an unconventional narrative structure, drawing inspiration from song titles by The Beatles to explore the multifaceted biological, developmental, and social dimensions of autism. Spanning historical perspectives to [...] Read more.
Autism Spectrum Disorder presents one of the most complex challenges in contemporary neuroscience. This review adopts an unconventional narrative structure, drawing inspiration from song titles by The Beatles to explore the multifaceted biological, developmental, and social dimensions of autism. Spanning historical perspectives to embryonic origins and adult cognition, we examine critical topics including cortical folding, sensory processing, and the contributions of various brain regions such as the cerebellum and brainstem. The role of mirror neurons and other neural systems in shaping social behavior is discussed, alongside insights from animal models that have advanced our understanding of autism’s underlying mechanisms. Ultimately, this manuscript argues that autism is not merely a biomedical challenge, but a broader societal issue intersecting with education, human rights, and identity. Following the long and winding road of scientific discovery, we advocate for a more empathetic, interdisciplinary, and human-centered approach to autism research. Though the path ahead remains uncertain, every step informed by evidence and driven by collaboration brings us closer to deeper understanding, greater inclusion, and more effective support. Full article
Show Figures

Figure 1

35 pages, 15457 KB  
Article
The Impact of the Continental Environment on Boundary Layer Evolution for Landfalling Tropical Cyclones
by Gabriel J. Williams
J 2025, 8(3), 31; https://doi.org/10.3390/j8030031 - 28 Aug 2025
Viewed by 614
Abstract
Although numerous observational and theoretical studies have examined the mean and turbulent structure of the tropical cyclone boundary layer (TCBL) over the open ocean, there have been comparatively fewer studies that have examined the kinematic and thermal structure of the TCBL across the [...] Read more.
Although numerous observational and theoretical studies have examined the mean and turbulent structure of the tropical cyclone boundary layer (TCBL) over the open ocean, there have been comparatively fewer studies that have examined the kinematic and thermal structure of the TCBL across the land–ocean interface. This study examines the impact of different continental environments on the thermodynamic evolution of the TCBL during the landfall transition using high-resolution, full-physics numerical simulations. During landfall, the changes in the wind field within the TCBL due to the development of the internal boundary layer (IBL), combined with the formation of a surface cold pool, generates a pronounced thermal asymmetry in the boundary layer. As a result, the maximum thermodynamic boundary layer height occurs in the rear-right quadrant of the storm relative to its motion. In addition, azimuthal and vertical advection by the mean flow lead to enhanced turbulent kinetic energy (TKE) in front of the vortex (enhancing dissipative heating immediately onshore) and onshore precipitation to the left of the storm track (stabilizing the environment). The strength and depth of thermal asymmetry in the boundary layer depend on the contrast in temperature and moisture between the continental and storm environments. Dry air intrusion enhances cold pool formation and stabilizes the onshore boundary layer, reducing mechanical mixing and accelerating the decay of the vortex. The temperature contrast between the continental and storm environments establishes a coastal baroclinic zone, producing stronger baroclinicity and inflow on the left of the track and weaker baroclinicity on the right. The resulting gradient imbalance in the front-right quadrant triggers radial outflow through a gradient adjustment process that redistributes momentum and mass to restore dynamical balance. Therefore, the surface thermodynamic conditions over land play a critical role in shaping the evolution of the TCBL during landfall, with the strongest asymmetries in thermodynamic boundary layer height emerging when there are large thermal contrasts between the hurricane and the continental environment. Full article
(This article belongs to the Section Physical Sciences)
Show Figures

Figure 1

20 pages, 309 KB  
Article
Converso Traits in Spanish Baroque: Revisiting the Everlasting Presence of Teresa of Ávila as Pillar of Hispanidad
by Silvina Schammah Gesser
Religions 2025, 16(8), 1082; https://doi.org/10.3390/rel16081082 - 21 Aug 2025
Viewed by 953
Abstract
Some of Spain’s greatest humanists—Juan Luis Vives, Antonio de Nebrija, Juan de Ávila, Luis de León, and Benito Arias Montano—were from a converso background. Recent scholarship suggests that two of the three most influential religious movements in sixteenth-century Spain—Juan de Ávila’s evangelical movement [...] Read more.
Some of Spain’s greatest humanists—Juan Luis Vives, Antonio de Nebrija, Juan de Ávila, Luis de León, and Benito Arias Montano—were from a converso background. Recent scholarship suggests that two of the three most influential religious movements in sixteenth-century Spain—Juan de Ávila’s evangelical movement and Teresa of Ávila’s Barefoot Carmelites—were founded by conversos and presented converso membership, whose winds of religious innovation to tame Christian Orthodoxy and Counter-Reformation Spanish society, through the influence of Italian Humanism and reform, prioritized spiritual practice, social toleration, and religious concord. Indeed, Santa Teresa de Ávila, a major innovator within the Spanish Church, was herself from a converso family with Jewish ancestry. She became a key female theologist who transcended as an identity marker of the Spanish Baroque, conceived as quintessential of the Spanish Golden Age. Coopted in different periods, she “reappeared” in the 1930s as Patron of the Sección Femenina de la Falange y de las JONS, the women’s branch of the new radical right, turning into a role model of femininity for highly conservative religious women. Consecrated as “Santa de la Raza”, she became the undisputable womanized icon of the so-called “Spanish Crusade”, the slogan which General F. Franco implemented, with the approval of the Spanish Catholic Church, to re-cast in a pseudo-theological narrative the rebellion against the Spanish Second Republic in July 1936. This article examines different appropriations of the figure of Teresa de Ávila as a pillar of “Hispanidad”, in the last centuries within the changing sociopolitical contexts and theological debates in which this instrumentalization appeared. By highlighting the plasticity of this converso figure, the article suggests possible lines of research regarding the Jewish origins of some national icons in Spain. Full article
27 pages, 14921 KB  
Article
Analysis of the Dynamic Process of Tornado Formation on 28 July 2024
by Xin Zhou, Ling Yang, Shuqing Ma, Ruifeng Wang, Zhaoming Li, Yuchen Song, Yongsheng Gao and Jinyan Xu
Remote Sens. 2025, 17(15), 2615; https://doi.org/10.3390/rs17152615 - 28 Jul 2025
Viewed by 740
Abstract
An EF1 tornado struck Nansha District, Guangzhou, Guangdong, on 28 July 2024. To explore the dynamic and thermodynamic changes during the tornado’s life cycle, high-resolution spatiotemporal data from Foshan’s X-band phased-array radar and the direct wind field synthesis algorithm were used to reconstruct [...] Read more.
An EF1 tornado struck Nansha District, Guangzhou, Guangdong, on 28 July 2024. To explore the dynamic and thermodynamic changes during the tornado’s life cycle, high-resolution spatiotemporal data from Foshan’s X-band phased-array radar and the direct wind field synthesis algorithm were used to reconstruct the 3D wind field. The dynamics and 3D structure of the tornado were analysed, with a new parameter, vorticity volume (VV), introduced to study its variation. The observation results indicate that the tornado moved roughly from south to north. During the tornado’s early stage (00:10–00:20 UTC), arc-shaped and annular echoes emerged and positive vorticity increased (peaking at 0.042 s−1). Based on the tornado’s movement direction, the right side of the vortex centre was divergent, while the left side was convergent, whereas the vorticity area and volume continued to grow centrally. During the mature stage (00:23–00:25 UTC), the echo intensity weakened and, at 00:24, the vorticity reached its peak and touched the ground, with the vorticity area and volume also reaching their peaks at the same time. During the dissipation stage (00:25–00:30 UTC), the vorticity and echo features faded and the vorticity area and volume also declined rapidly. The analysis showed that the vorticity volume effectively reflects the tornado’s life cycle, enhancing the understanding of the dynamic and thermodynamic processes during the tornado’s development. Full article
Show Figures

Figure 1

17 pages, 228 KB  
Article
Why Are Cultural Rights over Sea Country Less Recognised than Terrestrial Ones?
by Rhetti Hoskins, Gareth Ogilvie, Matthew Storey and Alexandra Hill
Heritage 2025, 8(7), 283; https://doi.org/10.3390/heritage8070283 - 16 Jul 2025
Viewed by 974
Abstract
This article identifies the nature of Traditional Owners’ interests in Sea Country and addresses issues associated with all offshore energy projects—gas and wind. Exploring the impacts of offshore development on First Nations’ cultural heritage, the article proposes integration of free, prior and informed [...] Read more.
This article identifies the nature of Traditional Owners’ interests in Sea Country and addresses issues associated with all offshore energy projects—gas and wind. Exploring the impacts of offshore development on First Nations’ cultural heritage, the article proposes integration of free, prior and informed consent (FPIC) and the United Nations Declaration on the Rights of Indigenous Peoples (UNDRIP), into the regulatory and legislative offshore environment. In the Australian context, this particularly regards administrative and regulatory reforms to overcome uncertainty arising from recent decisions in the Federal Court. The international focus on new energy has fast-tracked many processes that sideline First Nations’ rights, hitherto understood within the onshore minerals extraction regimes. The reforms proposed in this article recognise an international commitment to enact the principles contained in the UNDRIP and other relevant international law. Full article
23 pages, 12735 KB  
Article
Impacts of Typhoon Tracks on Frontal Changes Modulating Chlorophyll Distribution in the Pearl River Estuary
by Qiyao Zhao, Qibin Lao, Chao Wang, Sihai Liu and Fajin Chen
Remote Sens. 2025, 17(13), 2165; https://doi.org/10.3390/rs17132165 - 24 Jun 2025
Cited by 1 | Viewed by 625
Abstract
Typhoons can significantly alter ocean hydrodynamic processes through their powerful external forces, greatly affecting marine biogeochemistry and ocean productivity. However, the specific impacts of typhoons with different tracks on coastal dynamics, including frontal activities and phytoplankton lateral transport, are not well understood. This [...] Read more.
Typhoons can significantly alter ocean hydrodynamic processes through their powerful external forces, greatly affecting marine biogeochemistry and ocean productivity. However, the specific impacts of typhoons with different tracks on coastal dynamics, including frontal activities and phytoplankton lateral transport, are not well understood. This study captured two distinct types of typhoons, namely Merbok (2017) and Nuri (2020), which landed from the right and left sides of the Pearl River Estuary (PRE), respectively, utilizing satellite remote sensing data to study their impacts on frontal dynamics and marine productivity. We found that after both typhoons, the southwest monsoon amplified geostrophic currents significantly (increased ~14% after Nuri (2020) and 48% after Merbok (2020)). These stronger currents transported warmer offshore seawater from the South China Sea to the PRE and intensified the frontal activities in nearshore PRE (increased ~47% after Nuri (2020) and ~2.5 times after Merbok (2020)). The ocean fronts limited the transport of high-chlorophyll and eutrophic water from the PRE to the offshore waters due to the barrier effect of the front. This resulted in a sharp drop in chlorophyll concentrations in the offshore-adjacent waters of PER after Typhoon Nuri (2020) (~37%). By contrast, despite the intensified geostrophic current induced by the summer monsoon following Typhoon Merbok (2020), its stronger offshore force, driven by the intense offshore wind stress (characteristic of the left-side typhoon), caused the nearshore front to move offshore. The displacement of fronts lifted the restriction of the front barrier and led more high-chlorophyll (increased ~4 times) and eutrophic water to be transported offshore, thereby stimulating offshore algal blooms. Our findings elucidate the mechanisms by which different track typhoons influence chlorophyll distribution through changes in frontal dynamics, offering new perspectives on the coastal ecological impacts of typhoons and further studies for typhoon impact modeling or longshore management. Full article
Show Figures

Figure 1

20 pages, 4089 KB  
Article
Prediction of Vehicle Interior Wind Noise Based on Shape Features Using the WOA-Xception Model
by Yan Ma, Hongwei Yi, Long Ma, Yuwei Deng, Jifeng Wang, Yudong Wu and Yuming Peng
Machines 2025, 13(6), 497; https://doi.org/10.3390/machines13060497 - 6 Jun 2025
Cited by 1 | Viewed by 1489
Abstract
In order to confront the challenge of efficiently evaluating interior wind noise levels in passenger vehicles during the early stages of shape design, this paper proposes a methodology for predicting interior wind noise. The methodology integrates vehicle shape features with a whale optimization [...] Read more.
In order to confront the challenge of efficiently evaluating interior wind noise levels in passenger vehicles during the early stages of shape design, this paper proposes a methodology for predicting interior wind noise. The methodology integrates vehicle shape features with a whale optimization Xception model (WOA-Xception). A nonlinear mapping model is constructed between the vehicle shape features and the wind noise level at the driver’s right ear. This model is constructed using key exterior parameters, which are extracted from wind tunnel test data under typical operating conditions. The exterior parameters include the front windshield, A-pillar, and roof. The key hyperparameters of the Xception model are adaptively optimized using the whale optimization algorithm to improve the prediction accuracy and generalization ability of the model. The prediction results on the test set demonstrate that the WOA-Xception model attains mean absolute percentage error (MAPE) values of 9.78% and 9.46% and root mean square error (RMSE) values of 3.73 and 4.06, respectively, for sedan and Sports Utility Vehicle (SUV) samples, with prediction trends that align with the measured data. A comparative analysis with traditional Xception, WOA-LSTM, and Long Short-Term Memory (LSTM) models further validates the advantages of this model in terms of accuracy and stability, and it still maintains good generalization ability on an independent validation set (mean absolute percentage error of 9.45% and 9.68%, root mean square error of 3.77 and 4.15, respectively). The research findings provide an efficient and feasible technical approach for the rapid assessment of in-vehicle wind noise performance and offer a theoretical basis and engineering references for noise, vibration, and harshness (NVH) optimization design during the early shape phase of vehicle development. Full article
(This article belongs to the Special Issue Intelligent Applications in Mechanical Engineering)
Show Figures

Figure 1

22 pages, 2129 KB  
Review
Accelerometers in Monitoring Systems for Rail Vehicle Applications: A Literature Review
by Emil Tudor, Ionuț Vasile, Daniel Lipcinski, Constantin Dumitru, Nicolae Tănase, Florian Drăghici and Gabriel Popa
Appl. Syst. Innov. 2025, 8(3), 70; https://doi.org/10.3390/asi8030070 - 26 May 2025
Cited by 2 | Viewed by 3179
Abstract
This document comprehensively analyses the literature on accelerometers used in monitoring systems designed for rail vehicle applications. It reviews the current research on this topic and highlights key findings, methodologies, and trends in the field. Additionally, it discusses the role of accelerometers in [...] Read more.
This document comprehensively analyses the literature on accelerometers used in monitoring systems designed for rail vehicle applications. It reviews the current research on this topic and highlights key findings, methodologies, and trends in the field. Additionally, it discusses the role of accelerometers in enhancing safety and performance within rail vehicle systems. This review is structured into several sections: Introduction, Fundamentals of Accelerometer Data, Signal-Processing Techniques, Examples of Accelerometers Used in Railway Monitoring Systems, and a Guide for Choosing the Right Accelerometer. One of the primary contributions of this paper is recommending the best accelerometer in terms of cost and performance for use in the rail vehicle industry. Future work will consider using an online detection tool for the acceleration of the frame of the railway coach and signalization of the peak values using the train intercom to the driver and static diagnosis systems. This approach aims to facilitate the detection of track irregularities, wind influence, and failures of the coach suspensions, which can be easily detected. Full article
Show Figures

Figure 1

27 pages, 2118 KB  
Article
Optimal and Sustainable Scheduling of Integrated Energy System Coupled with CCS-P2G and Waste-to-Energy Under the “Green-Carbon” Offset Mechanism
by Xin Huang, Junjie Zhong, Maner Xiao, Yuhui Zhu, Haojie Zheng and Bensheng Zheng
Sustainability 2025, 17(11), 4873; https://doi.org/10.3390/su17114873 - 26 May 2025
Viewed by 761
Abstract
Waste-to-energy (WTE) is considered the most promising method for municipal solid waste treatment. An integrated energy system (IES) with carbon capture systems (CCS) and power-to-gas (P2G) can reduce carbon emissions. The incorporation of a “green-carbon” offset mechanism further enhances renewable energy consumption. Therefore, [...] Read more.
Waste-to-energy (WTE) is considered the most promising method for municipal solid waste treatment. An integrated energy system (IES) with carbon capture systems (CCS) and power-to-gas (P2G) can reduce carbon emissions. The incorporation of a “green-carbon” offset mechanism further enhances renewable energy consumption. Therefore, this study constructs a WTE-IES hybrid system, which conducts multi-dimensional integration of IES-WTP, CCS-P2G, photovoltaic (PV), wind turbine (WT), multiple energy storage technologies, and the “green-carbon” offset mechanism. It breaks through the limitations of traditional single-technology optimization and achieves the coordinated improvement of energy, environmental, and economic triple benefits. First, waste incineration power generation is coupled into the IES. A mathematical model is then established for the waste incineration and CCS-P2G IES. The CO2 produced by waste incineration is absorbed and reused. Finally, the “green-carbon” offset mechanism is introduced to convert tradable green certificates (TGCs) into carbon emission rights. This approach ensures energy demand satisfaction while minimizing carbon emissions. Economic incentives are also provided for the carbon capture and conversion processes. A case study of an industrial park is conducted for validation. The industrial park has achieved a reduction in carbon emissions of approximately 72.1% and a reduction in the total cost of approximately 33.5%. The results demonstrate that the proposed method significantly reduces carbon emissions. The energy utilization efficiency and system economic performance are also improved. This study provides theoretical and technical support for the low-carbon development of future IES. Full article
Show Figures

Figure 1

25 pages, 2250 KB  
Article
Simulation of Heat Pump with Heat Storage and PV System—Increase in Self-Consumption in a Polish Household
by Jakub Szymiczek, Krzysztof Szczotka and Piotr Michalak
Energies 2025, 18(9), 2325; https://doi.org/10.3390/en18092325 - 2 May 2025
Cited by 2 | Viewed by 2113
Abstract
The use of renewables in heat production requires methods to overcome the issue of asynchronous heat load and energy production. The most effective method for analyzing the intricate thermal dynamics of an existing building is through transient simulation, utilizing real-world weather data. This [...] Read more.
The use of renewables in heat production requires methods to overcome the issue of asynchronous heat load and energy production. The most effective method for analyzing the intricate thermal dynamics of an existing building is through transient simulation, utilizing real-world weather data. This approach offers a far more nuanced understanding than static calculations, which often fail to capture the dynamic interplay of environmental factors and building performance. Transient simulations, by their nature, model the building’s thermal behavior over time, reflecting the continuous fluctuations in temperature, solar radiation, and wind speed. Leveraging actual meteorological data enables the simulation model to faithfully capture system dynamics under realistic operational scenarios. This is crucial for evaluating the effectiveness of heating, ventilation, and air conditioning (HVAC) systems, identifying potential energy inefficiencies, and assessing the impact of various energy-saving measures. The simulation can reveal how the building’s thermal mass absorbs and releases heat, how solar gains influence indoor temperatures, and how ventilation patterns affect heat losses. In this paper, a household heating system consisting of an air source heat pump, PV, and buffer tank is simulated and analyzed. The 3D model accurately represents the building’s geometry and thermal properties. This virtual representation serves as the basis for calculating heat losses and gains, considering factors such as insulation levels, window characteristics, and building orientation. The approach is based on the calculation of building heat load based on a 3D model and EN ISO 52016-1 standard. The heat load is modeled based on air temperature and sun irradiance. The heating system is modeled in EBSILON professional 16.00 software for the calculation of transient 10 min time step heat production during the heating season. The results prove that a buffer tank with the right heat production control system can efficiently increase the auto consumption of self-produced PV electric energy, leading to a reduction in environmental effects and higher economic profitability. Full article
(This article belongs to the Special Issue Advances in Refrigeration and Heat Pump Technologies)
Show Figures

Figure 1

14 pages, 3591 KB  
Article
Multifractal Characteristics of Grain Size Distributions in Braided Delta-Front: A Case of Paleogene Enping Formation in Huilu Low Uplift, Pearl River Mouth Basin, South China Sea
by Rui Yuan, Zijin Yan, Rui Zhu and Chao Wang
Fractal Fract. 2025, 9(4), 216; https://doi.org/10.3390/fractalfract9040216 - 29 Mar 2025
Viewed by 300
Abstract
Multifractal analysis has been used in the exploration of soil grain size distributions (GSDs) in environmental and agricultural research. However, multifractal studies regarding the GSDs of sediments in braided delta-front are currently scarce. Open-source software designed for the realization of this technique has [...] Read more.
Multifractal analysis has been used in the exploration of soil grain size distributions (GSDs) in environmental and agricultural research. However, multifractal studies regarding the GSDs of sediments in braided delta-front are currently scarce. Open-source software designed for the realization of this technique has not yet been programmed. In this paper, the multifractal parameters of 61 GSDs from braided delta-front in the Paleogene Enping Formation in Huilu Low Uplift, Pearl River Mouth basin, are calculated and compared with traditional parameters. Multifractal generalized dimension spectrum curves are sigmoidal and decrease monotonically. Multifractal singularity spectrum curves are asymmetric, convex, and right-hook unimodal. The entropy dimension and singularity spectrum width ranges of silt-mudstones and gravelly sandstones are wider than those of fine and medium-coarse sandstones. The symmetry degree scopes from different lithologies are concentrated in distinguishing intervals. With the increase of grain sizes, the symmetry degree decreases overall. Both the symmetry degree and mean of GSDs are effective to distinguish the different lithologies from various depositional environments. A flexible and easy-to-use MATLAB (2021b)® GUI (graphic user interface) package, MfGSD (Multifractal of GSD, V1.0), is provided to perform multifractal analysis on sediment GSDs. After raw GSDs imported into MfGSD, multifractal parameters are batch calculated and graphed in the interface. Then, all multifractal parameters can be exported to an Excel file, including entropy dimension, singularity spectrum, correlation dimension, symmetry degree of multifractal spectrum, etc. MfGSD is effective, and the multifractal parameters outputted from MfGSD are helpful to distinguish depositional environments of GSDs. MfGSD is open-source software that can be used to explore GSDs from various kinds of depositional environments, including water or wind deposits. Full article
Show Figures

Figure 1

17 pages, 1206 KB  
Article
Balancing Offshore Wind Energy Development and Fishery Community Well-Being in Taiwan: A Life Cycle Sustainability Assessment Approach
by Wen-Hsiang Liu
Sustainability 2025, 17(7), 2980; https://doi.org/10.3390/su17072980 - 27 Mar 2025
Viewed by 2640
Abstract
Taiwan has been actively advancing offshore wind energy, with significant progress in deep-sea and large-scale turbine development. However, this growth poses challenges to coastal fishery communities, particularly regarding the protection of fishery rights and livelihoods. This study employs the Life Cycle Sustainability Assessment [...] Read more.
Taiwan has been actively advancing offshore wind energy, with significant progress in deep-sea and large-scale turbine development. However, this growth poses challenges to coastal fishery communities, particularly regarding the protection of fishery rights and livelihoods. This study employs the Life Cycle Sustainability Assessment (LCSA) framework to evaluate the impact of offshore wind farm (OWF) on fishery rights in Taiwan. Through an extensive literature review, we identify key indicators influencing fishery rights within the OWF context. To ensure a comprehensive analysis, expert surveys from diverse fields provide additional insights into these impacts. By aligning our findings with international frameworks, the International Finance Corporation (IFC) Performance Standards (PS) and the Equator Principles (EP), this research underscores the significance of integrating both local concerns and global standards in OWF development. In the lifecycle of long-term, large-scale OWF projects, PS1 of the IFC PS is the most widely applicable standard, whereas P2, P4, P5 and P9 of the EP plays a central role in ensuring compliance and operational efficiency. This study uniquely integrates local fishery rights into global frameworks, bridging regional socio-economic concerns with international sustainability standards—a novel approach to balancing offshore wind development with community interests. Ultimately, this research emphasizes the importance of balancing renewable energy advancement with the preservation of fishery rights. Full article
Show Figures

Figure 1

19 pages, 7956 KB  
Article
Rolling Bearing Fault Diagnosis Method Based on SWT and Improved Vision Transformer
by Saihao Ren and Xiaoping Lou
Sensors 2025, 25(7), 2090; https://doi.org/10.3390/s25072090 - 27 Mar 2025
Cited by 2 | Viewed by 1062
Abstract
To address the challenge of low diagnostic accuracy in rolling bearing fault diagnosis under varying operating conditions, this paper proposes a novel method integrating the synchronized wavelet transform (SWT) with an enhanced Vision Transformer architecture, referred to as ResCAA-ViT. The SWT is first [...] Read more.
To address the challenge of low diagnostic accuracy in rolling bearing fault diagnosis under varying operating conditions, this paper proposes a novel method integrating the synchronized wavelet transform (SWT) with an enhanced Vision Transformer architecture, referred to as ResCAA-ViT. The SWT is first applied to process raw vibration signals, generating high-resolution time–frequency maps as input for the network model. By compressing and reordering wavelet transform coefficients in the frequency domain, the SWT enhances time–frequency resolution, enabling the clear capture of instantaneous changes and local features in the signals. Transfer learning further leverages pre-trained ResNet50 parameters to initialize the convolutional and residual layers of the ResCAA-ViT model, facilitating efficient feature extraction. The extracted features are processed by a dual-branch architecture: the left branch employs a residual network module with a CAA attention mechanism, improving sensitivity to critical fault characteristics through strip convolution and adaptive channel weighting. The right branch utilizes a Vision Transformer to capture global features via the self-attention mechanism. The outputs of both branches are fused through addition, and the diagnostic results are obtained using a Softmax classifier. This hybrid architecture combines the strengths of convolutional neural networks and Transformers while leveraging the CAA attention mechanism to enhance feature representation, resulting in robust fault diagnosis. To further enhance generalization, the model combines cross-entropy and mean squared error loss functions. The experimental results show that the proposed method achieves average accuracy rates of 99.96% and 96.51% under constant and varying load conditions, respectively, on the Case Western Reserve University bearing fault dataset, outperforming other methods. Additionally, it achieves an average diagnostic accuracy of 99.25% on a real-world dataset of generator non-drive end bearings in wind turbines, surpassing competing approaches. These findings highlight the effectiveness of the SWT and ResCAA-ViT-based approach in addressing complex variations in operating conditions, demonstrating its significant practical applicability. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

Back to TopTop