Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (313)

Search Parameters:
Keywords = wind-wave interaction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 14492 KB  
Article
Experimental and Numerical Study of a Towing Test for a Barge-Type Floating Offshore Wind Turbine
by Samuel Davis, Anthony Viselli and Amrit Verma
Energies 2025, 18(19), 5228; https://doi.org/10.3390/en18195228 - 1 Oct 2025
Abstract
Several experimental and numerical studies have been conducted on the towing behavior of floating offshore wind turbines (FOWTs); however, these studies mainly focus on tension-leg platform (TLP) and semi-submersible designs with cylindrical features. The University of Maine’s VolturnUS+ concept is a cruciform-shaped barge-type [...] Read more.
Several experimental and numerical studies have been conducted on the towing behavior of floating offshore wind turbines (FOWTs); however, these studies mainly focus on tension-leg platform (TLP) and semi-submersible designs with cylindrical features. The University of Maine’s VolturnUS+ concept is a cruciform-shaped barge-type FOWT with distinctive hydrodynamic properties that have not been characterized in previous research. This study presents basin-scale experiments that characterize the hydrodynamic drag properties of the VolturnUS+ platform, as well as observing the motion behavior of the platform and added resistance during towing in calm water and waves. The towing experiments are conducted in two towing configurations, with differing platform orientations and towline designs. The basin experiments are supplemented with a numerical study using computational fluid dynamic (CFD) simulations to explore flow-induced motion (FIM) on the platform during towing. In both the experiments and the CFD simulations, it was determined that the towing configuration significantly impacted the drag and motion characteristics of the platform, with the cruciform shape producing FIM phenomena. Observations from the towing tests confirmed the feasibility of towing the VolturnUS+ platform in the two orientations. The results and observations developed from the experimental and numerical towing studies will be used to inform numerical models for planning towing operations, as well as develop informed recommendations for towing similar cruciform-shaped structures in the future. Full article
Show Figures

Figure 1

29 pages, 5691 KB  
Article
Conceptual Analysis of Vortex Contributions to Rogue Wave Formation in the Agulhas Current
by Dirk J. Pons
J. Mar. Sci. Eng. 2025, 13(10), 1875; https://doi.org/10.3390/jmse13101875 - 30 Sep 2025
Abstract
Harmonic summation and amplification by winds blowing contrary to currents are known contributions to rogue waves in the region of the Agulhas current, but the causes of the observed wave steepness, asymmetric form, and non-breaking are poorly understood. The potential effect of bathymetric [...] Read more.
Harmonic summation and amplification by winds blowing contrary to currents are known contributions to rogue waves in the region of the Agulhas current, but the causes of the observed wave steepness, asymmetric form, and non-breaking are poorly understood. The potential effect of bathymetric and meteorological features has not been addressed. Vortex theory was applied to develop a theory of wave formation, based on conceptual reasoning. Rogue wave formation is attributed to the following: (1) wind lee vortices causing steepening of a wave’s leeward face, and suppressing wave breaking; (2) boundary layer vortices from the meteorological cold front transferring energy to the wind lee vortices thereby sharpening the wave; (3) Agulhas current boundary layer vortices interacting with water lee vortices to accelerate a jet of water between them, thereby steepening the wave and enhancing the preceding trough; (4) bathymetric topology, especially a canyon on the continental slope, generating a vortex in the Agulhas current. This vortex is detached from the canyon by prising of the coastal downwelling current (induced by the meteorological cold front) and combines with the water lee vortex to heighten the wave, and (5) jetting, which arises when the canyon vortex and the Agulhas current boundary layer vortices pass each other, thereby accentuating wave height, steepness, and asymmetry. Full article
(This article belongs to the Special Issue Air-Sea Interaction and Marine Dynamics)
Show Figures

Figure 1

17 pages, 4602 KB  
Article
Typhoon-Induced Wave–Current Coupling Dynamics in Intertidal Zones: Impacts on Protective Device of Ancient Forest Relics
by Lihong Zhao, Dele Guo, Chaoyang Li, Zhengfeng Bi, Yi Hu, Hongqin Liu and Tongju Han
J. Mar. Sci. Eng. 2025, 13(9), 1831; https://doi.org/10.3390/jmse13091831 - 22 Sep 2025
Viewed by 181
Abstract
Extreme weather events, such as typhoons, induce strong wave–current interactions that significantly alter nearshore hydrodynamic conditions, particularly in shallow intertidal zones. This study investigates the influence of wind speed and water depth on wave–current coupling under typhoon conditions in Shenhu Bay, southeastern China—a [...] Read more.
Extreme weather events, such as typhoons, induce strong wave–current interactions that significantly alter nearshore hydrodynamic conditions, particularly in shallow intertidal zones. This study investigates the influence of wind speed and water depth on wave–current coupling under typhoon conditions in Shenhu Bay, southeastern China—a semi-enclosed bay that hosts multiple ancient forest relics within its intertidal zone. A two-tier numerical modeling framework was developed, comprising a regional-scale hydrodynamic model and a localized high-resolution model centered on a protective structure. Validation data were obtained from in situ field observations. Three structural scenarios were tested: fully intact, bottom-blocked, and damaged. Results indicate that wave-induced radiation stress plays a dominant role in enhancing flow velocities when wind speeds exceed 6 m/s, with wave contributions approaching 100% across all water depths. However, the linear relationship between water depth and wave contribution observed under non-typhoon conditions breaks down under typhoon forcing. A critical depth range was identified, within which wave contribution peaked before declining with further increases in depth—highlighting its potential sensitivity to storm energy. Moreover, structural simulations revealed that bottom-blocked devices, although seemingly more enclosed, may be vulnerable to vertical pressure loading due to insufficient water exchange. In contrast, perforated designs facilitate an internal–external hydrodynamic balance, thereby enhancing protective effect. This study provides both theoretical and practical insights into intertidal structure design and paleo-heritage conservation under extreme hydrodynamic stress. Full article
(This article belongs to the Special Issue Advances in Storm Tide and Wave Simulations and Assessment)
Show Figures

Figure 1

22 pages, 13233 KB  
Article
Severe Typhoon Danas (2025)—A Tropical Cyclone with Erratic Track over the Northern Part of the South China Sea and Adjacent Sea of Taiwan
by Chun-Wing Choy, Pak-Wai Chan, Ping Cheung, Ching-Chi Lam, Chun-Kit Ho, Yu-Heng He and Jun-Yi He
Atmosphere 2025, 16(9), 1099; https://doi.org/10.3390/atmos16091099 - 18 Sep 2025
Viewed by 760
Abstract
Severe Typhoon Danas over the northern part of the South China Sea and seas near Taiwan in early July 2025 had an erratic path that had not been observed before, according to historical data in the region. Its formation, movement, and intensification posed [...] Read more.
Severe Typhoon Danas over the northern part of the South China Sea and seas near Taiwan in early July 2025 had an erratic path that had not been observed before, according to historical data in the region. Its formation, movement, and intensification posed significant challenges to the timely tropical cyclone (TC) warning services. This paper documents the observational aspect and forecasting aspect of this cyclone. There are key findings: (a) when Danas interacted with the Central Mountain Range of Taiwan, a “secondary cyclone” appeared over the northeastern part of Taiwan, which was observed by both weather radars and meteorological satellite winds, and was simulated to a certain extent by a mesoscale numerical weather prediction (NWP) model; (b) data-driven AI global models performed better than physics-based global NWP models in capturing the formation and the rather erratic track of Danas a couple of days earlier, although AI models generally underestimate the intensity forecasts; and (c) an atmosphere–ocean–wave coupled model was found to perform the best in capturing both the track changes of Danas (because of being driven by an AI global model) and its intensity changes (because of better physical representation of the oceanic impact on the intensity of this TC), whereas AI global models, though with various recent enhancements, still tended to underestimate the strength of Danas. This paper serves as a reference of this rather unusual TC for the weather forecasting services in the region. Full article
(This article belongs to the Special Issue Typhoon Climatology: Intensity and Structure)
Show Figures

Figure 1

22 pages, 6968 KB  
Article
Signatures of Breaking Waves in a Coastal Polynya Covered with Frazil Ice: A High-Resolution Satellite Image Case Study of Terra Nova Bay Polynya
by Katarzyna Bradtke, Wojciech Brodziński and Agnieszka Herman
Remote Sens. 2025, 17(18), 3198; https://doi.org/10.3390/rs17183198 - 16 Sep 2025
Viewed by 340
Abstract
The study focuses on the detection of breaking wave crests in the highly dynamic waters of an Antarctic coastal polynya using high-resolution panchromatic satellite imagery. Accurate assessment of whitecap coverage is crucial for improving our understanding of the interactions between wave generation, air–sea [...] Read more.
The study focuses on the detection of breaking wave crests in the highly dynamic waters of an Antarctic coastal polynya using high-resolution panchromatic satellite imagery. Accurate assessment of whitecap coverage is crucial for improving our understanding of the interactions between wave generation, air–sea heat exchange, and sea ice formation in these complex environments. As open-ocean whitecap detection methods are inadequate in coastal polynyas partially covered with frazil ice, we discuss an approach that exploits specific lighting conditions: the alignment of sunlight with the dominant wind direction and low solar elevation. Under such conditions, steep breaking waves cast pronounced shadows, which are used as the primary indicator of wave crests, particularly in frazil streak zones. The algorithm is optimized to exploit these conditions and minimize false positives along frazil streak boundaries. We applied the algorithm to a WorldView-2 image covering different parts of Terra Nova Bay Polynya (Ross Sea), a dynamic polar coastal zone. This case study demonstrates that the spatial distribution of detected breaking waves is consistent with ice conditions and wind forcing patterns, while also revealing deviations that point to complex wind–wave–ice interactions. Although quantitative validation of satellite-derived whitecaps coverage was not possible due to the lack of in situ data, the method performs reliably under a range of conditions. Limitations of the proposed approach are pointed out and discussed. Finally, the study highlights the risk of misinterpretation of lower-resolution reflectance data in areas where whitecaps and sea ice coexist at subpixel scales. Full article
Show Figures

Figure 1

20 pages, 47004 KB  
Article
Upper Ocean Response to Typhoon Khanun in the South China Sea from Multiple-Satellite Observations and Numerical Simulations
by Fengcheng Guo, Xia Chai, Yongze Li and Dongyang Fu
J. Mar. Sci. Eng. 2025, 13(9), 1718; https://doi.org/10.3390/jmse13091718 - 5 Sep 2025
Viewed by 397
Abstract
This study examines the upper-ocean response to Typhoon Khanun, which traversed the northern South China Sea in October 2017, by integrating multi-satellite observations with numerical simulations from the Regional Ocean Modeling System (ROMS). For the ROMS simulations, an Arakawa C-grid was adopted with [...] Read more.
This study examines the upper-ocean response to Typhoon Khanun, which traversed the northern South China Sea in October 2017, by integrating multi-satellite observations with numerical simulations from the Regional Ocean Modeling System (ROMS). For the ROMS simulations, an Arakawa C-grid was adopted with a 4-km horizontal resolution and 40 vertical terrain-following σ-layers, covering the domain of 105° E to 119° E and 15° N to 23° N. Typhoons significantly influence ocean dynamics, altering sea surface temperature (SST), sea surface salinity (SSS), and ocean currents, thereby modulating air–sea exchange processes and marine ecosystem dynamics. High-resolution satellite datasets, including GHRSSST for SST, SMAP for SSS, GPM IMERG for precipitation, and GLORYS12 for sea surface height, were combined with ROMS simulations configured at a 4-km horizontal resolution with 40 vertical layers to analyze ocean changes from 11 to 18 October 2017. The results show that Typhoon Khanun induced substantial SST cooling, with ROMS simulations indicating a maximum decrease of 1.94 °C and satellite data confirming up to 1.5 °C, primarily on the right side of the storm track due to wind-driven upwelling and vertical mixing. SSS exhibited a complex response: nearshore regions, such as the Beibu Gulf, experienced freshening of up to 0.1 psu driven by intense rainfall, while the right side of the storm track showed a salinity increase of 0.6 psu due to upwelling of saltier deep water. Ocean currents intensified significantly, reaching speeds of 0.5–1 m/s near coastal areas, with pronounced vertical mixing in the upper 70 m driven by Ekman pumping and wave-current interactions. By effectively capturing typhoon-induced oceanic responses, the integration of satellite data and the ROMS model enhances understanding of typhoon–ocean interaction mechanisms, providing a scientific basis for risk assessment and disaster management in typhoon-prone regions. Future research should focus on refining model parameterizations and advancing data assimilation techniques to improve predictions of typhoon–ocean interactions, providing valuable insights for disaster preparedness and environmental management in typhoon-prone regions. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

21 pages, 8646 KB  
Article
Influence of Varying Fractal Characteristics on the Dynamic Response of a Semi-Submersible Floating Wind Turbine Platform
by Wanyong Zhang, Haoda Huang, Qingsong Liu, Yangtian Yan, Chun Li, Weipao Miao, Minnan Yue and Wanfu Zhang
J. Mar. Sci. Eng. 2025, 13(9), 1708; https://doi.org/10.3390/jmse13091708 - 4 Sep 2025
Viewed by 395
Abstract
Offshore wind turbines positioned in deepwater areas are increasingly favored due to them providing superior and stable wind resources. However, the dynamic stability of floating offshore wind turbines (FOWTs) under complex environmental loading remains challenging. This study proposes a novel semi-submersible platform featuring [...] Read more.
Offshore wind turbines positioned in deepwater areas are increasingly favored due to them providing superior and stable wind resources. However, the dynamic stability of floating offshore wind turbines (FOWTs) under complex environmental loading remains challenging. This study proposes a novel semi-submersible platform featuring a fractal structure inspired by the venation of Victoria Amazonica and investigates the effects of fractal branching level and biomimetic structural height on platform motions, with the aim of enhancing the overall system stability of FOWTs. Within a high-fidelity computational fluid dynamics (CFD) framework coupled with a dynamic fluid–body interaction (DFBI) model and a volume-of-fluid (VOF) wave model, the dynamic responses of the biomimetic platform are investigated under varying fractal dimensions (Df) and structural heights. The results indicate that increasing fractal complexity enhances the local wall viscosity effect, significantly improving energy dissipation capabilities within the fractal cavities. Specifically, an eight-level fractal structure shows optimal performance, achieving reductions of approximately 16.94%, 23.26%, and 35.63% in heave, pitch, and rotational energy responses, respectively. Additionally, the increasing fractal height further strengthens energy dissipation, markedly enhancing stability, particularly in pitch motion. These findings underscore the substantial potential of biomimetic fractal designs in enhancing the dynamic stability of FOWTs. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

33 pages, 16601 KB  
Article
Monte Carlo-Based Risk Analysis of Deep-Sea Mining Risers Under Vessel–Riser Coupling Effects
by Gang Wang, Hongshen Zhou and Qiong Hu
J. Mar. Sci. Eng. 2025, 13(9), 1663; https://doi.org/10.3390/jmse13091663 - 29 Aug 2025
Viewed by 533
Abstract
In deep-sea mining operations, rigid risers operate in a complex and uncertain ocean environment where vessel–riser interactions present significant structural challenges. This study develops a coupled dynamic modeling framework that integrates vessel motions and environmental loads to evaluate the probabilistic risk of riser [...] Read more.
In deep-sea mining operations, rigid risers operate in a complex and uncertain ocean environment where vessel–riser interactions present significant structural challenges. This study develops a coupled dynamic modeling framework that integrates vessel motions and environmental loads to evaluate the probabilistic risk of riser failure. Using frequency-domain RAOs derived from AQWA and time-domain simulations in OrcaFlex 11.0, we analyze the riser’s effective tension, bending moment, and von Mises stress under a range of wave heights, periods, and directions, as well as varying current and wind speeds. A Monte Carlo simulation framework based on Latin hypercube sampling is used to generate 10,000 sea state scenarios. The response distributions are approximated using probability density functions to assess structural reliability, and global sensitivity is evaluated using a Sobol-based approach. Results show that the wave height and period are the primary drivers of riser dynamic response, both with sensitivity indices exceeding 0.7. Transverse wave directions exert stronger dynamic excitation, and the current speed notably affects the bending moment (sensitivity index = 0.111). The proposed methodology unifies a coupled time-domain simulation, environmental uncertainty analysis, and reliability assessment, enabling clear identification of dominant factors and distribution patterns of extreme riser responses. Additionally, the workflow offers practical guidance on key monitoring targets, alarm thresholds, and safe operation to support design and real-time decision-making. Full article
(This article belongs to the Special Issue Safety Evaluation and Protection in Deep-Sea Resource Exploitation)
Show Figures

Figure 1

34 pages, 9260 KB  
Review
Recent Advances in the Analysis of Functional and Structural Polymer Composites for Wind Turbines
by Francisco Lagos, Brahim Menacer, Alexis Salas, Sunny Narayan, Carlos Medina, Rodrigo Valle, César Garrido, Gonzalo Pincheira, Angelo Oñate, Renato Hunter-Alarcón and Víctor Tuninetti
Polymers 2025, 17(17), 2339; https://doi.org/10.3390/polym17172339 - 28 Aug 2025
Viewed by 1274
Abstract
Achieving the full potential of wind energy in the global renewable transition depends critically on enhancing the performance and reliability of polymer composite components. This review synthesizes recent advances from 2022 to 2025, including the development of next-generation hybrid composites and the application [...] Read more.
Achieving the full potential of wind energy in the global renewable transition depends critically on enhancing the performance and reliability of polymer composite components. This review synthesizes recent advances from 2022 to 2025, including the development of next-generation hybrid composites and the application of high-fidelity computational methods—finite element analysis (FEA), computational fluid dynamics (CFD), and fluid–structure interaction (FSI)—to optimize structural integrity and aerodynamic performance. It also explores the transformative role of artificial intelligence (AI) in structural health monitoring (SHM) and the integration of Internet of Things (IoT) systems, which are becoming essential for predictive maintenance and lifecycle management. Special focus is given to harsh offshore environments, where polymer composites must withstand extreme wind and wave conditions. This review further addresses the growing importance of circular economy strategies for managing end-of-life composite blades. While innovations such as the geometric redesign of floating platforms and the aerodynamic refinement of blade components have yielded substantial gains—achieving up to a 30% mass reduction in PLA prototypes—more conservative optimizations of internal geometry configurations in GFRP blades provide only around 7% mass reduction. Nevertheless, persistent challenges related to polymer composite degradation and fatigue under severe weather conditions are driving the adoption of real-time hybrid predictive models. A bibliometric analysis of over 1000 publications confirms more than 25 percent annual growth in research across these interconnected areas. This review serves as a comprehensive reference for engineers and researchers, identifying three strategic frontiers that will shape the future of wind turbine blade technology: advanced composite materials, integrated computational modeling, and scalable recycling solutions. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

19 pages, 4967 KB  
Article
Temporal Variations in Wave Systems in a Multimodal Sea State in the Coastal Waters of the Eastern Arabian Sea
by Sivakrishnan K. Kalappurakal, Shanas R. Puthuveetil and V. Sanil Kumar
Oceans 2025, 6(3), 53; https://doi.org/10.3390/oceans6030053 - 27 Aug 2025
Viewed by 556
Abstract
Multimodal waves can significantly impact ocean–atmosphere interactions and affect coastal ecosystems. Due to the presence of waves created in different geographical areas, many wave systems coexist in coastal seas. Based on data collected with a directional waverider buoy, this study investigates fluctuations in [...] Read more.
Multimodal waves can significantly impact ocean–atmosphere interactions and affect coastal ecosystems. Due to the presence of waves created in different geographical areas, many wave systems coexist in coastal seas. Based on data collected with a directional waverider buoy, this study investigates fluctuations in multimodal sea states from March 2010 to May 2020 in the eastern Arabian Sea. The watershed-based spectral partitioning method is used to analyze 2D wave spectra obtained from measurements. Four-wave systems are present during pre- and post-monsoon periods, and three systems are detected during the monsoon (June–September). Interannual changes in significant wave height and peak wave period of different systems are investigated, revealing the maximum interannual variability of all wave systems in the inter-monsoon periods (May and October). The most energetic system during the pre-monsoon period is wind seas from the northwest direction, whereas during monsoon, swells from the southwest-west dominate. This pattern is similar across a spatial distance of 570 km along the western coastal waters of India. In the post-monsoon period, both systems (wind seas and swells) are present, with swells having slightly higher intensity. Full article
Show Figures

Figure 1

23 pages, 12911 KB  
Article
Research of Wind–Wave–Ship Coupled Effects on Ship Airwake and Helicopter Aerodynamic Characteristics
by Kun Zong, Luyao Qi, Yongjie Shi, Wei Han and Shan Ma
J. Mar. Sci. Eng. 2025, 13(9), 1608; https://doi.org/10.3390/jmse13091608 - 22 Aug 2025
Viewed by 389
Abstract
The oceanic wind and waves, as well as the resultant ship motions, significantly impact the ship airwake and the operation of shipborne helicopters. A numerical method coupling wind, wave, ship and helicopter is developed using multiphase flow, in which the ship motions are [...] Read more.
The oceanic wind and waves, as well as the resultant ship motions, significantly impact the ship airwake and the operation of shipborne helicopters. A numerical method coupling wind, wave, ship and helicopter is developed using multiphase flow, in which the ship motions are simulated in real time by dynamic fluid body interaction module and the helicopter rotor is modeled using the momentum source approach. By integrating the ONRT ship with the UH-60A helicopter, the unsteady aerodynamic characteristics of the ship airwake and the helicopter rotor while the ship is pitching and heaving at sea state 36 that cover moderate to extreme marine environments are studied, and the time history of rotor thrust and pitch moment at four different sea states and different hovering heights are calculated. It is shown that ship motions and deck displacements in relative sea states are highly nonlinear, making the conditions faced by helicopter landing and take-off operations vary greatly from one sea state to another. The effects of each sea state when coupling waves and ship motions varies greatly. The fluctuation of velocity components and rotor air loads in sea state 6 is up to twice that of in sea state 5, while there are less differences between the velocity fluctuation and the corresponding helicopter airloads among common sea state 3~5. The dynamic aerodynamic interference resulting from the wind–wave–ship–helicopter coupling exhibits pronounced unsteady characteristics, as the hovering rotor continuously traverses areas with varying velocities and vorticities. At the most severe sea state 6, rotor thrust fluctuations can reach up to 20%, and strong perturbations of 5~10 Hz with an amplitude of 1/3 of the total range occur due to oscillating separated shear layers, which endanger the shipborne helicopter operation and needs to be eluded. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

22 pages, 7227 KB  
Article
Mechanisms Driving Recent Sea-Level Acceleration in the Gulf of Guinea
by Ayinde Akeem Shola, Huaming Yu, Kejian Wu and Nir Krakauer
Remote Sens. 2025, 17(16), 2834; https://doi.org/10.3390/rs17162834 - 15 Aug 2025
Viewed by 577
Abstract
The Gulf of Guinea is undergoing accelerated sea-level rise (SLR), with localized rates surpassing 10 mm yr−1, more than double the global mean. Integrating GRACE/FO ocean mass data, reanalysis products, and machine learning, we identify a regime shift in the regional [...] Read more.
The Gulf of Guinea is undergoing accelerated sea-level rise (SLR), with localized rates surpassing 10 mm yr−1, more than double the global mean. Integrating GRACE/FO ocean mass data, reanalysis products, and machine learning, we identify a regime shift in the regional sea-level budget post-2015. Over 60% of observed SLR near major riverine outlets stems from ocean mass increase, driven primarily by intensified terrestrial hydrological discharge, marking a transition from steric to barystatic and manometric dominance. This shift coincides with enhanced monsoonal precipitation, wind-forced equatorial wave adjustments, and Atlantic–Pacific climate coupling. Piecewise regression reveals a significant 2015 breakpoint, with mean coastal SLR rates increasing from 2.93 ± 0.1 to 5.4 ± 0.25 mm yr−1 between 1993 and 2014, and 2015 and 2023. GRACE data indicate extreme mass accumulation (>10 mm yr−1) along the eastern Gulf coast, tied to elevated river discharge and estuarine retention. Dynamical analysis reveals the reorganization of wind field intensification, which modifies Rossby wave dispersion and amplifies zonal water mass convergence. Random forest modeling attributes 16% of extreme SLR variance to terrestrial runoff (comparable to wind stress at 19%), underscoring underestimated land–ocean interactions. Current climate models underrepresent manometric contributions by 20–45%, introducing critical projection biases for high-runoff regions. The societal implications are severe, with >400 km2 of urban land in Lagos and Abidjan vulnerable to inundation by 2050. These findings reveal a hybrid steric–manometric regime in the Gulf of Guinea, challenging existing paradigms and suggesting analogous dynamics may operate across tropical margins. This calls for urgent model recalibration and tailored regional adaptation strategies. Full article
Show Figures

Figure 1

19 pages, 13362 KB  
Article
Numerical Simulations of Extratropical Storm Surge in the Bohai Bay Based on a Coupled Atmosphere–Ocean–Wave Model
by Yong Li, Xuezheng Liu, Junjie Liu and Guangsen Xiong
Water 2025, 17(16), 2364; https://doi.org/10.3390/w17162364 - 9 Aug 2025
Viewed by 605
Abstract
The Bohai Bay is particularly vulnerable to storm surges triggered by extratropical storms or cold-air outbreaks. A coupled atmosphere–ocean–wave model with high resolution is presented and applied to simulate a cold-air outbreak that happened in late November 2004. The surge dynamics are examined [...] Read more.
The Bohai Bay is particularly vulnerable to storm surges triggered by extratropical storms or cold-air outbreaks. A coupled atmosphere–ocean–wave model with high resolution is presented and applied to simulate a cold-air outbreak that happened in late November 2004. The surge dynamics are examined in detail. Each model component is separately validated, demonstrating that the triply coupled system can reproduce intense winds, storm surge amplitudes, and significant surface waves with high fidelity. The potential coupling effects on the simulation results are investigated. Six experiments are performed covering various coupling models, and a two-way nesting technique is utilized during simulation. After comparison it shows that there is little difference in wind speed between the three numerical models and that the reanalysis data may significantly underestimate extreme winds. The evident improvements are obtained for peak values of water level when using the atmosphere–ocean coupled configuration versus uncoupled model simulation. It also can be found that the negative surge can be captured by each of the coupled and uncoupled models. The ocean–wave coupled configuration yields significant wave heights that closely match in situ measurements, underscoring the critical role of ocean–wave interaction in storm wave prediction. Our findings confirm that the fully coupled model is well-suited for forecasting extratropical storm surge in Bohai Bay. Northeast winds emerge as the primary driver, with the western coast of Bohai Bay bearing the greatest impact. Full article
Show Figures

Figure 1

16 pages, 6518 KB  
Article
The Role of Ocean Penetrative Solar Radiation in the Evolution of Mediterranean Storm Daniel
by John Karagiorgos, Platon Patlakas, Vassilios Vervatis and Sarantis Sofianos
Remote Sens. 2025, 17(15), 2684; https://doi.org/10.3390/rs17152684 - 3 Aug 2025
Viewed by 549
Abstract
Air–sea interactions play a pivotal role in shaping cyclone development and evolution. In this context, this study investigates the role of ocean optical properties and solar radiation penetration in modulating subsurface heat content and their subsequent influence on the intensity of Mediterranean cyclones. [...] Read more.
Air–sea interactions play a pivotal role in shaping cyclone development and evolution. In this context, this study investigates the role of ocean optical properties and solar radiation penetration in modulating subsurface heat content and their subsequent influence on the intensity of Mediterranean cyclones. Using a regional coupled ocean–wave–atmosphere model, we conducted sensitivity experiments for Storm Daniel (2023) comparing two solar radiation penetration schemes in the ocean model component: one with a constant light attenuation depth and another with chlorophyll-dependent attenuation based on satellite estimates. Results show that the chlorophyll-driven radiative heating scheme consistently produces warmer sea surface temperatures (SSTs) prior to cyclone onset, leading to stronger cyclones characterized by deeper minimum mean sea-level pressure, intensified convective activity, and increased rainfall. However, post-storm SST cooling is also amplified due to stronger wind stress and vertical mixing, potentially influencing subsequent local atmospheric conditions. Overall, this work demonstrates that ocean bio-optical processes can meaningfully impact Mediterranean cyclone behavior, highlighting the importance of using appropriate underwater light attenuation schemes and ocean color remote sensing data in coupled models. Full article
Show Figures

Figure 1

34 pages, 13488 KB  
Review
Numeric Modeling of Sea Surface Wave Using WAVEWATCH-III and SWAN During Tropical Cyclones: An Overview
by Ru Yao, Weizeng Shao, Yuyi Hu, Hao Xu and Qingping Zou
J. Mar. Sci. Eng. 2025, 13(8), 1450; https://doi.org/10.3390/jmse13081450 - 29 Jul 2025
Viewed by 702
Abstract
Extreme surface winds and wave heights of tropical cyclones (TCs)—pose serious threats to coastal community, infrastructure and environments. In recent decades, progress in numerical wave modeling has significantly enhanced the ability to reconstruct and predict wave behavior. This review offers an in-depth overview [...] Read more.
Extreme surface winds and wave heights of tropical cyclones (TCs)—pose serious threats to coastal community, infrastructure and environments. In recent decades, progress in numerical wave modeling has significantly enhanced the ability to reconstruct and predict wave behavior. This review offers an in-depth overview of TC-related wave modeling utilizing different computational schemes, with a special attention to WAVEWATCH III (WW3) and Simulating Waves Nearshore (SWAN). Due to the complex air–sea interactions during TCs, it is challenging to obtain accurate wind input data and optimize the parameterizations. Substantial spatial and temporal variations in water levels and current patterns occurs when coastal circulation is modulated by varying underwater topography. To explore their influence on waves, this study employs a coupled SWAN and Finite-Volume Community Ocean Model (FVCOM) modeling approach. Additionally, the interplay between wave and sea surface temperature (SST) is investigated by incorporating four key wave-induced forcing through breaking and non-breaking waves, radiation stress, and Stokes drift from WW3 into the Stony Brook Parallel Ocean Model (sbPOM). 20 TC events were analyzed to evaluate the performance of the selected parameterizations of external forcings in WW3 and SWAN. Among different nonlinear wave interaction schemes, Generalized Multiple Discrete Interaction Approximation (GMD) Discrete Interaction Approximation (DIA) and the computationally expensive Wave-Ray Tracing (WRT) A refined drag coefficient (Cd) equation, applied within an upgraded ST6 configuration, reduce significant wave height (SWH) prediction errors and the root mean square error (RMSE) for both SWAN and WW3 wave models. Surface currents and sea level variations notably altered the wave energy and wave height distributions, especially in the area with strong TC-induced oceanic current. Finally, coupling four wave-induced forcings into sbPOM enhanced SST simulation by refining heat flux estimates and promoting vertical mixing. Validation against Argo data showed that the updated sbPOM model achieved an RMSE as low as 1.39 m, with correlation coefficients nearing 0.9881. Full article
(This article belongs to the Section Ocean and Global Climate)
Show Figures

Figure 1

Back to TopTop