Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (26,009)

Search Parameters:
Keywords = windings

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1935 KB  
Article
Analysis of Stratospheric Ozone and Nitrogen Dioxide over Mid-Brazil for a Period from 2005 to 2020
by Elvira Kovač-Andrić, Vlatka Gvozdić, Brunislav Matasović, Nikola Sakač and Amaury de Souza
Atmosphere 2025, 16(10), 1159; https://doi.org/10.3390/atmos16101159 - 3 Oct 2025
Abstract
This study analyses the stratospheric concentrations of ozone (O3) and nitrogen dioxide (NO2) over a 16-year period (2005 to 2020) over central Brazil using satellite data with the aim of determining the influence of NO2 on ozone distribution [...] Read more.
This study analyses the stratospheric concentrations of ozone (O3) and nitrogen dioxide (NO2) over a 16-year period (2005 to 2020) over central Brazil using satellite data with the aim of determining the influence of NO2 on ozone distribution and the impact of fires and volcanic eruptions on these gases. The analysis shows that ozone and NO2 follow seasonal patterns, with the highest concentrations occurring in September and October and the lowest from January to June. A positive correlation was found between the concentrations of ozone and NO2, and the results of the Fourier analysis indicate semi-annual and annual cycles in the concentrations of these gases. Although there was an increase in the number of fires in the last 11 years of the study, this increase did not lead to significant changes in ozone or NO2 concentrations, indicating the stability of these parameters in the observed area. It is presumed that the reason for the lack of changes is lower intensity of fires despite their increased number. Regarding wind patterns, it is observed that they do not differ much either which is in accordance with the fact that the monitored area is fairly close to the equator. Full article
(This article belongs to the Section Upper Atmosphere)
Show Figures

Figure 1

24 pages, 2442 KB  
Article
Development of a Novel Weighted Maximum Likelihood-Based Parameter Estimation Technique for Improved Annual Energy Production Estimation of Wind Turbines
by Woobeom Han, Kanghee Lee, Jonghwa Kim and Seungjae Lee
Energies 2025, 18(19), 5265; https://doi.org/10.3390/en18195265 - 3 Oct 2025
Abstract
Conventional statistical models consider all wind speed ranges as equally important, causing significant prediction errors, particularly in wind speed intervals that contribute the most to wind turbine power generation. To overcome this limitation, this study proposes a novel parameter estimation method—Weighted Maximum Likelihood [...] Read more.
Conventional statistical models consider all wind speed ranges as equally important, causing significant prediction errors, particularly in wind speed intervals that contribute the most to wind turbine power generation. To overcome this limitation, this study proposes a novel parameter estimation method—Weighted Maximum Likelihood Estimation (WMLE)—to improve the accuracy of annual energy production (AEP) predictions for wind turbine systems. The proposed WMLE incorporates wind-speed-specific weights based on power generation contribution, along with a weighting amplification factor (β), to construct a power-oriented wind distribution model. WMLE performance was validated by comparing four offshore wind farm candidate sites in Korea—each exhibiting distinct wind characteristics. Goodness-of-fit evaluations against conventional wind statistical models demonstrated the improved distribution fitting performance of WMLE. Furthermore, WMLE consistently achieved relative AEP errors within ±2% compared to those of time-series-based methods. A sensitivity analysis identified the optimal β value, which narrowed the distribution fit around high-energy-contributing wind speeds, thereby enhancing the reliability of AEP predictions. In conclusion, WMLE provides a practical and robust statistical framework that bridges the gap between statistical distribution fitting and time-series-based methods for AEP. Moreover, the improved accuracy of AEP predictions enhances the reliability of wind farm feasibility assessments, reduces investment risk, and strengthens financial bankability. Full article
(This article belongs to the Section B: Energy and Environment)
17 pages, 2215 KB  
Article
Fault Location of Generator Stator with Single-Phase High-Resistance Grounding Fault Based on Signal Injection
by Binghui Lei, Yifei Wang, Zongzhen Yang, Lijiang Ma, Xinzhi Yang, Yanxun Guo, Shuai Xu and Zhiping Cheng
Sensors 2025, 25(19), 6132; https://doi.org/10.3390/s25196132 - 3 Oct 2025
Abstract
This paper proposes a novel method for locating single-phase grounding faults in generator stator windings with high resistance, which are typically challenging to locate due to weak fault characteristics. The method utilizes an active voltage injection technique combined with traveling wave reflection analysis, [...] Read more.
This paper proposes a novel method for locating single-phase grounding faults in generator stator windings with high resistance, which are typically challenging to locate due to weak fault characteristics. The method utilizes an active voltage injection technique combined with traveling wave reflection analysis, singular value decomposition (SVD) denoising, and discrete wavelet transform (DWT). A DC voltage signal is then injected into the stator winding, and the voltage and current signals at both terminals are collected. These signals undergo denoising using SVD, followed by DWT, to identify the arrival time of the traveling waves. Fault location is determined based on the reflection and refraction of these waves within the winding. Simulation results demonstrate that this method achieves high accuracy in fault location, even with fault resistances up to 5000 Ω. The method offers a reliable and effective solution for locating high-resistance faults in generator stator windings without requiring winding parameters, demonstrating strong potential for practical applications. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

20 pages, 3732 KB  
Article
Numerical Verification of an Anchor-Free Jack-Up Installation Method for Offshore Wind Turbine Structures Using Tugboat Fleet
by Min Han, Young IL Park, A Ra Ko, Jin Young Sung and Jeong-Hwan Kim
J. Mar. Sci. Eng. 2025, 13(10), 1906; https://doi.org/10.3390/jmse13101906 - 3 Oct 2025
Abstract
With the rapid expansion of offshore wind power, efficient installation methods for 10 MW offshore wind turbines (OWTs) are increasingly being required. Conventional approaches using installation vessels, heavy-lift barges, and mooring systems incur high costs, long schedules, and weather-related constraints, particularly in harsh [...] Read more.
With the rapid expansion of offshore wind power, efficient installation methods for 10 MW offshore wind turbines (OWTs) are increasingly being required. Conventional approaches using installation vessels, heavy-lift barges, and mooring systems incur high costs, long schedules, and weather-related constraints, particularly in harsh seas such as the West Sea and Jeju. This study investigates an anchor-free installation method for jack-up-type OWTs employing tugboats instead of specialized vessels. Environmental loads were estimated with MOSES and AQWA, and frequency-domain analyses were performed to evaluate wave responses and towline tensions. Results showed that maximum tensions remained below both the Safe Working Load of towlines and the Effective Bollard Pull of tugboats during all spudcan lowering stages. Even under conservative OPLIM conditions, feasibility was confirmed. The findings indicate that the proposed tug-assisted method ensures adequate station-keeping capability while reducing cost, construction time, and weather dependency, presenting a practical alternative for large-scale OWT installation. Full article
Show Figures

Figure 1

44 pages, 9261 KB  
Review
Advances in Type IV Tanks for Safe Hydrogen Storage: Materials, Technologies and Challenges
by Francesco Piraino, Leonardo Pagnotta, Orlando Corigliano, Matteo Genovese and Petronilla Fragiacomo
Hydrogen 2025, 6(4), 80; https://doi.org/10.3390/hydrogen6040080 - 3 Oct 2025
Abstract
This paper provides a comprehensive review of Type IV hydrogen tanks, with a focus on materials, manufacturing technologies and structural issues related to high-pressure hydrogen storage. Recent advances in the use of advanced composite materials, such as carbon fibers and polyamide liners, useful [...] Read more.
This paper provides a comprehensive review of Type IV hydrogen tanks, with a focus on materials, manufacturing technologies and structural issues related to high-pressure hydrogen storage. Recent advances in the use of advanced composite materials, such as carbon fibers and polyamide liners, useful for improving mechanical strength and permeability, have been reviewed. The present review also discusses solutions to reduce hydrogen blistering and embrittlement, as well as exploring geometric optimization methodologies and manufacturing techniques, such as helical winding. Additionally, emerging technologies, such as integrated smart sensors for real-time monitoring of tank performance, are explored. The review concludes with an assessment of future trends and potential solutions to overcome current technical limitations, with the aim of fostering a wider adoption of Type IV tanks in mobility and stationary applications. Full article
Show Figures

Figure 1

16 pages, 1851 KB  
Article
A Method for Determining Medium- and Long-Term Renewable Energy Accommodation Capacity Considering Multiple Uncertain Influencing Factors
by Tingxiang Liu, Libin Yang, Zhengxi Li, Kai Wang, Pinkun He and Feng Xiao
Energies 2025, 18(19), 5261; https://doi.org/10.3390/en18195261 - 3 Oct 2025
Abstract
Amid the global energy transition, rapidly expanding wind and solar installations challenge power grids with variability and uncertainty. We propose an adaptive framework for renewable energy accommodation assessment under high-dimensional uncertainties, integrating three innovations: (1) Response Surface Methodology (RSM) is adopted for the [...] Read more.
Amid the global energy transition, rapidly expanding wind and solar installations challenge power grids with variability and uncertainty. We propose an adaptive framework for renewable energy accommodation assessment under high-dimensional uncertainties, integrating three innovations: (1) Response Surface Methodology (RSM) is adopted for the first time to construct a closed-form polynomial of renewable energy accommodation in terms of resource hours, load, installed capacity, and transmission limits, enabling millisecond-level evaluation; (2) LASSO-regularized RSM suppresses high-dimensional overfitting by automatically selecting key interaction terms while preserving interpretability; (3) a Bayesian kernel density extension yields full posterior distributions and confidence intervals for renewable energy accommodation in small-sample scenarios, quantifying risk. A case study on a renewable-rich grid in Northwest China validates the framework: two-factor response surface models achieve R2 > 90% with < 0.5% mean absolute error across ten random historical cases; LASSO regression keeps errors below 1.5% in multidimensional space; Bayesian density intervals encompass all observed values. The framework flexibly switches between deterministic, sparse, or probabilistic modes according to data availability, offering efficient and reliable decision support for generation-transmission planning and market clearing under multidimensional uncertainty. Full article
Show Figures

Figure 1

28 pages, 7501 KB  
Article
Multi-Step Apparent Temperature Prediction in Broiler Houses Using a Hybrid SE-TCN–Transformer Model with Kalman Filtering
by Pengshen Zheng, Wanchao Zhang, Bin Gao, Yali Ma and Changxi Chen
Sensors 2025, 25(19), 6124; https://doi.org/10.3390/s25196124 - 3 Oct 2025
Abstract
In intensive broiler production, rapid environmental fluctuations can induce heat stress, adversely affecting flock welfare and productivity. Apparent temperature (AT), integrating temperature, humidity, and wind speed, provides a comprehensive thermal index, guiding predictive climate control. This study develops a multi-step AT forecasting model [...] Read more.
In intensive broiler production, rapid environmental fluctuations can induce heat stress, adversely affecting flock welfare and productivity. Apparent temperature (AT), integrating temperature, humidity, and wind speed, provides a comprehensive thermal index, guiding predictive climate control. This study develops a multi-step AT forecasting model based on a hybrid SE-TCN–Transformer architecture enhanced with Kalman filtering. The temporal convolutional network with SE attention extracts short-term local trends, the Transformer captures long-range dependencies, and Kalman smoothing reduces prediction noise, collectively improving robustness and accuracy. The model was trained on multi-source time-series data from a commercial broiler house and evaluated for 5, 15, and 30 min horizons against LSTM, GRU, Autoformer, and Informer benchmarks. Results indicate that the proposed model achieves substantially lower prediction errors and higher determination coefficients. By combining multi-variable feature integration, local–global temporal modeling, and dynamic smoothing, the model offers a precise and reliable tool for intelligent ventilation control and heat stress management. These findings provide both scientific insight into multi-step thermal environment prediction and practical guidance for optimizing broiler welfare and production performance. Full article
(This article belongs to the Section Smart Agriculture)
53 pages, 7641 KB  
Article
The Italian Actuarial Climate Index: A National Implementation Within the Emerging European Framework
by Barbara Rogo, José Garrido and Stefano Demartis
Risks 2025, 13(10), 192; https://doi.org/10.3390/risks13100192 - 3 Oct 2025
Abstract
This paper presents the development of a high-resolution composite index to monitor and quantify climate-related risks across Italy. The country’s complex climatic variability, extensive coastline, and low insurance penetration highlight the urgent need for robust, locally calibrated tools to bridge the climate protection [...] Read more.
This paper presents the development of a high-resolution composite index to monitor and quantify climate-related risks across Italy. The country’s complex climatic variability, extensive coastline, and low insurance penetration highlight the urgent need for robust, locally calibrated tools to bridge the climate protection gap. Building on the methodological framework of existing actuarial climate indices, previously adapted for France and the Iberian Peninsula, the index integrates six standardised indicators capturing warm and cool temperature extremes, heavy precipitation intensity, dry spell duration, high wind frequency, and sea level change. It leverages hourly ERA5-Land reanalysis data and monthly sea level observations from tide gauges. Results show a clear upward trend in climate anomalies, with regional and seasonal differentiation. Among all components, sea level is most strongly correlated with the composite index, underscoring Italy’s vulnerability to marine-related risks. Comparative analysis with European indices confirms both the robustness and specificity of the Italian exposure profile, reinforcing the need for tailored risk metrics. The index can support innovative risk transfer mechanisms, including climate-related insurance, regulatory stress testing, and resilience planning. Combining scientific rigour with operational relevance, it offers a consistent, transparent, and policy-relevant tool for managing climate risk in Italy and contributing to harmonised European frameworks. Full article
(This article belongs to the Special Issue Climate Change and Financial Risks)
24 pages, 8041 KB  
Article
Stable Water Isotopes and Machine Learning Approaches to Investigate Seawater Intrusion in the Magra River Estuary (Italy)
by Marco Sabattini, Francesco Ronchetti, Gianpiero Brozzo and Diego Arosio
Hydrology 2025, 12(10), 262; https://doi.org/10.3390/hydrology12100262 - 3 Oct 2025
Abstract
Seawater intrusion into coastal river systems poses increasing challenges for freshwater availability and estuarine ecosystem integrity, especially under evolving climatic and anthropogenic pressures. This study presents a multidisciplinary investigation of marine intrusion dynamics within the Magra River estuary (Northwest Italy), integrating field monitoring, [...] Read more.
Seawater intrusion into coastal river systems poses increasing challenges for freshwater availability and estuarine ecosystem integrity, especially under evolving climatic and anthropogenic pressures. This study presents a multidisciplinary investigation of marine intrusion dynamics within the Magra River estuary (Northwest Italy), integrating field monitoring, isotopic tracing (δ18O; δD), and multivariate statistical modeling. Over an 18-month period, 11 fixed stations were monitored across six seasonal campaigns, yielding a comprehensive dataset of water electrical conductivity (EC) and stable isotope measurements from fresh water to salty water. EC and oxygen isotopic ratios displayed strong spatial and temporal coherence (R2 = 0.99), confirming their combined effectiveness in identifying intrusion patterns. The mass-balance model based on δ18O revealed that marine water fractions exceeded 50% in the lower estuary for up to eight months annually, reaching as far as 8.5 km inland during dry periods. Complementary δD measurements provided additional insight into water origin and fractionation processes, revealing a slight excess relative to the local meteoric water line (LMWL), indicative of evaporative enrichment during anomalously warm periods. Multivariate regression models (PLS, Ridge, LASSO, and Elastic Net) identified river discharge as the primary limiting factor of intrusion, while wind intensity emerged as a key promoting variable, particularly when aligned with the valley axis. Tidal effects were marginal under standard conditions, except during anomalous events such as tidal surges. The results demonstrate that marine intrusion is governed by complex and interacting environmental drivers. Combined isotopic and machine learning approaches can offer high-resolution insights for environmental monitoring, early-warning systems, and adaptive resource management under climate-change scenarios. Full article
19 pages, 578 KB  
Article
Growth of Renewable Energy: A Review of Drivers from the Economic Perspective
by Yoram Krozer, Sebastian Bykuc and Frans Coenen
Energies 2025, 18(19), 5250; https://doi.org/10.3390/en18195250 - 3 Oct 2025
Abstract
Global modern renewable energy based on geothermal, wind, solar, and marine resources has grown rapidly over the last decades despite low energy density, intermittent supply, and other qualities inferior to those of fossil fuels. What is the explanation for this growth? The main [...] Read more.
Global modern renewable energy based on geothermal, wind, solar, and marine resources has grown rapidly over the last decades despite low energy density, intermittent supply, and other qualities inferior to those of fossil fuels. What is the explanation for this growth? The main drivers of growth are assessed using economic theories and verified with statistical data. From the neo-classic viewpoint that focuses on price substitutions, the growth can be explained by the shift from energy-intensive agriculture and industry to labour-intensive services. However, the energy resources complemented rather than substituted for each other. In the evolutionary idea, investments supported by policies enabled cost-reducing technological change. Still, policies alone are insufficient to generate the growth of modern renewable energy as they are inconsistent across countries and in time. From the behavioural perspective that is preoccupied with innovative entrepreneurs, the value addition of electrification can explain the introduction of modern renewable energy in market niches, but not its fast growth. Instead of these mono-causalities, the growth of modern renewable energy is explained by technology diffusion during the pioneering, growth, and maturation phases. Possibilities that postpone the maturation are pinpointed. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

24 pages, 2293 KB  
Article
The Path Towards Decarbonization: The Role of Hydropower in the Generation Mix
by Fabio Massimo Gatta, Alberto Geri, Stefano Lauria, Marco Maccioni and Ludovico Nati
Energies 2025, 18(19), 5248; https://doi.org/10.3390/en18195248 - 2 Oct 2025
Abstract
The evolution of the generation mix towards deep decarbonization poses pressing questions about the role of hydropower and its possible share in the future mix. Most technical–economic analyses of deeply decarbonized systems either rule out hydropower growth due to lack of additional hydro [...] Read more.
The evolution of the generation mix towards deep decarbonization poses pressing questions about the role of hydropower and its possible share in the future mix. Most technical–economic analyses of deeply decarbonized systems either rule out hydropower growth due to lack of additional hydro resources or take it into account in terms of additional reservoir capacity. This paper analyzes a generation mix made of photovoltaic, wind, open-cycle gas turbines, electrochemical storage and hydroelectricity, focusing on the optimal generation mix’s reaction to different methane gas prices, hydroelectricity availabilities, pumped hydro reservoir capacities, and mean filling durations for hydro reservoirs. The key feature of the developed model is the sizing of both optimal peak power and reservoir energy content for hydropower. The results of the study point out two main insights. The first one, rather widely accepted, is that cost-effective decarbonization requires the greatest possible amount of hydro reservoirs. The second one is that, even in the case of totally exploited reservoirs, there is a strong case for increasing hydro peak power. Application of the model to the Italian generation mix (with 9500 MWp and 7250 MWp of non-pumped and pumped hydro fleets, respectively) suggests that it is possible to achieve methane shares of less than 10% if the operating costs of open-cycle gas turbines exceed 160 EUR/MWh and with non-pumped and pumped hydro fleets of at least 9200 MWp and 28,400 MWp, respectively. Full article
Show Figures

Figure 1

28 pages, 3149 KB  
Article
Performance Comparison of Metaheuristic and Hybrid Algorithms Used for Energy Cost Minimization in a Solar–Wind–Battery Microgrid
by Seyfettin Vadi, Merve Bildirici and Orhan Kaplan
Sustainability 2025, 17(19), 8849; https://doi.org/10.3390/su17198849 - 2 Oct 2025
Abstract
The integration of renewable energy sources has become a strategic necessity for sustainable energy management and supply security. This study evaluates the performance of eight metaheuristic optimization algorithms in scheduling a renewable-based smart grid system that integrates solar, wind, and battery storage for [...] Read more.
The integration of renewable energy sources has become a strategic necessity for sustainable energy management and supply security. This study evaluates the performance of eight metaheuristic optimization algorithms in scheduling a renewable-based smart grid system that integrates solar, wind, and battery storage for a factory in İzmir, Türkiye. The algorithms considered include classical approaches—Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO), the Whale Optimization Algorithm (WOA), Krill Herd Optimization (KOA), and the Ivy Algorithm (IVY)—alongside hybrid methods, namely KOA–WOA, WOA–PSO, and Gradient-Assisted PSO (GD-PSO). The optimization objectives were minimizing operational energy cost, maximizing renewable utilization, and reducing dependence on grid power, evaluated over a 7-day dataset in MATLAB. The results showed that hybrid algorithms, particularly GD-PSO and WOA–PSO, consistently achieved the lowest average costs with strong stability, while classical methods such as ACO and IVY exhibited higher costs and variability. Statistical analyses confirmed the robustness of these findings, highlighting the effectiveness of hybridization in improving smart grid energy optimization. Full article
17 pages, 1172 KB  
Article
Data-Driven Baseline Analysis of Climate Variability at an Antarctic AWS (2020–2024)
by Arpitha Javali Ashok, Shan Faiz, Raja Hashim Ali and Talha Ali Khan
Digital 2025, 5(4), 50; https://doi.org/10.3390/digital5040050 - 2 Oct 2025
Abstract
Climate change in Antarctica has profound global implications, influencing sea level rise, atmospheric circulation, and the Earth’s energy balance. This study presents a data-driven baseline analysis of meteorological observations from a British Antarctic Survey automatic weather station (2020–2024). Temporal and seasonal analyses reveal [...] Read more.
Climate change in Antarctica has profound global implications, influencing sea level rise, atmospheric circulation, and the Earth’s energy balance. This study presents a data-driven baseline analysis of meteorological observations from a British Antarctic Survey automatic weather station (2020–2024). Temporal and seasonal analyses reveal strong insolation-driven variability in temperature, snow depth, and solar radiation, reflecting the extreme polar day–night cycle. Correlation analysis highlights solar radiation, upwelling longwave flux, and snow depth as the most reliable predictors of near-surface temperature, while humidity, pressure, and wind speed contribute minimally. A linear regression baseline and a Random Forest model are evaluated for temperature prediction, with the ensemble approach demonstrating superior accuracy. Although the short data span limits long-term trend attribution, the findings underscore the potential of lightweight, reproducible pipelines for site-specific climate monitoring. All analysis codes are openly available in github, enabling transparency and future methodological extensions to advanced, non-linear models and multi-site datasets. Full article
50 pages, 6411 KB  
Article
AI-Enhanced Eco-Efficient UAV Design for Sustainable Urban Logistics: Integration of Embedded Intelligence and Renewable Energy Systems
by Luigi Bibbò, Filippo Laganà, Giuliana Bilotta, Giuseppe Maria Meduri, Giovanni Angiulli and Francesco Cotroneo
Energies 2025, 18(19), 5242; https://doi.org/10.3390/en18195242 - 2 Oct 2025
Abstract
The increasing use of UAVs has reshaped urban logistics, enabling sustainable alternatives to traditional deliveries. To address critical issues inherent in the system, the proposed study presents the design and evaluation of an innovative unmanned aerial vehicle (UAV) prototype that integrates advanced electronic [...] Read more.
The increasing use of UAVs has reshaped urban logistics, enabling sustainable alternatives to traditional deliveries. To address critical issues inherent in the system, the proposed study presents the design and evaluation of an innovative unmanned aerial vehicle (UAV) prototype that integrates advanced electronic components and artificial intelligence (AI), with the aim of reducing environmental impact and enabling autonomous navigation in complex urban environments. The UAV platform incorporates brushless DC motors, high-density LiPo batteries and perovskite solar cells to improve energy efficiency and increase flight range. The Deep Q-Network (DQN) allocates energy and selects reference points in the presence of wind and payload disturbances, while an integrated sensor system monitors motor vibration/temperature and charge status to prevent failures. In urban canyon and field scenarios (wind from 0 to 8 m/s; payload from 0.35 to 0.55 kg), the system reduces energy consumption by up to 18%, increases area coverage by 12% for the same charge, and maintains structural safety factors > 1.5 under gust loading. The approach combines sustainable materials, efficient propulsion, and real-time AI-based navigation for energy-conscious flight planning. A hybrid methodology, combining experimental design principles with finite-element-based structural modelling and AI-enhanced monitoring, has been applied to ensure structural health awareness. The study implements proven edge-AI sensor fusion architectures, balancing portability and telemonitoring with an integrated low-power design. The results confirm a reduction in energy consumption and CO2 emissions compared to traditional delivery vehicles, confirming that the proposed system represents a scalable and intelligent solution for last-mile delivery, contributing to climate resilience and urban sustainability. The findings position the proposed UAV as a scalable reference model for integrating AI-driven navigation and renewable energy systems in sustainable logistics. Full article
Show Figures

Figure 1

19 pages, 14588 KB  
Article
Research on Evaporation Duct Height Prediction Modeling in the Yellow and Bohai Seas Using BLA-EDH
by Xiaoyu Wu, Lei Li, Zheyan Zhang, Can Chen and Haozhi Liu
Atmosphere 2025, 16(10), 1156; https://doi.org/10.3390/atmos16101156 - 2 Oct 2025
Abstract
Evaporation Duct Height (EDH) is a crucial parameter in evaporation duct modeling, as it directly influences the strength of the waveguide trapping effect and significantly impacts the over-the-horizon detection performance of maritime radars. To address the limitations of low prediction accuracy and limited [...] Read more.
Evaporation Duct Height (EDH) is a crucial parameter in evaporation duct modeling, as it directly influences the strength of the waveguide trapping effect and significantly impacts the over-the-horizon detection performance of maritime radars. To address the limitations of low prediction accuracy and limited interpretability in existing deep learning models under complex marine meteorological conditions, this study proposes a surrogate model, BLA-EDH, designed to emulate the output of the Naval Postgraduate School (NPS) model for real-time EDH estimation. Experimental results demonstrate that BLA-EDH can effectively replace the traditional NPS model for real-time EDH prediction, achieving higher accuracy than Multilayer Perceptron (MLP) and Long Short-Term Memory (LSTM) models. Random Forest analysis identifies relative humidity (0.2966), wind speed (0.2786), and 2-m air temperature (0.2409) as the most influential environmental variables, with importance scores exceeding those of other factors. Validation using the parabolic equation shows that BLA-EDH attains excellent fitting performance, with coefficients of determination reaching 0.9999 and 0.9997 in the vertical and horizontal dimensions, respectively. This research provides a robust foundation for modeling radio wave propagation in the Yellow Sea and Bohai Sea regions and offers valuable insights for the development of marine communication and radar detection systems. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

Back to TopTop