Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = wing membrane elasticity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
68 pages, 10407 KB  
Review
Bioinspired Morphing in Aerodynamics and Hydrodynamics: Engineering Innovations for Aerospace and Renewable Energy
by Farzeen Shahid, Maqusud Alam, Jin-Young Park, Young Choi, Chan-Jeong Park, Hyung-Keun Park and Chang-Yong Yi
Biomimetics 2025, 10(7), 427; https://doi.org/10.3390/biomimetics10070427 - 1 Jul 2025
Viewed by 2471
Abstract
Bioinspired morphing offers a powerful route to higher aerodynamic and hydrodynamic efficiency. Birds reposition feathers, bats extend compliant membrane wings, and fish modulate fin stiffness, tailoring lift, drag, and thrust in real time. To capture these advantages, engineers are developing airfoils, rotor blades, [...] Read more.
Bioinspired morphing offers a powerful route to higher aerodynamic and hydrodynamic efficiency. Birds reposition feathers, bats extend compliant membrane wings, and fish modulate fin stiffness, tailoring lift, drag, and thrust in real time. To capture these advantages, engineers are developing airfoils, rotor blades, and hydrofoils that actively change shape, reducing drag, improving maneuverability, and harvesting energy from unsteady flows. This review surveys over 296 studies, with primary emphasis on literature published between 2015 and 2025, distilling four biological archetypes—avian wing morphing, bat-wing elasticity, fish-fin compliance, and tubercled marine flippers—and tracing their translation into morphing aircraft, ornithopters, rotorcraft, unmanned aerial vehicles, and tidal or wave-energy converters. We compare experimental demonstrations and numerical simulations, identify consensus performance gains (up to 30% increase in lift-to-drag ratio, 4 dB noise reduction, and 15% boost in propulsive or power-capture efficiency), and analyze materials, actuation, control strategies, certification, and durability as the main barriers to deployment. Advances in multifunctional composites, electroactive polymers, and model-based adaptive control have moved prototypes from laboratory proof-of-concept toward field testing. Continued collaboration among biology, materials science, control engineering, and fluid dynamics is essential to unlock robust, scalable morphing technologies that meet future efficiency and sustainability targets. Full article
Show Figures

Figure 1

13 pages, 5052 KB  
Article
The Influence of Wing Membrane Elasticity on Aerodynamics in a Bat-Inspired Flapping Robot
by Szu-I Yeh and Chia-Hsu Chiang
Biomimetics 2025, 10(3), 161; https://doi.org/10.3390/biomimetics10030161 - 5 Mar 2025
Cited by 3 | Viewed by 1191
Abstract
This study investigates the aerodynamic effects of wing membrane elasticity inspired by bats, which exhibit exceptional maneuverability and stability. By mimicking bat wing folding and flapping motions, a 2-DOF flapping mechanism was developed to examine the impact of wing membrane elasticity. Polydimethylsiloxane (PDMS) [...] Read more.
This study investigates the aerodynamic effects of wing membrane elasticity inspired by bats, which exhibit exceptional maneuverability and stability. By mimicking bat wing folding and flapping motions, a 2-DOF flapping mechanism was developed to examine the impact of wing membrane elasticity. Polydimethylsiloxane (PDMS) membranes with tunable elastic properties were fabricated by adjusting the ratio of the curing agent (B agent), with the 1/50 ratio exhibiting the greatest extensibility and the lowest Young’s modulus. Experimental results demonstrate that wing membrane elasticity significantly influences aerodynamic performance. During flapping, increased elasticity led to larger camber changes, enhancing vertical lift through stronger leading-edge vortices, as confirmed by PIV flow field measurements. However, when elasticity became excessively high, as in the 1/50 membrane, the lift benefit diminished, and horizontal force decreased, indicating a trade-off between vertical and horizontal aerodynamic performance. Additionally, the folding mechanism was found to be critical for drag reduction, reducing nearly 50% of negative horizontal forces during flight. By integrating adjustable wing membrane properties and a bioinspired flapping mechanism, this research provides valuable insights into the aerodynamic characteristics of bat flight. These findings not only enhance the understanding of flapping wing aerodynamics but also offer guidance for the design of efficient and agile bioinspired aerial vehicles. Full article
(This article belongs to the Special Issue Bioinspired Flapping Wing Aerodynamics: Progress and Challenges)
Show Figures

Figure 1

24 pages, 23642 KB  
Article
Vein–Membrane Interaction in Cambering of Flapping Insect Wings
by Daisuke Ishihara, Minato Onishi and Kaede Sugikawa
Biomimetics 2023, 8(8), 571; https://doi.org/10.3390/biomimetics8080571 - 27 Nov 2023
Cited by 5 | Viewed by 2122
Abstract
It is still unclear how elastic deformation of flapping insect wings caused by the aerodynamic pressure results in their significant cambering. In this study, we present that a vein–membrane interaction (VMI) can clarify this mechanical process. In order to investigate the VMI, we [...] Read more.
It is still unclear how elastic deformation of flapping insect wings caused by the aerodynamic pressure results in their significant cambering. In this study, we present that a vein–membrane interaction (VMI) can clarify this mechanical process. In order to investigate the VMI, we propose a numerical method that consists of (a) a shape simplification model wing that consists of a few beams and a rectangular shell structure as the structural essence of flapping insect wings for the VMI, and (b) a monolithic solution procedure for strongly coupled beam and shell structures with large deformation and large rotation to analyze the shape simplification model wing. We incorporate data from actual insects into the proposed numerical method for the VMI. In the numerical analysis, we demonstrate that the model wing can generate a camber equivalent to that of the actual insects. Hence, the VMI will be a mechanical basis of the cambering of flapping insect wings. Furthermore, we present the mechanical roles of the veins in cambering. The intermediate veins increase the out-of-plane deflection of the wing membrane due to the aerodynamic pressure in the central area of the wing, while they decrease it in the vicinity of the trailing edge. As a result, these veins create the significant camber. The torsional flexibility of the leading-edge veins increases the magnitude of cambering. Full article
(This article belongs to the Section Bioinspired Sensorics, Information Processing and Control)
Show Figures

Figure 1

23 pages, 13646 KB  
Article
Experimental and Numerical Study on the Performance of Double Membrane Wing for Long-Endurance Low-Speed Aircraft
by Liang Zhang, Dongli Ma, Muqing Yang, Yuan Yao, Yayun Yu and Xiaopeng Yang
Appl. Sci. 2022, 12(13), 6765; https://doi.org/10.3390/app12136765 - 4 Jul 2022
Cited by 5 | Viewed by 2503
Abstract
Flexible membrane structure is generally used as wing skin for long-endurance low-speed aircraft, such as solar aircraft, to control the structure weight within the allowable range. Predictably, the elastic deformation of the membrane under complex loads will cause uncertain impacts on the aerodynamic [...] Read more.
Flexible membrane structure is generally used as wing skin for long-endurance low-speed aircraft, such as solar aircraft, to control the structure weight within the allowable range. Predictably, the elastic deformation of the membrane under complex loads will cause uncertain impacts on the aerodynamic performance. The existing research indicates that the deformation of the membrane wing is helpful to improve the aerodynamic characteristics. However, most of the research objects are non-thickness membrane wings. In this paper, wind tunnel experiments are performed on double membrane wings. The experiment results indicate that the membrane deformation behavior is related to the surface curvature distribution and will change the camber and thickness of the airfoil. The deformation has little effect on lift but has a significant effect on drag and pitching moment. On this basis, a high-precision fluid structure coupling analysis method for the wider range of research is introduced. The numerical analysis indicates that the deformation can delay the stall angle by 1°. Furthermore, based on the numerical results, suggestions on prestress setting during membrane skin laying are provided, and the numerical simulation results of two flexible skin wings are compared. The research results of this paper provide a scientific basis for the aerodynamic design and analysis of long-endurance low-speed aircraft. Full article
(This article belongs to the Section Aerospace Science and Engineering)
Show Figures

Figure 1

15 pages, 5821 KB  
Article
Effect of Wing Membrane Material on the Aerodynamic Performance of Flexible Flapping Wing
by Xinyu Lang, Bifeng Song, Wenqing Yang and Xiaojun Yang
Appl. Sci. 2022, 12(9), 4501; https://doi.org/10.3390/app12094501 - 29 Apr 2022
Cited by 12 | Viewed by 3305
Abstract
Flexible deformation of the insect wing has been proven to be beneficial to lift generation and power consumption. There is great potential for shared research between natural insects and bio-inspired Flapping wing Micro Aerial Vehicles (FWMAVs) for performance enhancement. However, the aerodynamic characteristics [...] Read more.
Flexible deformation of the insect wing has been proven to be beneficial to lift generation and power consumption. There is great potential for shared research between natural insects and bio-inspired Flapping wing Micro Aerial Vehicles (FWMAVs) for performance enhancement. However, the aerodynamic characteristics and deformation process of the flexible flapping wing, especially influenced by wing membrane material, are still lacking in-depth understanding. In this study, the flexible flapping wings with different membrane materials have been experimentally investigated. Power input and lift force were measured to evaluate the influence of membrane material. The rotation angles at different wing sections were extracted to analyze the deformation process. It was found that wings with higher elastic modulus membrane could generate more lift but at the cost of more power. A lower elastic modulus means the wing is more flexible and shows an advantage in power loading. Twisting deformation is more obvious for the wing with higher flexibility. Additionally, flexibility is also beneficial to attenuate the rotation angle fluctuation, which in turn enhances the aerodynamic efficiency. The research in this paper is helpful to further understand the aerodynamic characteristics of flexible flapping wing and to design bio-inspired FWMAVs with higher performance. Full article
(This article belongs to the Special Issue Bionic Unmanned Aircraft Systems)
Show Figures

Figure 1

Back to TopTop