Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,947)

Search Parameters:
Keywords = wireless power

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2809 KB  
Article
High-Efficiency Multistage Charge Pump Rectifiers Design
by Ying Wang, Ce Wang and Shiwei Dong
Energies 2025, 18(20), 5350; https://doi.org/10.3390/en18205350 (registering DOI) - 11 Oct 2025
Abstract
This paper presents an advanced radio frequency (RF)–direct current (DC) power conversion architecture based on a multistage Cockcroft–Walton topology. The proposed design achieves an enhanced voltage conversion ratio while maintaining superior RF-DC conversion efficiency under low input power conditions. To address the inherent [...] Read more.
This paper presents an advanced radio frequency (RF)–direct current (DC) power conversion architecture based on a multistage Cockcroft–Walton topology. The proposed design achieves an enhanced voltage conversion ratio while maintaining superior RF-DC conversion efficiency under low input power conditions. To address the inherent limitations of cascading Cockcroft–Walton topologies with class-F load networks, a novel ground plane isolation technique was developed, which utilizes the reverse-side metallization of the circuit board. A 5.8 GHz two-stage Cockcroft–Walton voltage multiplier rectifier was fabricated and characterized. Measurement results demonstrate that the circuit achieves a maximum output voltage of 7.4 V and a peak conversion efficiency of 70.5% with an input power of only 30 mW, while maintaining stable performance across varying load conditions. A comparison with a two-stage Dickson rectifier reveals that the Cockcroft–Walton rectifier exhibits superior output voltage and conversion efficiency. The proposed architecture delivers significant improvements in power conversion efficiency and voltage multiplication capability compared to conventional designs, establishing a new benchmark for low-power wireless energy harvesting applications. Full article
(This article belongs to the Special Issue Design, Modelling and Analysis for Wireless Power Transfer Systems)
Show Figures

Figure 1

24 pages, 1617 KB  
Article
Physical Layer Security Enhancement in IRS-Assisted Interweave CIoV Networks: A Heterogeneous Multi-Agent Mamba RainbowDQN Method
by Ruiquan Lin, Shengjie Xie, Wencheng Chen and Tao Xu
Sensors 2025, 25(20), 6287; https://doi.org/10.3390/s25206287 - 10 Oct 2025
Abstract
The Internet of Vehicles (IoV) relies on Vehicle-to-Everything (V2X) communications to enable cooperative perception among vehicles, infrastructures, and devices, where Vehicle-to-Infrastructure (V2I) links are crucial for reliable transmission. However, the openness of wireless channels exposes IoV to eavesdropping, threatening privacy and security. This [...] Read more.
The Internet of Vehicles (IoV) relies on Vehicle-to-Everything (V2X) communications to enable cooperative perception among vehicles, infrastructures, and devices, where Vehicle-to-Infrastructure (V2I) links are crucial for reliable transmission. However, the openness of wireless channels exposes IoV to eavesdropping, threatening privacy and security. This paper investigates an Intelligent Reflecting Surface (IRS)-assisted interweave Cognitive IoV (CIoV) network to enhance physical layer security in V2I communications. A non-convex joint optimization problem involving spectrum allocation, transmit power for Vehicle Users (VUs), and IRS phase shifts is formulated. To address this challenge, a heterogeneous multi-agent (HMA) Mamba RainbowDQN algorithm is proposed, where homogeneous VUs and a heterogeneous secondary base station (SBS) act as distinct agents to simplify decision-making. Simulation results show that the proposed method significantly outperform benchmark schemes, achieving a 13.29% improvement in secrecy rate and a 54.2% reduction in secrecy outage probability (SOP). These results confirm the effectiveness of integrating IRS and deep reinforcement learning (DRL) for secure and efficient V2I communications in CIoV networks. Full article
(This article belongs to the Section Sensor Networks)
28 pages, 3474 KB  
Article
OptoBrain: A Wireless Sensory Interface for Optogenetics
by Rodrigo de Albuquerque Pacheco Andrade, Helder Eiki Oshiro, Gabriel Augusto Ginja, Eduardo Colombari, Maria Celeste Dias, José A. Afonso and João Paulo Pereira do Carmo
Future Internet 2025, 17(10), 465; https://doi.org/10.3390/fi17100465 - 9 Oct 2025
Abstract
Optogenetics leverages light to control neural circuits, but traditional systems are often bulky and tethered, limiting their use. This work introduces OptoBrain, a novel, portable wireless system for optogenetics designed to overcome these challenges. The system integrates modules for multichannel data acquisition, smart [...] Read more.
Optogenetics leverages light to control neural circuits, but traditional systems are often bulky and tethered, limiting their use. This work introduces OptoBrain, a novel, portable wireless system for optogenetics designed to overcome these challenges. The system integrates modules for multichannel data acquisition, smart neurostimulation, and continuous processing, with a focus on low-power and low-voltage operation. OptoBrain features up to eight neuronal acquisition channels with a low input-referred noise (e.g., 0.99 µVRMS at 250 sps with 1 V/V gain), and reliably streams data via a Bluetooth 5.0 link at a measured throughput of up to 400 kbps. Experimental results demonstrate robust performance, highlighting its potential as a simple, practical, and low-cost solution for emerging optogenetics research centers and enabling new avenues in neuroscience. Full article
Show Figures

Figure 1

20 pages, 670 KB  
Article
Cooperative Jamming and Relay Selection for Covert Communications Based on Reinforcement Learning
by Jin Qian, Hui Li, Pengcheng Zhu, Aiping Zhou, Shuai Liu and Fengshuan Wang
Sensors 2025, 25(19), 6218; https://doi.org/10.3390/s25196218 - 7 Oct 2025
Viewed by 166
Abstract
To overcome the obstacles of maintaining covert transmissions in wireless networks employing collaborative wardens, we develop a reinforcement learning framework that jointly optimizes cooperative jamming strategies and relay selection mechanisms. The study focuses on a multi-relay-assisted two-hop network, where potential relays dynamically act [...] Read more.
To overcome the obstacles of maintaining covert transmissions in wireless networks employing collaborative wardens, we develop a reinforcement learning framework that jointly optimizes cooperative jamming strategies and relay selection mechanisms. The study focuses on a multi-relay-assisted two-hop network, where potential relays dynamically act as information relays or cooperative jammers to enhance covertness. A reinforcement learning-based relay selection scheme (RLRS) is employed to dynamically select optimal relays for signal forwarding and jamming; the framework simultaneously maximizes covert throughput and guarantees warden detection failure probability, subject to rigorous power budgets. Numerical simulations reveal that the developed reinforcement learning approach outperforms conventional random relay selection (RRS) across multiple performance metrics, achieving (i) higher peak covert transmission rates, (ii) lower outage probabilities, and (iii) superior adaptability to dynamic network parameters including relay density, power allocation variations, and additive white Gaussian noise (AWGN) fluctuations. These findings validate the effectiveness of reinforcement learning in optimizing relay and jammer selection for secure covert communications under colluding warden scenarios. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

24 pages, 24720 KB  
Article
Parallel Rendezvous Strategy for Node Association in Wi-SUN FAN Networks
by Ananias Ambrosio Quispe, Rodrigo Jardim Riella, Luciana Michelotto Iantorno, Patryk Henrique da Fonseca, Vitalio Alfonso Reguera and Evelio Martin Garcia Fernandez
Sensors 2025, 25(19), 6213; https://doi.org/10.3390/s25196213 - 7 Oct 2025
Viewed by 203
Abstract
The Wi-SUN FAN (Wireless Smart Ubiquitous Network Field Area Network) standard facilitates large-scale connectivity among smart devices in utility networks and smart cities. Specifically designed for Low-Power and Lossy Networks (LLNs), Wi-SUN FAN supports the formation of multiple Personal Area Networks (PANs) and [...] Read more.
The Wi-SUN FAN (Wireless Smart Ubiquitous Network Field Area Network) standard facilitates large-scale connectivity among smart devices in utility networks and smart cities. Specifically designed for Low-Power and Lossy Networks (LLNs), Wi-SUN FAN supports the formation of multiple Personal Area Networks (PANs) and mesh topologies with multi-hop transmissions. However, the node association process, divided into five junction states, often results in prolonged connection times, particularly in multi-hop networks, thereby limiting network scalability and reliability. This study analyzes the factors affecting these delays, with a particular focus on Join State 1 (JS1), which relies on PAN Advertisement (PA) packets that use asynchronous communication and the trickle timer algorithm, frequently causing significant delays. To overcome this challenge in JS1, we propose the Parallel Rendezvous (PR) strategy, which forms synchronized clusters of unassociated nodes and leverages the standard’s PAN Advertisement Solicit (PAS) packets to rapidly disseminate network information. The proposed algorithm, PR Wi-SUN FAN, is evaluated through simulations in various network topologies, demonstrating notable improvements in linear, fully connected, and mesh scenarios. The most significant gains are observed in the linear topology, with reductions of up to 71.22% in association time and 59.56% in energy consumption during JS1. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

21 pages, 2942 KB  
Article
A Real-Time Six-Axis Electromagnetic Field Monitoring System with Wireless Transmission and Intelligent Vector Analysis for Power Environments
by Xiran Zheng, Xuecong Li, Yucheng Mai, Wendong Li, Meiqi Chen, Gengjie Huang, Zheng Zhang and Yue Wang
Appl. Sci. 2025, 15(19), 10785; https://doi.org/10.3390/app151910785 - 7 Oct 2025
Viewed by 243
Abstract
Accurate and real-time monitoring of low-frequency electromagnetic field (EMF) is essential in power and industrial environments, yet most conventional approaches still suffer from limited spatial coverage, manual operation, and insufficient digitization. To address these challenges, this paper proposes an intelligent EMF monitoring system [...] Read more.
Accurate and real-time monitoring of low-frequency electromagnetic field (EMF) is essential in power and industrial environments, yet most conventional approaches still suffer from limited spatial coverage, manual operation, and insufficient digitization. To address these challenges, this paper proposes an intelligent EMF monitoring system that integrates six-axis magnetic field sensing, temperature compensation, vector synthesis, Sub-1 GHz wireless communication, and real-time data visualization. The system supports simultaneous measurement of both AC and DC magnetic fields across the 30 Hz–100 kHz range, with specific optimization for power-frequency conditions (50/60 Hz). Designed with modular integration and low power consumption, it is suitable for portable deployment in field scenarios. Comprehensive laboratory and substation tests demonstrate high accuracy, with maximum measurement errors of 1.17% under zero-field and 1.42% under applied-field conditions—well below the ±5% tolerance defined by international standards. Wireless performance tests further confirm stable long-distance communication, achieving ranges of up to 5 km without significant transmission errors, while overall system measurement error reached as low as 0.015%. These results verify the system’s robustness, fidelity, and compliance with international safety standards. Overall, the proposed platform provides a practical and scalable solution for intelligent EMF monitoring, offering strong potential for deployment in industrial environments and infrastructure-critical applications. Full article
Show Figures

Figure 1

20 pages, 5333 KB  
Article
Shielded Capacitive Power Transmission (S-CPT) System Using Cast Iron
by Eiichi Tateishi, Hao Chen, Naoki Kojo, Yuta Ide, Nobuhiro Kai, Toru Hashimoto, Kota Uchio, Tatsuya Yamaguchi, Reiji Hattori and Haruichi Kanaya
Energies 2025, 18(19), 5288; https://doi.org/10.3390/en18195288 - 6 Oct 2025
Viewed by 204
Abstract
In this study, we investigate a shielded capacitive power transfer (S-CPT) system that employs cast iron road covers as transmission electrodes for both dynamic and static charging of electric vehicles. Coupling capacitance was evaluated from S-parameters using copper, aluminum, ductile cast iron, structural [...] Read more.
In this study, we investigate a shielded capacitive power transfer (S-CPT) system that employs cast iron road covers as transmission electrodes for both dynamic and static charging of electric vehicles. Coupling capacitance was evaluated from S-parameters using copper, aluminum, ductile cast iron, structural steel, and carbon steel electrodes, with additional comparisons of ductile iron surface conditions (casting, machining, electrocoating). In a four-plate S-CPT system operating at 13.56 MHz, capacitance decreased with electrode spacing, yet ductile cast iron reached ~70 pF at 2 mm, demonstrating a performance comparable to that of copper and aluminum despite having higher resistivity and permeability. Power transmission experiments using a Ø330 mm cast iron cover meeting road load standards achieved 58% efficiency at 100 W, maintained around 40% efficiency at power levels above 200 W, and retained 45% efficiency under 200 mm lateral displacement, confirming robust dynamic performance. Simulations showed that shield electrodes enhance grounding, stabilize potential, and reduce return-path impedance. Finite element analysis confirmed that the ductile cast iron electrodes can withstand a 25-ton design load. The proposed S-CPT concept integrates an existing cast iron infrastructure with thin aluminum receiving plates, enabling high efficiency, mechanical durability, EMI mitigation, and reduced installation costs, offering a cost-effective approach to urban wireless charging. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

37 pages, 4435 KB  
Article
Federated Reinforcement Learning with Hybrid Optimization for Secure and Reliable Data Transmission in Wireless Sensor Networks (WSNs)
by Seyed Salar Sefati, Seyedeh Tina Sefati, Saqib Nazir, Roya Zareh Farkhady and Serban Georgica Obreja
Mathematics 2025, 13(19), 3196; https://doi.org/10.3390/math13193196 - 6 Oct 2025
Viewed by 159
Abstract
Wireless Sensor Networks (WSNs) consist of numerous battery-powered sensor nodes that operate with limited energy, computation, and communication capabilities. Designing routing strategies that are both energy-efficient and attack-resilient is essential for extending network lifetime and ensuring secure data delivery. This paper proposes Adaptive [...] Read more.
Wireless Sensor Networks (WSNs) consist of numerous battery-powered sensor nodes that operate with limited energy, computation, and communication capabilities. Designing routing strategies that are both energy-efficient and attack-resilient is essential for extending network lifetime and ensuring secure data delivery. This paper proposes Adaptive Federated Reinforcement Learning-Hunger Games Search (AFRL-HGS), a Hybrid Routing framework that integrates multiple advanced techniques. At the node level, tabular Q-learning enables each sensor node to act as a reinforcement learning agent, making next-hop decisions based on discretized state features such as residual energy, distance to sink, congestion, path quality, and security. At the network level, Federated Reinforcement Learning (FRL) allows the sink node to aggregate local Q-tables using adaptive, energy- and performance-weighted contributions, with Polyak-based blending to preserve stability. The binary Hunger Games Search (HGS) metaheuristic initializes Cluster Head (CH) selection and routing, providing a well-structured topology that accelerates convergence. Security is enforced as a constraint through a lightweight trust and anomaly detection module, which fuses reliability estimates with residual-based anomaly detection using Exponentially Weighted Moving Average (EWMA) on Round-Trip Time (RTT) and loss metrics. The framework further incorporates energy-accounted control plane operations with dual-format HELLO and hierarchical ADVERTISE/Service-ADVERTISE (SrvADVERTISE) messages to maintain the routing tables. Evaluation is performed in a hybrid testbed using the Graphical Network Simulator-3 (GNS3) for large-scale simulation and Kali Linux for live adversarial traffic injection, ensuring both reproducibility and realism. The proposed AFRL-HGS framework offers a scalable, secure, and energy-efficient routing solution for next-generation WSN deployments. Full article
Show Figures

Figure 1

24 pages, 2047 KB  
Review
Wireless Inertial Measurement Units in Performing Arts
by Emmanuel Fléty and Frédéric Bevilacqua
Sensors 2025, 25(19), 6188; https://doi.org/10.3390/s25196188 - 6 Oct 2025
Viewed by 165
Abstract
Inertial Measurement Units (IMUs), which embed several sensors (accelerometers, gyroscopes, magnetometers) are employed by musicians and performers to control sound, music, or lighting on stage. In particular, wireless IMU systems in the performing arts require particular attention due to strict requirements regarding streaming [...] Read more.
Inertial Measurement Units (IMUs), which embed several sensors (accelerometers, gyroscopes, magnetometers) are employed by musicians and performers to control sound, music, or lighting on stage. In particular, wireless IMU systems in the performing arts require particular attention due to strict requirements regarding streaming sample rate, latency, power consumption, and programmability. This article presents a review of systems developed in this context at IRCAM as well as in other laboratories and companies, highlighting specificities in terms of sensing, communication, performance, digital processing, and usage. Although basic IMUs are now widely integrated into IoT systems and smartphones, the availability of complete commercial wireless systems that meet the constraints of the performing arts remains limited. For this reason, a review of systems used in performing Arts provides exemplary use cases that may also be relevant to other applications. Full article
(This article belongs to the Section Wearables)
Show Figures

Figure 1

27 pages, 1330 KB  
Review
Radon Exposure Assessment: IoT-Embedded Sensors
by Phoka C. Rathebe and Mota Kholopo
Sensors 2025, 25(19), 6164; https://doi.org/10.3390/s25196164 - 5 Oct 2025
Viewed by 379
Abstract
Radon exposure is the second leading cause of lung cancer worldwide, yet monitoring strategies remain limited, expensive, and unevenly applied. Recent advances in the Internet of Things (IoT) offer the potential to change radon surveillance through low-cost, real-time, distributed sensing networks. This review [...] Read more.
Radon exposure is the second leading cause of lung cancer worldwide, yet monitoring strategies remain limited, expensive, and unevenly applied. Recent advances in the Internet of Things (IoT) offer the potential to change radon surveillance through low-cost, real-time, distributed sensing networks. This review consolidates emerging research on IoT-based radon monitoring, drawing from both primary radon studies and analogous applications in environmental IoT. A search across six major databases and relevant grey literature yielded only five radon-specific IoT studies, underscoring how new this research field is rather than reflecting a shortcoming of the review. To enhance the analysis, we delve into sensor physics, embedded system design, wireless protocols, and calibration techniques, incorporating lessons from established IoT sectors like indoor air quality, industrial safety, and volcanic gas monitoring. This interdisciplinary approach reveals that many technical and logistical challenges, such as calibration drift, power autonomy, connectivity, and scalability, have been addressed in related fields and can be adapted for radon monitoring. By uniting pioneering efforts within the broader context of IoT-enabled environmental sensing, this review provides a reference point and a future roadmap. It outlines key research priorities, including large-scale validation, standardized calibration methods, AI-driven analytics integration, and equitable deployment strategies. Although radon-focused IoT research is still at an early stage, current progress suggests it could make continuous exposure assessment more reliable, affordable, and widely accessible with clear public health benefits. Full article
(This article belongs to the Special Issue Advances in Radiation Sensors and Detectors)
Show Figures

Figure 1

22 pages, 2031 KB  
Review
Compressive Sensing for Multimodal Biomedical Signal: A Systematic Mapping and Literature Review
by Anggunmeka Luhur Prasasti, Achmad Rizal, Bayu Erfianto and Said Ziani
Signals 2025, 6(4), 54; https://doi.org/10.3390/signals6040054 - 4 Oct 2025
Viewed by 626
Abstract
This study investigated the transformative potential of Compressive Sensing (CS) for optimizing multimodal biomedical signal fusion in Wireless Body Sensor Networks (WBSN), specifically targeting challenges in data storage, power consumption, and transmission bandwidth. Through a Systematic Mapping Study (SMS) and Systematic Literature Review [...] Read more.
This study investigated the transformative potential of Compressive Sensing (CS) for optimizing multimodal biomedical signal fusion in Wireless Body Sensor Networks (WBSN), specifically targeting challenges in data storage, power consumption, and transmission bandwidth. Through a Systematic Mapping Study (SMS) and Systematic Literature Review (SLR) following the PRISMA protocol, significant advancements in adaptive CS algorithms and multimodal fusion have been achieved. However, this research also identified crucial gaps in computational efficiency, hardware scalability (particularly concerning the complex and often costly adaptive sensing hardware required for dynamic CS applications), and noise robustness for one-dimensional biomedical signals (e.g., ECG, EEG, PPG, and SCG). The findings strongly emphasize the potential of integrating CS with deep reinforcement learning and edge computing to develop energy-efficient, real-time healthcare monitoring systems, paving the way for future innovations in Internet of Medical Things (IoMT) applications. Full article
Show Figures

Figure 1

18 pages, 4581 KB  
Article
Metamaterial-Enhanced Microstrip Antenna with Integrated Channel Performance Evaluation for Modern Communication Networks
by Jasim Khudhair Salih Turfa and Oguz Bayat
Appl. Sci. 2025, 15(19), 10692; https://doi.org/10.3390/app151910692 - 3 Oct 2025
Viewed by 293
Abstract
This paper investigates the channel performance through a high-gain, circularly polarized microstrip patch antenna that is developed for contemporary wireless communication systems. The proposed antenna creates two orthogonal modes for circular propagation with slightly varying resonance frequencies by using a cross line and [...] Read more.
This paper investigates the channel performance through a high-gain, circularly polarized microstrip patch antenna that is developed for contemporary wireless communication systems. The proposed antenna creates two orthogonal modes for circular propagation with slightly varying resonance frequencies by using a cross line and truncations to circulate surface currents. Compactness, reduced surface wave losses, and enhanced impedance bandwidth are made possible by the coaxial probe feed, periodic electromagnetic gap (EBG) slots, and fractal patch geometry. For in-phase reflection and beam focusing, a specially designed single-layer metasurface (MTS) reflector with an 11 × 11 circular aperture array is placed 20 mm behind the antenna. A log-normal shadowing model was used to test the antenna in real-world scenarios, and the results showed a strong correlation between the model predictions and actual data. At up to 250 m, the polarization-agile, high-gain antenna demonstrated reliable performance across a variety of channel conditions, enabling accurate characterization of the Channel Quality Indicator (CQI), Signal-to-Noise Ratio (SNR), and Reference Signal Received Power (RSRP). By combining cutting-edge antenna architecture with an empirical channel performance study, this research presents a compact, affordable, and fabrication-friendly solution for increased wireless coverage and efficiency. Full article
Show Figures

Figure 1

10 pages, 689 KB  
Article
Sex Differences in Foot Arch Structure Affect Postural Control and Energy Flow During Dynamic Tasks
by Xuan Liu, Shu Zhou, Yan Pan, Lei Li and Ye Liu
Life 2025, 15(10), 1550; https://doi.org/10.3390/life15101550 - 3 Oct 2025
Viewed by 356
Abstract
Background: This study investigated sex differences in foot arch structure and function, and their impact on postural control and energy flow during dynamic tasks. Findings aim to inform sex-specific training, movement assessment, and injury prevention strategies. Methods: A total of 108 participants (53 [...] Read more.
Background: This study investigated sex differences in foot arch structure and function, and their impact on postural control and energy flow during dynamic tasks. Findings aim to inform sex-specific training, movement assessment, and injury prevention strategies. Methods: A total of 108 participants (53 males and 55 females) underwent foot arch morphological assessments and performed a sit-to-stand (STS). Motion data were collected using an infrared motion capture system, three-dimensional force plates, and wireless surface electromyography. A rigid body model was constructed in Visual3D, and joint forces, segmental angular and linear velocities, center of pressure (COP), and center of mass (COM) were calculated using MATLAB. Segmental net energy was integrated to determine energy flow across different phases of the STS. Results: Arch stiffness was significantly higher in males. In terms of postural control, males exhibited significantly lower mediolateral COP frequency and anteroposterior COM peak velocity during the pre-seat-off phase, and lower COM displacement, peak velocity, and sample entropy during the post-seat-off phase compared to females. Conversely, males showed higher anteroposterior COM velocity before seat-off, and greater anteroposterior and vertical momentum after seat-off (p < 0.05). Regarding energy flow, males exhibited higher thigh muscle power, segmental net power during both phases, and greater shank joint power before seat-off. In contrast, females showed higher thigh joint power before seat-off and greater shank joint power after seat-off (p < 0.05). Conclusions: Significant sex differences in foot arch function influence postural control and energy transfer during STS. Compared to males, females rely on more frequent postural adjustments to compensate for lower arch stiffness, which may increase mechanical loading on the knee and ankle and elevate injury risk. Full article
(This article belongs to the Special Issue Focus on Exercise Physiology and Sports Performance: 2nd Edition)
Show Figures

Figure 1

17 pages, 6267 KB  
Article
Local and Remote Digital Pre-Distortion for 5G Power Amplifiers with Safe Deep Reinforcement Learning
by Christian Spano, Damiano Badini, Lorenzo Cazzella and Matteo Matteucci
Sensors 2025, 25(19), 6102; https://doi.org/10.3390/s25196102 - 3 Oct 2025
Viewed by 315
Abstract
The demand for higher data rates and energy efficiency in wireless communication systems drives power amplifiers (PAs) into nonlinear operation, causing signal distortions that hinder performance. Digital Pre-Distortion (DPD) addresses these distortions, but existing systems face challenges with complexity, adaptability, and resource limitations. [...] Read more.
The demand for higher data rates and energy efficiency in wireless communication systems drives power amplifiers (PAs) into nonlinear operation, causing signal distortions that hinder performance. Digital Pre-Distortion (DPD) addresses these distortions, but existing systems face challenges with complexity, adaptability, and resource limitations. This paper introduces DRL-DPD, a Deep Reinforcement Learning-based solution for DPD that aims to reduce computational burden, improve adaptation to dynamic environments, and minimize resource consumption. To ensure safety and regulatory compliance, we integrate an ad-hoc Safe Reinforcement Learning algorithm, CRE-DDPG (Cautious-Recoverable-Exploration Deep Deterministic Policy Gradient), which prevents ACLR measurements from falling below safety thresholds. Simulations and hardware experiments demonstrate the potential of DRL-DPD with CRE-DDPG to surpass current DPD limitations in both local and remote configurations, paving the way for more efficient communication systems, especially in the context of 5G and beyond. Full article
Show Figures

Figure 1

17 pages, 11694 KB  
Article
RIS Wireless Network Optimization Based on TD3 Algorithm in Coal-Mine Tunnels
by Shuqi Wang and Fengjiao Wang
Sensors 2025, 25(19), 6058; https://doi.org/10.3390/s25196058 - 2 Oct 2025
Viewed by 191
Abstract
As an emerging technology, Reconfigurable Intelligent Surfaces (RIS) offers an efficient communication performance optimization solution for the complex and spatially constrained environment of coal mines by effectively controlling signal-propagation paths. This study investigates the channel attenuation characteristics of a semi-circular arch coal-mine tunnel [...] Read more.
As an emerging technology, Reconfigurable Intelligent Surfaces (RIS) offers an efficient communication performance optimization solution for the complex and spatially constrained environment of coal mines by effectively controlling signal-propagation paths. This study investigates the channel attenuation characteristics of a semi-circular arch coal-mine tunnel with a dual RIS reflection link. By jointly optimizing the base-station beamforming matrix and the RIS phase-shift matrix, an improved Twin Delayed Deep Deterministic Policy Gradient (TD3)-based algorithm with a Noise Fading (TD3-NF) propagation optimization scheme is proposed, effectively improving the sum rate of the coal-mine wireless communication system. Simulation results show that when the transmit power is 38 dBm, the average link rate of the system reaches 11.1 bps/Hz, representing a 29.07% improvement compared to Deep Deterministic Policy Gradient (DDPG). The average sum rate of the 8 × 8 structure RIS is 3.3 bps/Hz higher than that of the 4 × 4 structure. The research findings provide new solutions for optimizing mine communication quality and applying artificial intelligence technology in complex environments. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

Back to TopTop