Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,044)

Search Parameters:
Keywords = wireless power transfer system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5333 KB  
Article
Shielded Capacitive Power Transmission (S-CPT) System Using Cast Iron
by Eiichi Tateishi, Hao Chen, Naoki Kojo, Yuta Ide, Nobuhiro Kai, Toru Hashimoto, Kota Uchio, Tatsuya Yamaguchi, Reiji Hattori and Haruichi Kanaya
Energies 2025, 18(19), 5288; https://doi.org/10.3390/en18195288 - 6 Oct 2025
Viewed by 204
Abstract
In this study, we investigate a shielded capacitive power transfer (S-CPT) system that employs cast iron road covers as transmission electrodes for both dynamic and static charging of electric vehicles. Coupling capacitance was evaluated from S-parameters using copper, aluminum, ductile cast iron, structural [...] Read more.
In this study, we investigate a shielded capacitive power transfer (S-CPT) system that employs cast iron road covers as transmission electrodes for both dynamic and static charging of electric vehicles. Coupling capacitance was evaluated from S-parameters using copper, aluminum, ductile cast iron, structural steel, and carbon steel electrodes, with additional comparisons of ductile iron surface conditions (casting, machining, electrocoating). In a four-plate S-CPT system operating at 13.56 MHz, capacitance decreased with electrode spacing, yet ductile cast iron reached ~70 pF at 2 mm, demonstrating a performance comparable to that of copper and aluminum despite having higher resistivity and permeability. Power transmission experiments using a Ø330 mm cast iron cover meeting road load standards achieved 58% efficiency at 100 W, maintained around 40% efficiency at power levels above 200 W, and retained 45% efficiency under 200 mm lateral displacement, confirming robust dynamic performance. Simulations showed that shield electrodes enhance grounding, stabilize potential, and reduce return-path impedance. Finite element analysis confirmed that the ductile cast iron electrodes can withstand a 25-ton design load. The proposed S-CPT concept integrates an existing cast iron infrastructure with thin aluminum receiving plates, enabling high efficiency, mechanical durability, EMI mitigation, and reduced installation costs, offering a cost-effective approach to urban wireless charging. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

10 pages, 689 KB  
Article
Sex Differences in Foot Arch Structure Affect Postural Control and Energy Flow During Dynamic Tasks
by Xuan Liu, Shu Zhou, Yan Pan, Lei Li and Ye Liu
Life 2025, 15(10), 1550; https://doi.org/10.3390/life15101550 - 3 Oct 2025
Viewed by 356
Abstract
Background: This study investigated sex differences in foot arch structure and function, and their impact on postural control and energy flow during dynamic tasks. Findings aim to inform sex-specific training, movement assessment, and injury prevention strategies. Methods: A total of 108 participants (53 [...] Read more.
Background: This study investigated sex differences in foot arch structure and function, and their impact on postural control and energy flow during dynamic tasks. Findings aim to inform sex-specific training, movement assessment, and injury prevention strategies. Methods: A total of 108 participants (53 males and 55 females) underwent foot arch morphological assessments and performed a sit-to-stand (STS). Motion data were collected using an infrared motion capture system, three-dimensional force plates, and wireless surface electromyography. A rigid body model was constructed in Visual3D, and joint forces, segmental angular and linear velocities, center of pressure (COP), and center of mass (COM) were calculated using MATLAB. Segmental net energy was integrated to determine energy flow across different phases of the STS. Results: Arch stiffness was significantly higher in males. In terms of postural control, males exhibited significantly lower mediolateral COP frequency and anteroposterior COM peak velocity during the pre-seat-off phase, and lower COM displacement, peak velocity, and sample entropy during the post-seat-off phase compared to females. Conversely, males showed higher anteroposterior COM velocity before seat-off, and greater anteroposterior and vertical momentum after seat-off (p < 0.05). Regarding energy flow, males exhibited higher thigh muscle power, segmental net power during both phases, and greater shank joint power before seat-off. In contrast, females showed higher thigh joint power before seat-off and greater shank joint power after seat-off (p < 0.05). Conclusions: Significant sex differences in foot arch function influence postural control and energy transfer during STS. Compared to males, females rely on more frequent postural adjustments to compensate for lower arch stiffness, which may increase mechanical loading on the knee and ankle and elevate injury risk. Full article
(This article belongs to the Special Issue Focus on Exercise Physiology and Sports Performance: 2nd Edition)
Show Figures

Figure 1

31 pages, 16219 KB  
Article
Design, Simulation, Construction and Experimental Validation of a Dual-Frequency Wireless Power Transfer System Based on Resonant Magnetic Coupling
by Marian-Razvan Gliga, Calin Munteanu, Adina Giurgiuman, Claudia Constantinescu, Sergiu Andreica and Claudia Pacurar
Technologies 2025, 13(10), 442; https://doi.org/10.3390/technologies13100442 - 1 Oct 2025
Viewed by 305
Abstract
Wireless power transfer (WPT) has emerged as a compelling solution for delivering electrical energy without physical connectors, particularly in applications requiring reliability, mobility, or encapsulation. This work presents the modeling, simulation, construction, and experimental validation of an optimized dual-frequency WPT system using magnetically [...] Read more.
Wireless power transfer (WPT) has emerged as a compelling solution for delivering electrical energy without physical connectors, particularly in applications requiring reliability, mobility, or encapsulation. This work presents the modeling, simulation, construction, and experimental validation of an optimized dual-frequency WPT system using magnetically coupled resonant coils. Unlike conventional single-frequency systems, the proposed architecture introduces two independently controlled excitation frequencies applied to distinct transistors, enabling improved resonance behavior and enhanced power delivery across a range of coupling conditions. The design process integrates numerical circuit simulations in PSpice and three-dimensional electromagnetic analysis in ANSYS Maxwell 3D, allowing accurate evaluation of coupling coefficient variation, mutual inductance, and magnetic flux distribution as functions of coil geometry and alignment. A sixth-degree polynomial model was derived to characterize the coupling coefficient as a function of coil separation, supporting predictive tuning. Experimental measurements were carried out using a physical prototype driven by both sinusoidal and rectangular control signals under varying load conditions. Results confirm the simulation findings, showing that specific signal periods (e.g., 8 µs, 18 µs, 20 µs, 22 µs) yield optimal induced voltage values, with strong sensitivity to the coupling coefficient. Moreover, the presence of a real load influenced system performance, underscoring the need for adaptive control strategies. The proposed approach demonstrates that dual-frequency excitation can significantly enhance system robustness and efficiency, paving the way for future implementations of self-adaptive WPT systems in embedded, mobile, or biomedical environments. Full article
Show Figures

Figure 1

17 pages, 3109 KB  
Article
Simulation of Eddy Current Suppression and Efficiency Recovery in Mining MCR-WPT Systems Based on Explosion-Proof Slotting
by Yingying Wang, Jiahui Yu, Jindi Pang, Shuangli Chen and Yudong Wang
Electronics 2025, 14(19), 3899; https://doi.org/10.3390/electronics14193899 - 30 Sep 2025
Viewed by 186
Abstract
To meet safety regulations in underground coal mines, wireless power transfer (WPT) systems must house both the transmitter and receiver within explosion-proof enclosures. However, eddy currents induced on the surfaces of these non-ferromagnetic metal enclosures significantly hinder magnetic flux coupling, thereby reducing transmission [...] Read more.
To meet safety regulations in underground coal mines, wireless power transfer (WPT) systems must house both the transmitter and receiver within explosion-proof enclosures. However, eddy currents induced on the surfaces of these non-ferromagnetic metal enclosures significantly hinder magnetic flux coupling, thereby reducing transmission efficiency. This paper proposes a slotting technique applied to explosion-proof enclosures to suppress eddy currents, along with the integration of magnetic flux focusing materials into the coils to enhance coupling. Simulations were conducted to compare three system configurations: (i) a WPT system without enclosures, (ii) a system with solid (unslotted) enclosures, and (iii) a system with slotted enclosures. The results show that solid enclosures reduce efficiency to nearly zero, whereas slotted enclosures restore efficiency to 90% of the baseline system without enclosures. Joule heating remains low in the slotted explosion-proof enclosures, with energy losses of 2.552 J for the transmitter enclosure and 2.578 J for the receiver enclosure. A conservative first-order estimation confirms that the corresponding temperature rise in the enclosure surfaces remains below 50 °C, which is well within the 150 °C limit stipulated by the Chinese National Standard GB 3836.1-2021 (Explosive Atmospheres—Part 1: Equipment General Requirements). These findings confirm effective eddy current suppression and efficiency recovery without compromising explosion-proof safety. The core innovation of this work lies not merely in the physical slotting approach, but in the development of a precise equivalent circuit model that fully incorporates all mutual inductance components representing eddy current effects in non-ferromagnetic explosion-proof enclosures, and its integration into the overall MCR-WPT system circuit. Full article
(This article belongs to the Section Electronic Materials, Devices and Applications)
Show Figures

Figure 1

34 pages, 11521 KB  
Article
Explainable AI-Driven 1D-CNN with Efficient Wireless Communication System Integration for Multimodal Diabetes Prediction
by Radwa Ahmed Osman
AI 2025, 6(10), 243; https://doi.org/10.3390/ai6100243 - 25 Sep 2025
Viewed by 570
Abstract
The early detection of diabetes risk and effective management of patient data are critical for avoiding serious consequences and improving treatment success. This research describes a two-part architecture that combines an energy-efficient wireless communication technology with an interpretable deep learning model for diabetes [...] Read more.
The early detection of diabetes risk and effective management of patient data are critical for avoiding serious consequences and improving treatment success. This research describes a two-part architecture that combines an energy-efficient wireless communication technology with an interpretable deep learning model for diabetes categorization. In Phase 1, a unique wireless communication model is created to assure the accurate transfer of real-time patient data from wearable devices to medical centers. Using Lagrange optimization, the model identifies the best transmission distance and power needs, lowering energy usage while preserving communication dependability. This contribution is especially essential since effective data transport is a necessary condition for continuous monitoring in large-scale healthcare systems. In Phase 2, the transmitted multimodal clinical, genetic, and lifestyle data are evaluated using a one-dimensional Convolutional Neural Network (1D-CNN) with Bayesian hyperparameter tuning. The model beat traditional deep learning architectures like LSTM and GRU. To improve interpretability and clinical acceptance, SHAP and LIME were used to find global and patient-specific predictors. This approach tackles technological and medicinal difficulties by integrating energy-efficient wireless communication with interpretable predictive modeling. The system ensures dependable data transfer, strong predictive performance, and transparent decision support, boosting trust in AI-assisted healthcare and enabling individualized diabetes control. Full article
Show Figures

Figure 1

43 pages, 3352 KB  
Review
Inductive Wireless Power Transfer for Autonomous Underwater Vehicles: A Comprehensive Review of Technological Advances and Challenges
by Han Xu, Rong Zheng, Bo Yang and Wei Ning
J. Mar. Sci. Eng. 2025, 13(10), 1855; https://doi.org/10.3390/jmse13101855 - 25 Sep 2025
Viewed by 471
Abstract
The endurance of autonomous underwater vehicles (AUVs) has long been constrained by limited energy replenishment. Underwater inductive wireless power transfer (UIWPT), with its contactless power transfer capability, offers an innovative solution for efficient underwater charging of AUVs. This paper provides a systematic review [...] Read more.
The endurance of autonomous underwater vehicles (AUVs) has long been constrained by limited energy replenishment. Underwater inductive wireless power transfer (UIWPT), with its contactless power transfer capability, offers an innovative solution for efficient underwater charging of AUVs. This paper provides a systematic review of the architecture of UIWPT systems, analyzes key power loss mechanisms and corresponding optimization strategies, and summarizes the latest research progress in magnetic coupler design, compensation circuit topologies, control methods, simultaneous power and data transfer, and seawater-induced eddy current losses. Representative cases of UIWPT system integration on AUV platforms are also reviewed, with particular emphasis on environmental factors such as salinity variation, biofouling, and deep-sea pressure, as well as EMC, which critically constrain engineering applications. Finally, this paper discusses development trends including high-efficiency power transfer, enhanced reliability under extreme environments, and practical deployment challenges, and it presents a forward-looking technical roadmap towards long-term, autonomous, and intelligent underwater wireless power transfer. Full article
(This article belongs to the Special Issue Advances in Recent Marine Engineering Technology)
Show Figures

Figure 1

28 pages, 29247 KB  
Article
Channel Capacity Analysis of Partial-CSI SWIPT Opportunistic Amplify-and-Forward (OAF) Relaying over Rayleigh Fading
by Kyunbyoung Ko and Seokil Song
Electronics 2025, 14(19), 3791; https://doi.org/10.3390/electronics14193791 - 24 Sep 2025
Viewed by 170
Abstract
This paper presents an analytical framework for the channel capacity evaluation of simultaneous wireless information and power transfer (SWIPT)-enabled opportunistic amplify-and-forward (OAF) relaying systems over Rayleigh fading channels. For the SWIPT, we employ a power splitter (PS) at the relay, which splits the [...] Read more.
This paper presents an analytical framework for the channel capacity evaluation of simultaneous wireless information and power transfer (SWIPT)-enabled opportunistic amplify-and-forward (OAF) relaying systems over Rayleigh fading channels. For the SWIPT, we employ a power splitter (PS) at the relay, which splits the received signal into the information transmission and the energy-harvesting parts. By modeling the partial channel state information (P-CSI)-based SWIPT OAF system as an equivalent non-SWIPT OAF configuration, a semi-lower bound and a new upper bound on the ergodic channel capacity are derived. A refined approximation is then obtained by averaging these bounds, yielding a simple yet accurate analytical estimate of the true capacity. Simulation results confirm that the proposed approximations closely track the actual performance across a wide range of signal-to-noise ratios (SNRs) and relay configurations. They further demonstrate that SR-based relay selection provides higher capacity than RD-based selection, primarily due to its direct influence on energy harvesting efficiency at the relay. In addition, diversity advantages manifest mainly as SNR improvements, rather than as gains in diversity order. The proposed framework thus serves as a practical and insightful tool for the capacity analysis and design of SWIPT-enabled cooperative networks, with direct relevance to energy-constrained Internet of Things (IoT) and wireless sensor applications. Full article
(This article belongs to the Special Issue Applications of Image Processing and Sensor Systems)
Show Figures

Figure 1

25 pages, 8073 KB  
Article
Maximum Efficiency Power Point Tracking in Reconfigurable S-LCC Compensated Wireless EV Charging Systems with Inherent CC and CV Modes Across Wide Operating Conditions
by Pabba Ramesh, Pongiannan Rakkiya Goundar Komarasamy, Ali ELrashidi, Mohammed Alruwaili and Narayanamoorthi Rajamanickam
Energies 2025, 18(18), 5031; https://doi.org/10.3390/en18185031 - 22 Sep 2025
Viewed by 343
Abstract
The wireless charging of electric vehicles (EVs) has drawn much attention as it can ease the charging process under different charging situations and environmental conditions. However, power transfer rate and efficiency are the critical parameters for the wide adaptation of wireless charging systems. [...] Read more.
The wireless charging of electric vehicles (EVs) has drawn much attention as it can ease the charging process under different charging situations and environmental conditions. However, power transfer rate and efficiency are the critical parameters for the wide adaptation of wireless charging systems. Different investigations are presented in the literature that have aimed to improve power transfer efficiency and to maintain constant power at the load side. This paper introduces a Maximum Efficiency Point Tracking (MEPT) system designed specifically for a reconfigurable S-LCC compensated wireless charging system. The reconfigurable nature of the S-LCC system supports the constant current (CC) and constant voltage (CV) mode of operation by operating S-LCC and S-SP mode. The proposed system enhances power transfer efficiency under load fluctuations, coil misalignments, and a wide range of operating conditions. The developed S-LCC compensated system inherently maintains the power transfer rate constantly under a majority of load variations. Meanwhile, the inclusion of the MEPT method with the S-LCC system provides stable and maximum output under different coupling and load variations. The proposed MEPT approach uses a feedback mechanism to track and maintain the maximum efficiency point by iteratively adjusting the DC-DC converter duty ratio and by monitoring load power. The proposed approach was designed and tested in a 3.3 kW laboratory scale prototype module at an operating frequency of 85 kHz. The simulation and hardware results show that the developed system provides stable maximum power under a wider range of load and coupling variations. Full article
Show Figures

Figure 1

25 pages, 2438 KB  
Article
Interior Point-Driven Throughput Maximization for TS-SWIPT Multi-Hop DF Relays: A Log Barrier Approach
by Yang Yu, Xiaoqing Tang and Guihui Xie
Sensors 2025, 25(18), 5901; https://doi.org/10.3390/s25185901 - 21 Sep 2025
Viewed by 256
Abstract
This paper investigates a simultaneous wireless information and power transfer (SWIPT) decode-and-forward (DF) relay network, where a source node transmits data to a destination node through the assistance of multi-hop passive relays. We employ the time-switching (TS) protocol, enabling the relays to harvest [...] Read more.
This paper investigates a simultaneous wireless information and power transfer (SWIPT) decode-and-forward (DF) relay network, where a source node transmits data to a destination node through the assistance of multi-hop passive relays. We employ the time-switching (TS) protocol, enabling the relays to harvest energy from the received previous hop signal to support data forwarding. We first prove that the system throughput monotonically increases with the transmit power of the source node. Next, by employing logarithmic transformations, we convert the non-convex problem of obtaining optimal TS ratios at each relay to maximize the system throughput into a convex optimization problem. Comprehensively taking into account the convergence rate, computational complexity per iteration, and robustness, we selected the log barrier method—a type of interior point method—to address this convex optimization problem, along with providing a detailed implementation procedure. The simulation results validate the optimality of the proposed method and demonstrate its applicability to practical communication systems. For instance, the proposed scheme achieves 1437.3 bps throughput at 40 dBm maximum source power in a 2-relay network—278.6% higher than that of the scheme with TS ratio fixed at 0.75 (379.68 bps). On the other hand, it converges within a 1.36 ms computation time for 5 relays, 6 orders of magnitude faster than exhaustive search (1730 s). Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

18 pages, 6081 KB  
Article
Novel Design of Conical-Shaped Wireless Charger for Unmanned Aerial Vehicles
by Ashraf Ali, Omar Saraereh and Andrew Ware
Energies 2025, 18(18), 5015; https://doi.org/10.3390/en18185015 - 21 Sep 2025
Viewed by 393
Abstract
This work presents a novel wireless charging system for unmanned aerial vehicles (UAVs), which employs conical-shaped coils that also function as landing gear. By integrating electromagnetic simulation, circuit modeling, and system-level evaluation, we introduce an innovative coil design that enhances wireless power transfer [...] Read more.
This work presents a novel wireless charging system for unmanned aerial vehicles (UAVs), which employs conical-shaped coils that also function as landing gear. By integrating electromagnetic simulation, circuit modeling, and system-level evaluation, we introduce an innovative coil design that enhances wireless power transfer (WPT) efficiency while reducing misalignment sensitivity. The conical geometry naturally facilitates mechanical alignment upon drone landing, thereby improving inductive coupling. High-frequency simulations were carried out to optimize the coil parameters and evaluate the link efficiency at 6.78 MHz, an ISM-designated frequency. Our experimental testing confirmed that the proposed conical coil achieves high power transfer efficiency (up to 94%) under practical conditions, validating the effectiveness of the geometry. The characteristics of the designed coil make it highly suitable for use with Class EF amplifiers operating in the same frequency range; however, detailed amplifier hardware implementation and efficiency characterization were beyond the scope of this study and are reserved for future work. The results demonstrate the potential of the proposed system for deployment in UAV field applications such as surveillance, delivery, and remote sensing. Full article
Show Figures

Figure 1

12 pages, 3489 KB  
Article
Low-Voltage Stressed Inductive WPT System with Pull–Push Class EF2 Inverter
by Yuting Wang, Jiayue Kuang, Chang Li, Zhidi Chen, Jie Mei, Peng Chen and Jianghua Lu
Electronics 2025, 14(18), 3693; https://doi.org/10.3390/electronics14183693 - 18 Sep 2025
Viewed by 237
Abstract
A class E inverter has presented wide application prospects in inductive wireless power transfer (WPT) systems due to its significant advantages such as high operation frequency, high power density, and low cost. However, its semiconductor power device is subjected to voltage stress several [...] Read more.
A class E inverter has presented wide application prospects in inductive wireless power transfer (WPT) systems due to its significant advantages such as high operation frequency, high power density, and low cost. However, its semiconductor power device is subjected to voltage stress several times higher than the input DC voltage, which inevitably increases the risk of overvoltage failure and limits the system power level. In this manuscript, an inductive WPT system with the pull–push class EF2 inverter is proposed to significantly decrease the voltage stress and ensure soft switching characteristic. The working principle and time-domain waveforms of the pull–push class EF2 inverter are analyzed. Moreover, the differential equations and mathematical model of the resonant parameters are investigated. Compared with the conventional class E inverter, the output power of the proposed inductive WPT system is doubled under the same input voltage. A 100 W system prototype is designed at the operating frequency of 6.78 MHz (according to the A4WP standard) and its experimental results demonstrate the effectiveness and feasibility of the analysis. Full article
(This article belongs to the Special Issue Wireless Power Transfer Systems and Applications)
Show Figures

Figure 1

22 pages, 1510 KB  
Article
Transfer-Efficient Power Allocation for Downlink SWIPT in Massive MIMO Systems
by Wenfeng Sun, Yuanyuan Ma, Xuanhui Wang and Haidong You
Electronics 2025, 14(18), 3679; https://doi.org/10.3390/electronics14183679 - 17 Sep 2025
Viewed by 251
Abstract
The transfer-efficient power allocation problem for downlink simultaneous wireless information and power transfer (SWIPT) is investigated in massive multiple-input multiple-output (MIMO) systems in this paper. In the considered system, the base station (BS) equipped with a large number of antennas simultaneously transmits information [...] Read more.
The transfer-efficient power allocation problem for downlink simultaneous wireless information and power transfer (SWIPT) is investigated in massive multiple-input multiple-output (MIMO) systems in this paper. In the considered system, the base station (BS) equipped with a large number of antennas simultaneously transmits information and sends energy signals to multiple information and energy terminals equipped with a single antenna. The aim is to maximize transfer efficiency while meeting quality-of-service (QoS) requirements for all terminals. First, the closed-form expressions of achievable rates for each information terminal and the harvested energy for each energy terminal are obtained. Then, two optimization problems are formulated according to the obtained expressions, with the purpose of maximizing information transfer efficiency (ITE) and energy transfer efficiency (ETE). The maximizations of ITE and ETE are fractional programming problems and are difficult to solve directly. For this reason, the iterative optimization algorithm is proposed to solve the ITE maximization problem by transforming it into a subtractive form and then utilizing a successive convex approximation (SCA) method. Following a similar approach, another iterative optimization algorithm is proposed to solve the ETE maximization problem by transforming it into a subtractive form and then utilizing a linear programming method. Finally, numerical results demonstrate that the two iterative optimization algorithms can achieve good ITE and ETE, and we also reveal the trade-off between them in this work. Full article
Show Figures

Figure 1

17 pages, 12470 KB  
Article
Data-Driven Modeling and Control of Wireless Power Transfer Systems
by Xiaoguo Ma, Engang Tian and Donghui Xu
Electronics 2025, 14(18), 3668; https://doi.org/10.3390/electronics14183668 - 16 Sep 2025
Viewed by 311
Abstract
This paper proposes a data-driven modeling and control method for wireless power transmission systems. To address problems such as parameter deviation and high-order complexity in traditional circuit-theory-based modeling, this paper adopts the data-driven Petrov-Galerkin projection and the generalized Lyapunov balancing method to obtain [...] Read more.
This paper proposes a data-driven modeling and control method for wireless power transmission systems. To address problems such as parameter deviation and high-order complexity in traditional circuit-theory-based modeling, this paper adopts the data-driven Petrov-Galerkin projection and the generalized Lyapunov balancing method to obtain a reduced-order model directly from experimental data. This approach formulates quadratic matrix inequalities to characterize the data and noise, enabling the direct design of a reduced-order model without intermediate system identification steps. The resulting model order is reduced to merely 2–4. Furthermore, by constructing the extended state space and solving the algebraic Riccati equation, we design a linear quadratic regulator-proportional integral controller with integral action to eliminate steady-state error. Experimentally, the method proves to be independent of detailed physical models while achieving both high-fidelity modeling and superior control. Full article
Show Figures

Figure 1

24 pages, 3343 KB  
Article
Modelling, Analysis, and Nonlinear Control of a Dynamic Wireless Power Transfer Charger for Electrical Vehicle
by Ahmed Hamed, Abdellah Lassioui, Hassan El Fadil, Hafsa Abbade, Sidina El jeilani, Marouane El Ancary, Mohammed Chiheb and Zakariae El Idrissi
World Electr. Veh. J. 2025, 16(9), 512; https://doi.org/10.3390/wevj16090512 - 11 Sep 2025
Viewed by 473
Abstract
This article presents an in-depth study of a dynamic wireless power transfer (DWPT) system used to charge electric vehicles (EVs), with a focus on modeling and controlling a double-D (DD) coil structure. The chosen DD coil design improves energy transfer efficiency and minimizes [...] Read more.
This article presents an in-depth study of a dynamic wireless power transfer (DWPT) system used to charge electric vehicles (EVs), with a focus on modeling and controlling a double-D (DD) coil structure. The chosen DD coil design improves energy transfer efficiency and minimizes mutual coupling between adjacent transmit coils, a common problem in dynamic applications. A comprehensive mathematical model is developed to account for the nonlinear dynamics of the system, i.e., when the vehicle is moving and misalignments and coupling variations occur. A robust nonlinear control method based on sliding mode control (SMC) is implemented to ensure stable operation and accurate regulation of the output voltage. The controller is tested in different scenarios where the vehicle speed changes, thus ensuring its robustness and stability under all operating conditions. Particular attention is paid to the critical transition zone, in which the receiver coil is placed between two transmitter coils in order to achieve minimal magnetic coupling. The simulation results demonstrate that the proposed controller offers a fast dynamic response (~0.07 s) and stable voltage tracking, even in the event of significant variations in mutual inductance and different EV movement speeds. These results confirm the effectiveness of the control approach and its potential for real-time charging of electric vehicles in large-scale DWPT applications. Full article
Show Figures

Figure 1

19 pages, 11446 KB  
Article
Research on Constant-Voltage/Constant-Current Characteristics of Variable-Structure Dual-Frequency Dual-Load Wireless Power Transfer Technology
by Lu Zhang, Jundan Mao, Yonglin Ke, Yueliang Chen, Yao Dong and Qinzheng Zhang
World Electr. Veh. J. 2025, 16(9), 504; https://doi.org/10.3390/wevj16090504 - 8 Sep 2025
Viewed by 1272
Abstract
To address the limitations of conventional magnetically coupled resonant wireless power transfer (MCR-WPT) systems in multi-frequency multi-load applications—specifically inadequate load power independence and high complexity inconstant-voltage/constant-current (CV/CC) control—this paper proposes a variable-structure dual-frequency dual-load wireless power transfer system by first establishing its mathematical [...] Read more.
To address the limitations of conventional magnetically coupled resonant wireless power transfer (MCR-WPT) systems in multi-frequency multi-load applications—specifically inadequate load power independence and high complexity inconstant-voltage/constant-current (CV/CC) control—this paper proposes a variable-structure dual-frequency dual-load wireless power transfer system by first establishing its mathematical model and implementing hybrid-frequency modulation for multi-frequency output, then developing an improved T/LCC hybrid resonant topology by deriving parameter design conditions for compensation network reconfiguration under CV/CC requirements, subsequently employing an orthogonal planar solenoid coupling mechanism and frequency-division demodulation to achieve load-independent power regulation across wide load ranges for enhanced stability, and finally constructing a 120 W dual-frequency dual-load prototype to validate the system’s CV/CC characteristics, where simulations and experimental results demonstrate stronger consistency with theoretical predictions. Full article
(This article belongs to the Special Issue Power Electronics for Electric Vehicles)
Show Figures

Figure 1

Back to TopTop