Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = zinc oxide-eugenol sealer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 930 KiB  
Article
Ion Release from Endodontic and Restorative Dental Materials: Effects of pH and Time
by Zbigniew Raszewski, Katarzyna Chojnacka, Małgorzata Ponto-Wolska and Marcin Mikulewicz
Materials 2025, 18(9), 1901; https://doi.org/10.3390/ma18091901 - 22 Apr 2025
Viewed by 434
Abstract
Background: Root canal sealers remain in long-term contact with dental tissues, raising concerns about their potential adverse effects. Methods: This study evaluates the physicochemical properties and ion-release profiles of three dental materials: zinc oxide/eugenol-based sealer, zinc phosphate cement (luting agent), and glass-ionomer cement [...] Read more.
Background: Root canal sealers remain in long-term contact with dental tissues, raising concerns about their potential adverse effects. Methods: This study evaluates the physicochemical properties and ion-release profiles of three dental materials: zinc oxide/eugenol-based sealer, zinc phosphate cement (luting agent), and glass-ionomer cement (restorative material) under acidic (pH 4) and neutral (pH 7) conditions over 24 h and 30 days to determine their behavior and bioactivity in vitro. The materials were evaluated for their setting time, consistency, film thickness, solubility, and ion release using atomic emission spectrometry. The influence of pH and exposure time on ion release was analyzed using multiple regression analysis. Results: All tested materials met the ISO standards for their respective categories. The zinc oxide/eugenol and zinc phosphate cements released increased levels of zinc in acidic environments (pH 4), suggesting potential antimicrobial properties. The glass-ionomer cement exhibited higher silicon and strontium release under a neutral pH (pH 7), indicating potential remineralization effects. Silver from the zinc oxide/eugenol material was below the detection limit of the applied method, suggesting minimal ion release under the tested conditions. Maximum zinc release from root canal sealer occurred after 30 days at pH 4 (1.39 ± 0.26 mg), while the highest silicon release from glass-ionomer cement was observed at pH 7 after 30 days (1.03 ± 0.21 mg). Conclusions: Zinc oxide/eugenol materials exhibited increased zinc release under acidic conditions. In contrast, the restorative and luting materials demonstrated distinct ion-release patterns, aligning with their respective intended applications rather than endodontic purposes. Full article
(This article belongs to the Special Issue Bioactive Materials for Additive Manufacturing)
Show Figures

Figure 1

30 pages, 1344 KiB  
Review
Bioceramics in Endodontics: Limitations and Future Innovations—A Review
by Peramune Arachchilage Amila Saman Prasad Kumara, Paul Roy Cooper, Peter Cathro, Maree Gould, George Dias and Jithendra Ratnayake
Dent. J. 2025, 13(4), 157; https://doi.org/10.3390/dj13040157 - 1 Apr 2025
Viewed by 1854
Abstract
Bioceramic materials for endodontic treatments have gradually transformed over the years into materials with enhanced biocompatibility and chemical and mechanical properties compared to earlier generations. In endodontics procedures, these materials are used as restorative material in applications such as root-end fillings, pulp capping, [...] Read more.
Bioceramic materials for endodontic treatments have gradually transformed over the years into materials with enhanced biocompatibility and chemical and mechanical properties compared to earlier generations. In endodontics procedures, these materials are used as restorative material in applications such as root-end fillings, pulp capping, perforations repair, and apexification repair procedures. However, they have far from ideal mechanical and handling properties, biocompatibility issues, aesthetic concerns due to tooth discolouration, limited antibacterial activity, and affordability, which are amongst several key limitations. Notably, bioceramic materials are popular due to their biocompatibility, sealing ability, and durability, consequently surpassing traditional materials such as gutta-percha and zinc oxide–eugenol sealers. A lack of recent advancements in the field, combined with nanomaterials, has improved the formulations of these materials to overcome these limitations. The existing literature emphasises the benefits of bioceramics while underreporting their poor mechanical properties, handling difficulties, cost, and various other drawbacks. The key gaps identified in the literature are the insufficient coverage of emerging materials, narrow scope, limited insights into future developments, and underreporting of failures and complications of the existing materials. Consequently, this review aims to highlight the key limitations of various endodontic materials, primarily focusing on calcium silicate, calcium phosphate, and bioactive glass-based materials, which are the most abundantly used materials in dentistry. Based on the literature, bioceramic materials in endodontics have significantly improved over recent years, with different combinations of materials and technology compared to earlier generations while preserving many of their original properties, with some having affordable costs. This review also identified key innovations that could shape the future of endodontic materials, highlighting the ongoing evolution and advancements in endodontic treatments. Full article
(This article belongs to the Special Issue Endodontics and Restorative Sciences: 2nd Edition)
Show Figures

Figure 1

7 pages, 736 KiB  
Article
In Vitro Antibacterial Activity of Different Bioceramic Root Canal Sealers
by Alberto Dagna, Marco Colombo, Claudio Poggio, Gianluigi Russo, Matteo Pellegrini, Giampiero Pietrocola and Riccardo Beltrami
Ceramics 2022, 5(4), 901-907; https://doi.org/10.3390/ceramics5040065 - 1 Nov 2022
Cited by 3 | Viewed by 3182
Abstract
Bioceramic root canal sealers have been introduced in clinical dental use, but less is known about the antibacterial activity against Streptococcus mutans, Streptococcus salivarius, and Streptococcus sanguis. The purpose of the study is to compare new bioceramic sealers with a [...] Read more.
Bioceramic root canal sealers have been introduced in clinical dental use, but less is known about the antibacterial activity against Streptococcus mutans, Streptococcus salivarius, and Streptococcus sanguis. The purpose of the study is to compare new bioceramic sealers with a traditional zinc-oxide eugenol material considered as a control. The different bioceramic root canal sealants tested were FillRoot ST, BioRoot™RCS, Well-Root™ PT, and CeraSeal. In vitro antibacterial activity against Streptococci was assessed using the agar disc diffusion test at two different intervals, 24 h and 48 h. A non-parametric statistical analysis was performed to compare the inhibition zones for each of the different materials. Bioceramic root canal sealers showed mild antibacterial activity, while zinc-oxide eugenol-based material showed a stronger inhibition of Streptococci diffusion. No differences were detected for the measurements of inhibition zones between 24 h and 48 h except for FillRoot ST and BioRoot™RCS. Full article
(This article belongs to the Special Issue Ceramic Materials in Oral Applications)
Show Figures

Figure 1

13 pages, 672 KiB  
Article
The Short-Term Antibacterial Activity of Three Selected Endodontic Sealers against Enterococcus faecalis Bacterial Culture
by Matej Rosa, Yuliya Morozova, Roman Moštěk, Pavel Holík, Lucia Somolová, Barbora Novotná, Soňa Zábojníková, Kateřina Bogdanová, Kateřina Langová, Iva Voborná, Lenka Pospíšilová and Josef Paul Kovařík
Life 2022, 12(2), 158; https://doi.org/10.3390/life12020158 - 21 Jan 2022
Cited by 5 | Viewed by 3363
Abstract
(1) Background: Microorganisms originating from the microflora of the oral cavity are the main cause of the inflammatory diseases of the dental pulp and periapical periodontium, as well as the failure of endodontic treatment. The subsequent root canal treatment is not able to [...] Read more.
(1) Background: Microorganisms originating from the microflora of the oral cavity are the main cause of the inflammatory diseases of the dental pulp and periapical periodontium, as well as the failure of endodontic treatment. The subsequent root canal treatment is not able to remove all the pathogens, and a small number of viable bacteria remain in the dentine tubules, which must be sealed by endodontic sealers. These sealers should have at least a bacteriostatic effect to prevent the remaining bacteria from reproducing. The aim of this study is to compare the short-term antibacterial activity of three endodontic sealers based on poly-epoxy resin, zinc oxide-eugenol and calcium silicate with a calcium hydroxide-based sealer. Calcium hydroxide is used as temporary intracanal medicament and, thus, should show significant antibacterial activity. (2) Methods: A total of 25 bovine dentine samples infected with Enterococcus faecalis were used in this study. After the sealer placement and a 24 h incubation period, the root canal walls were scraped, and the suspension of dentine fillings was used for a semi-quantitative evaluation of microbial growth. (3) Results: The poly-epoxide resin-based sealer ADSeal™ showed significant antibacterial properties. (4) Conclusions: The highest antibacterial activity was shown in poly-epoxide resin-based sealer group, followed by the zinc oxide-eugenol-based sealer and calcium silicate-based sealer. Full article
(This article belongs to the Collection Bacterial Infections, Treatment and Antibiotic Resistance)
Show Figures

Figure 1

21 pages, 1971 KiB  
Review
Calcium Silicate-Based Root Canal Sealers: A Narrative Review and Clinical Perspectives
by Germain Sfeir, Carla Zogheib, Shanon Patel, Thomas Giraud, Venkateshbabu Nagendrababu and Frédéric Bukiet
Materials 2021, 14(14), 3965; https://doi.org/10.3390/ma14143965 - 15 Jul 2021
Cited by 65 | Viewed by 7729
Abstract
Over the last two decades, calcium silicate-based materials have grown in popularity. As root canal sealers, these formulations have been extensively investigated and compared with conventional sealers, such as zinc oxide–eugenol and epoxy resin-based sealers, in in vitro studies that showed their promising [...] Read more.
Over the last two decades, calcium silicate-based materials have grown in popularity. As root canal sealers, these formulations have been extensively investigated and compared with conventional sealers, such as zinc oxide–eugenol and epoxy resin-based sealers, in in vitro studies that showed their promising properties, especially their biocompatibility, antimicrobial properties, and certain bioactivity. However, the consequence of their higher solubility is a matter of debate and still needs to be clarified, because it may affect their long-term sealing ability. Unlike conventional sealers, those sealers are hydraulic, and their setting is conditioned by the presence of humidity. Current evidence reveals that the properties of calcium silicate-based sealers vary depending on their formulation. To date, only a few short-term investigations addressed the clinical outcome of calcium silicate-based root canal sealers. Their use has been showed to be mainly based on practitioners’ clinical habits rather than manufacturers’ recommendations or available evidence. However, their particular behavior implies modifications of the clinical protocol used for conventional sealers. This narrative review aimed to discuss the properties of calcium silicate-based sealers and their clinical implications, and to propose rational indications for these sealers based on the current knowledge. Full article
(This article belongs to the Special Issue Advanced Materials for Oral Application)
Show Figures

Figure 1

9 pages, 1992 KiB  
Article
An In Vitro Stereomicroscopic Evaluation of Bioactivity between Neo MTA Plus, Pro Root MTA, BIODENTINE & Glass Ionomer Cement Using Dye Penetration Method
by Mohmed Isaqali Karobari, Syed Nahid Basheer, Fazlur Rahman Sayed, Sufiyan Shaikh, Muhammad Atif Saleem Agwan, Anand Marya, Pietro Messina and Giuseppe Alessandro Scardina
Materials 2021, 14(12), 3159; https://doi.org/10.3390/ma14123159 - 8 Jun 2021
Cited by 55 | Viewed by 3778
Abstract
The ideal root end filling material should form a tight seal in the root canal by adhering to the cavity walls. Several materials have been used for root end filling. The present study aims to find out and compare the bioactivity of Neo [...] Read more.
The ideal root end filling material should form a tight seal in the root canal by adhering to the cavity walls. Several materials have been used for root end filling. The present study aims to find out and compare the bioactivity of Neo MTA Plus, Pro Root MTA White, BIODENTINE & glass ionomer cement as root end filling materials using 1% methylene blue as tracer. Materials and methods: 80 extracted human permanent maxillary anterior teeth were used in the study. They were divided into four groups. Specimens were sectioned transversely in the cervical area to separate the crown from the root. The root canal was obturated with gutta percha and zinc oxide eugenol sealers. Thereafter, each sample was resected apically by removing 3 mm of the apex and filled with different materials. Samples were kept in buffering solution at 37 °C until the recommended evaluation periods. The specimens were then suspended in 1% methylene blue for 24 h, prior to the analysis. The teeth were then sectioned, and dye penetration was examined, photographed, and evaluated under a stereomicroscope. Results: Vertical dye penetration showed significant differences across different groups. The minimum dye penetration was seen in Neo MTA plus followed by BIODENTINE, Pro Root MTA and maximum in GIC. There was no significant difference in dye penetration between Neo MTA plus and BIODENTINE both at fifteen days and one-month intervals. Conclusion: The present study suggests Neo MTA plus and BIODENTINE should be the preferred material for root end filling. Full article
Show Figures

Figure 1

15 pages, 2486 KiB  
Article
Antimicrobial Effectiveness of Calcium Silicate Sealers against a Nutrient-Stressed Multispecies Biofilm
by Rahul Bose, Konstantinos Ioannidis, Federico Foschi, Abdulaziz Bakhsh, Robert D. Kelly, Sanjukta Deb, Francesco Mannocci and Sadia Ambreen Niazi
J. Clin. Med. 2020, 9(9), 2722; https://doi.org/10.3390/jcm9092722 - 24 Aug 2020
Cited by 17 | Viewed by 6145
Abstract
Purpose: This study compared the antimicrobial efficacy of calcium silicate sealers (BioRoot RCS and Total Fill BC) and conventional sealers (AH Plus and Tubli-seal) against planktonic bacteria and a nutrient-stressed multispecies biofilm. Methods: Antimicrobial properties of freshly mixed sealers were investigated using the [...] Read more.
Purpose: This study compared the antimicrobial efficacy of calcium silicate sealers (BioRoot RCS and Total Fill BC) and conventional sealers (AH Plus and Tubli-seal) against planktonic bacteria and a nutrient-stressed multispecies biofilm. Methods: Antimicrobial properties of freshly mixed sealers were investigated using the direct contact test (DCT) and a nutrient-stressed multispecies biofilm comprised of five endodontic strains. Antimicrobial activity was determined using quantitative viable counts and confocal laser scanning microscopy (CLSM) analysis with live/dead staining. The pH of the sealers was analysed over a period of 28 days in Hanks Balanced Salt Solution (HBSS). Analysis of variance (ANOVA) with Tukey tests and the Kruskal–Wallis test were used for data analysis with a significance of 5%. Results: All endodontic sealers exhibited significant antimicrobial activity against planktonic bacteria (p < 0.05). BioRoot RCS caused a significant reduction in viable counts of the biofilms compared to AH Plus and the control (p < 0.05), while no significant difference could be observed compared to TotalFill BC and Tubli-seal (p > 0.05). CLSM analysis showed that BioRoot RCS and TotalFill BC exhibited significant biofilm inhibition compared to Tubli-seal, AH Plus and the control (p < 0.05). BioRoot RCS presented with the highest microbial killing, followed by TotalFill BC and Tubli-seal. Alkalizing activity was seen from the onset by BioRoot RCS, TotalFill BC and AH Plus. After 28 days, BioRoot RCS demonstrated the highest pH in HBSS (pH > 12). Conclusions: Calcium silicate sealers exhibited effective antimicrobial properties. This was demonstrated by superior biofilm inhibition capacity and microbial killing, with strong alkalizing activity compared to epoxy-based and zinc oxide-eugenol-based sealers. Full article
(This article belongs to the Special Issue Root Canal Treatment (RCT): Latest Advances and Prospects)
Show Figures

Figure 1

Back to TopTop