Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (586)

Search Parameters:
Keywords = zoonotic parasite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1366 KB  
Review
Sarcocystosis in Farm Animals in Brazil: A One-Health Approach
by Michel dos Santos Pinto, João Alfredo Biagi Camargo Neto, Carlos Wilson Gomes Lopes, Fernando Paiva, Luiz Daniel de Barros, Gustavo Felippelli, Fernando de Souza Rodrigues, Giovanni Widmer and Katia Denise Saraiva Bresciani
Vet. Sci. 2025, 12(9), 842; https://doi.org/10.3390/vetsci12090842 (registering DOI) - 1 Sep 2025
Abstract
Sarcocystosis is a parasitic infection caused by obligate intracellular coccidia, which infect humans, domestic animals, and wildlife. More than 200 Sarcocystis species have already been identified, but for many of these, the life cycle, pathogenesis, and clinical signs remain unclear. The infection is [...] Read more.
Sarcocystosis is a parasitic infection caused by obligate intracellular coccidia, which infect humans, domestic animals, and wildlife. More than 200 Sarcocystis species have already been identified, but for many of these, the life cycle, pathogenesis, and clinical signs remain unclear. The infection is cosmopolitan, with high prevalence in cattle herds worldwide. Although the clinical disease in definitive hosts is considered rare, the high number of sporocysts released by them drives the incidence in production animals. Furthermore, sarcocystosis has some One Health relevance due to its zoonotic potential, especially concerning species infecting primates. Few studies have reported on the epidemiology of sarcocystosis in Brazil. However, a high prevalence of the disease was found in areas where investigations of Sarcocystis species were conducted, which highlights the potential for foodborne transmission to humans. Therefore, it is relevant to study this parasitic disease so that control and prophylaxis measures can be adopted. This study aims to review the current state of knowledge on Sarcocystis spp. in farm animals in Brazil. Full article
(This article belongs to the Special Issue Detection of Parasitic Diseases in Livestock)
Show Figures

Figure 1

18 pages, 2407 KB  
Article
Epidemiological Significance of the Fox (Vulpes vulpes) in the Spread of Vector-Transmitted Zoonoses in the Area of Northern Croatia
by Marina Pavlak, Jelena Prpić, Ioana A. Matei, Krešimir Trninić, Snježana Ćurković, Željko Mihaljević, Zrinka Štritof, Ksenija Vlahović, Žarko Udiljak and Lorena Jemeršić
Pathogens 2025, 14(9), 858; https://doi.org/10.3390/pathogens14090858 - 29 Aug 2025
Viewed by 199
Abstract
Wild animals often serve as reservoirs for vector-borne zoonoses, which are on the rise worldwide but have not yet been sufficiently researched. Vector-borne zoonoses, such as those caused by Anaplasma phagocytophilum, Borrelia burgdorferi sensu lato, and Dirofilaria immitis, are a growing [...] Read more.
Wild animals often serve as reservoirs for vector-borne zoonoses, which are on the rise worldwide but have not yet been sufficiently researched. Vector-borne zoonoses, such as those caused by Anaplasma phagocytophilum, Borrelia burgdorferi sensu lato, and Dirofilaria immitis, are a growing public health concern due to their increasing incidence and broad host range. The aim of this study was to determine the prevalence and risk factors for vector-borne bacterial (borreliosis, anaplasmosis, ehrlichiosis) and parasitic (dirofilariasis) pathogens and to detect some of these pathogens in the red fox (Vulpes vulpes) population in Croatia. A total of 179 blood samples from foxes from nine districts were analysed. The SNAP ® 4Dx ® Plus rapid test was used to detect circulating D. immitis antigen and antibodies against B. burgdorferi, A. phagocytophilum/Anaplasma platys, and Ehrlichia canis/Ehrlichia ewingii. Circulating D. immitis antigen was detected in 6.70% of the samples (95% CI: 3.20–10.19%), while antibodies against A. phagocytophilum/A. platys were found in 10.06% (95% CI: 5.8–14.25%). Only one sample was positive for B. burgdorferi, while no antibodies were detected for E. canis/E. ewingii. Spatial analysis revealed statistically significant differences in prevalence by geographical region (district) and age, while no significant correlations were found. In the standard PCR analysis, DNA of D. immitis was not detected in any of the eight positive and eight negative SNAP ® 4Dx ® Plus samples. D. repens, A. reconditum, or co-infections were also not detected by PCR. Of the nine samples that tested positive for A. phagocytophilum/A. platys antibodies, four were confirmed to be positive for A. phagocytophilum by nested and semi-nested PCR targeting the 16S rRNA and GroEL genes. Phylogenetic analysis revealed similarities with various European strains, including zoonotic strains. This study is the first molecular detection of A. phagocytophilum from blood samples of red foxes in Croatia. The results show that red foxes are not free from infections such as anaplasmosis and dirofilariasis, emphasising their possible role in the maintenance and transmission of these pathogens in certain regions of Croatia. These results underline the need for further research to better understand the epidemiological importance of red foxes in the spread of vector-borne diseases. Full article
Show Figures

Figure 1

26 pages, 2424 KB  
Article
Retrospective Analysis of the Impact of Vaccination with an Inactivated Vaccine on Toxoplasmosis-Associated Mortality in Captive Wildlife
by Angelo Scuotto, Daniela Ogonczyk-Makowska, Alicia Quiévy, Mélanie Berthet, Kévin Schlax, Didier Boussarie, Alexis Maillot, Florine Popelin-Wedlarski, Thomas Charpentier, Maïalen Perot, Benoît Quintard, Marloes van Elderen, Job Benjamin Gérard Stumpel, Stamatios Alan Tahas, Anna Modlinska, Viktória Sós-Koroknai, Alexandre Azevedo, María del Carmen Carmona Muciño, Mariana Castilho Martins, Carlos Madrid, Juliana Peña Stadlin, Lina M. Henao-Montoya and Didier Betbederadd Show full author list remove Hide full author list
Vaccines 2025, 13(9), 910; https://doi.org/10.3390/vaccines13090910 - 27 Aug 2025
Viewed by 241
Abstract
Background/Objectives: Toxoplasma gondii is a major cause of zoonotic infections in both humans and animals, resulting in significant mortality in susceptible species, such as New World primates and marsupials. Toxoplasmosis is particularly concerning in zoos and wildlife reserves, where outbreaks threaten conservation [...] Read more.
Background/Objectives: Toxoplasma gondii is a major cause of zoonotic infections in both humans and animals, resulting in significant mortality in susceptible species, such as New World primates and marsupials. Toxoplasmosis is particularly concerning in zoos and wildlife reserves, where outbreaks threaten conservation efforts for endangered species. In the absence of a commercially available vaccine against toxoplasmosis for humans and captive wild animals, current prevention strategies are limited to restricting the access of cats to enclosures, controlling rodent populations, and maintaining strict food hygiene. Recent research has shown promising results with an intranasal vaccine (VXN-Toxo) composed of maltodextrin nanoparticles conjugated with a purified, inactivated T. gondii parasite. This experimental vaccine does not pose a risk of causing disease and offers advantages such as better stability compared with live pathogen-based vaccines. Methods: This study presents a large-scale evaluation of the effect of VXN-Toxo administered to captive wildlife across 20 zoos in Europe and the Americas between 2017 and 2025. Seven hundred and eighty-four animals, representing over 58 species (including primates, marsupials, rodents, and felids), were vaccinated without any adverse events reported. Results: Retrospective mortality data from 20 participating zoological institutions revealed an overall 96.7% reduction—and, in many cases, a complete elimination—of toxoplasmosis-associated deaths post vaccination. Conclusions: These results demonstrate, for the first time, consistent and broad-spectrum protection against T. gondii of different strains in a wide array of captive wildlife species. This universal vaccine represents a promising tool for toxoplasmosis prevention in zoological collections, with significant implications for animal health and conservation strategies. Full article
(This article belongs to the Special Issue Advances in Vaccines against Infectious Diseases)
Show Figures

Figure 1

25 pages, 1701 KB  
Review
Deciphering the Fasciola hepatica Glycocode and Its Involvement in Host–Parasite Interactions
by Jaclyn Swan, Timothy C. Cameron, Terry W. Spithill and Travis Beddoe
Biomolecules 2025, 15(9), 1235; https://doi.org/10.3390/biom15091235 - 26 Aug 2025
Viewed by 234
Abstract
The zoonotic disease fasciolosis poses a significant global threat to both humans and livestock. The causative agent of fasciolosis is Fasciola hepatica, which is commonly referred to as liver fluke. The emergence of drug resistance has underscored the urgent need for new [...] Read more.
The zoonotic disease fasciolosis poses a significant global threat to both humans and livestock. The causative agent of fasciolosis is Fasciola hepatica, which is commonly referred to as liver fluke. The emergence of drug resistance has underscored the urgent need for new therapeutic treatments against F. hepatica. The tegument surface of F. hepatica is characterized by a dynamic syncytial layer surrounded by a glycocalyx, which serves as a crucial interface in host–parasite interactions, facilitating functions such as nutrient absorption, sensory input, and defense against the host immune response. Despite its pivotal role, only recently have we delved deeper into understanding glycans at the host–parasite interface and the glycosylation of hidden antigens. These glycan antigens have shown promise for vaccine development or as targets for drug manipulation across various pathogenic species. This review aims to consolidate current knowledge on the glycosylation of F. hepatica, exploring glycan motifs identified through generic lectin probing and mass spectrometry. Additionally, it examines the interaction of glycoconjugates with lectins from the innate immune systems of both ruminant and human host species. An enhanced understanding of glycans’ role in F. hepatica biology and their critical involvement in host–parasite interactions will be instrumental in developing novel strategies to combat these parasites effectively. In the future, a more comprehensive approach may be adopted in selecting and designing potential vaccine targets, integrating insights from glycosylation studies to improve efficacy. Full article
(This article belongs to the Section Biomacromolecules: Proteins, Nucleic Acids and Carbohydrates)
Show Figures

Graphical abstract

18 pages, 1464 KB  
Article
Killer Peptide-Containing Polyelectrolytic Nanocomplexes to Fight Toxoplasma gondii Infection
by Arianna Bucella, Manuela Semeraro, Laura Giovati, Lorenza Artesani, Ruggero Bettini, Annalisa Bianchera and Alice Vismarra
Pharmaceutics 2025, 17(8), 1075; https://doi.org/10.3390/pharmaceutics17081075 - 20 Aug 2025
Viewed by 349
Abstract
Background/Objectives: Toxoplasmosis, a zoonotic disease caused by Toxoplasma gondii, typically is asymptomatic in immunocompetent individuals but causes severe complications in immunocompromised subjects and during pregnancy. Current treatments such as pyrimethamine and sulfadiazine are effective for acute infections but cannot eliminate encysted bradyzoites [...] Read more.
Background/Objectives: Toxoplasmosis, a zoonotic disease caused by Toxoplasma gondii, typically is asymptomatic in immunocompetent individuals but causes severe complications in immunocompromised subjects and during pregnancy. Current treatments such as pyrimethamine and sulfadiazine are effective for acute infections but cannot eliminate encysted bradyzoites and have significant side effects. The antimicrobial killer peptide (KP) has interesting therapeutic potential, but its intracellular delivery is challenging; hyaluronate-based nanoparticles loaded with KP (KP-NPs) were evaluated to target T. gondii-infected cells that overexpress CD44. Methods: KP-NPs made of chitosan and hyaluronate were produced by microfluidics and were characterized for size, surface charge, encapsulation efficiency, and stability under stress conditions. After excluding their toxicity, their activity was tested in vitro against Candida albicans and T. gondii as free tachyzoite or in infected human foreskin fibroblasts (HFFs). Results: KP was efficiently encapsulated in nanoparticles and protected from harsh acidic conditions at high temperature. Preliminary in vitro testing against C. albicans showed that, at the lowest candidacidal concentration of KP (2.5 μg/mL), KP-NPs killed 90.97% of yeast cells. KP itself proved to be non-toxic for HFFs as host cells and effective against T. gondii. Comparable results were obtained for KP-NPs and blank nanoparticles (BLK-NPs), with no observed toxicity to host cells, confirming that encapsulation did not alter peptide efficacy. The parasiticidal effect of KP alone, as well as KP-NPs at 250 µg/mL and BLK-NPs, was confirmed through tests on free T. gondii tachyzoites. Reduction rates for the number of infected cells ranged from 66% to 90% with respect to control, while the reduction in the number of intracellular tachyzoites ranged from 66% to 80%. Interestingly, KP alone was not effective against intracellular tachyzoite, while KP-NPs maintained an efficacy comparable to the extracellular model, suggesting that particles helped the internalization of the peptide. Conclusions: Encapsulation of KP into hyaluronate/chitosan nanoparticles does not alter its activity and improves its efficacy against the intracellular parasite. Notably, BLK-NPs appeared to exhibit efficacy against the parasite on its own, without the presence of KP. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Figure 1

42 pages, 1635 KB  
Review
Review of Toxoplasmosis: What We Still Need to Do
by Muhammad Farhab, Muhammad Waqar Aziz, Aftab Shaukat, Ming-Xing Cao, Zhaofeng Hou, Si-Yang Huang, Ling Li and Yu-Guo Yuan
Vet. Sci. 2025, 12(8), 772; https://doi.org/10.3390/vetsci12080772 - 18 Aug 2025
Viewed by 737
Abstract
Toxoplasma gondii is responsible for the disease toxoplasmosis and has the broadest host range among apicomplexan parasites, as it infects virtually all warm-blooded vertebrates. Toxoplasmosis is a zoonotic and emerging public health concern with considerable morbidity and mortality, especially in the developing world, [...] Read more.
Toxoplasma gondii is responsible for the disease toxoplasmosis and has the broadest host range among apicomplexan parasites, as it infects virtually all warm-blooded vertebrates. Toxoplasmosis is a zoonotic and emerging public health concern with considerable morbidity and mortality, especially in the developing world, affecting approximately one-third of the world’s human population. Clinical presentation varies among species, and the infection establishes lifelong chronicity in hosts. Most of the host species (including healthy humans) are asymptomatic on the one hand, it is fatal to marsupials, neotropical primates and some marine mammals on the other hand. In immunocompetent humans, infection is typically asymptomatic, whereas immunocompromised individuals may develop disseminated disease affecting virtually any organ system—most commonly reproductive, cerebral, and ocular systems. Toxoplasmosis spreads by ingestion of food or water contaminated with T. gondii oocysts, consumption of undercooked/raw meat containing tissue cysts, transplacental transmission from mother to fetus, or by receiving infected organ/blood from the infected individual. Toxoplasmosis is mainly diagnosed by serologic tests and polymerase chain reaction (PCR). It is treated with pyrimethamine combined with sulfadiazine or clindamycin, often supplemented with leucovorin, atovaquone, and dexamethasone. Despite having many potent anti-T. gondii antigenic candidates, there is no commercially available vaccine for humans due to many factors, including the complex life cycle of the parasite and its evasion strategies. To date, the only commercially available anti-T. gondii vaccine is for sheep, licensed for veterinary use to prevent ovine abortions. In this review, we have summarized the current understanding of toxoplasmosis. Full article
Show Figures

Figure 1

14 pages, 598 KB  
Article
Molecular Screening of Plasmodium spp. in Free-Living Ring-Tailed Coatis (Nasua nasua) and Nine-Banded Armadillos (Dasypus novemcinctus) in the Peruvian Amazon
by Gabriela M. Ulloa, Alex D. Greenwood, Omar E. Cornejo, Frederico Ozanan Barros Monteiro, Meddly L. Santolalla and Pedro Mayor
Animals 2025, 15(16), 2413; https://doi.org/10.3390/ani15162413 - 18 Aug 2025
Viewed by 296
Abstract
Identifying the diversity of wildlife hosts for malaria parasites in wildlife is crucial for understanding transmission dynamics in endemic regions where humans, vectors, and wildlife heavily overlap. We examined the presence of Plasmodium parasites in free-ranging ring-tailed coatis (Nasua nasua, n [...] Read more.
Identifying the diversity of wildlife hosts for malaria parasites in wildlife is crucial for understanding transmission dynamics in endemic regions where humans, vectors, and wildlife heavily overlap. We examined the presence of Plasmodium parasites in free-ranging ring-tailed coatis (Nasua nasua, n = 44) and nine-banded armadillos (Dasypus novemcinctus, n = 66) from an Indigenous community in the Peruvian Amazon. Nested PCR targeting the mitochondrial cytb gene detected Plasmodium spp. DNA in two coatis (4.7%). Sequencing revealed one lineage identical to Plasmodium vivax/P. simium and another to P. malariae/P. brasilianum. A subset of samples was reanalyzed using cox3-based PCR and sequencing in an independent laboratory, confirming P. malariae/P. brasilianum in one coati. No infections were observed in armadillos. These results indicate that coatis in the wild may host diverse Plasmodiidae parasites and that coatis may even carry Plasmodium spp., likely as incidental hosts. Expanding surveillance to additional non-primate mammals will help clarify their role in sylvatic malaria ecology and evaluate potential zoonotic risks. Full article
(This article belongs to the Section Wildlife)
Show Figures

Figure 1

14 pages, 2099 KB  
Article
Immunogenicity and Protective Efficacy of a Recombinant Toxoplasma gondii GRA12 Vaccine in Domestic Cats
by Jinru Yang, Linchong Nie, Yining Song, Zipeng Yang, Liulu Yang, Hongjie Ren, Wenhao Li, Yasser Mahmmod, Xiu-Xiang Zhang, Ziguo Yuan, Hao Yuan and Yan Zhang
Vaccines 2025, 13(8), 851; https://doi.org/10.3390/vaccines13080851 - 11 Aug 2025
Viewed by 454
Abstract
Background: Toxoplasma gondii (T. gondii) is a significant opportunistic zoonotic protozoan, presenting a substantial risk to human health and livestock. Consequently, the development of an effective vaccine against toxoplasmosis is imperative. This study focuses on the GRA12 protein as a [...] Read more.
Background: Toxoplasma gondii (T. gondii) is a significant opportunistic zoonotic protozoan, presenting a substantial risk to human health and livestock. Consequently, the development of an effective vaccine against toxoplasmosis is imperative. This study focuses on the GRA12 protein as a target for developing a recombinant protein vaccine, with its efficacy evaluated through immunization trials in cats. Methods: We expressed recombinant GRA12 protein in E. coli and immunized cats with the purified antigen. The cats were categorized into four groups: G1 (PBS control), G2 (ISA 201 adjuvant alone), G3 (rGRA12 vaccine), and G4 (rGRA12 combined with ISA 201 adjuvant). All cats underwent subcutaneous immunizations on days 0, 14, and 28. Subsequently, serum levels of IgG (including IgG1 and IgG2a subclasses) and cytokines (IFN-γ, IL-2, TNF-α, IL-4, IL-10) were measured by enzyme-linked immunosorbent assay (ELISA). Two weeks after the third immunization (42 DPI), each cat was intraperitoneally infected with 1 × 106T. gondii RH tachyzoites. Oocyst shedding, survival duration, and T. gondii burden were monitored to assess vaccine-induced immunity. Results: The results indicate that immunization with recombinant rGRA12 protein significantly elevated IgG, IgG1, and IgG2a antibody levels in cats. G4 displayed elevated IgG levels post-immunization compared to G1 and G2, with an IgG1/IgG2a ratio > 1, indicating a mixed Th1/Th2 immune response. G4 also showed significantly increased IFN-γ, IL-2, TNF-α, and IL-4 levels compared to G1 (p < 0.05), while IL-10 remained unchanged. After T. gondii infection, total oocyst counts were 4.61 × 106 (G1), 4.49 × 106 (G2), 3.58 × 106 (G3), and 2.59 × 106 (G4), with G3/G4 showing 20.1–27.9% reduction relative to G1 (p < 0.05). Survival analysis revealed that groups G3 and G4 exhibited significantly longer median survival times (38 and 60 days, respectively; G4 with no mortality) compared to G1 and G2 (19 and 26 days, respectively). Additionally, parasite burdens in the brain, heart, lungs, liver, and spleen were significantly reduced in G3/G4 compared to G1/G2 (p < 0.01). Conclusions: In summary, the recombinant GRA12 vaccine significantly enhanced host survival and reduced parasite burden, demonstrating its potential as an effective toxoplasmosis vaccine candidate. These findings provide valuable data for future toxoplasmosis vaccine development. Full article
(This article belongs to the Special Issue The Development of Vaccine Against Parasite Infection)
Show Figures

Figure 1

10 pages, 1662 KB  
Article
First Detection and Molecular Identification of Rhabditis (Rhabditella) axei from the Chinese Red Panda (Ailurus styani)
by Chanjuan Yue, Wanjing Yang, Dunwu Qi, Mei Yang, James Edward Ayala, Yanshan Zhou, Chao Chen, Xiaoyan Su, Rong Hou and Songrui Liu
Pathogens 2025, 14(8), 783; https://doi.org/10.3390/pathogens14080783 - 6 Aug 2025
Viewed by 406
Abstract
Rhabditis (Rhabditella) axei is a predominantly free-living nematode commonly found in sewage systems and decomposing organic matter. While primarily saprophytic, it has been documented as an opportunistic pathogen in human urinary and gastrointestinal tracts. The Chinese red panda (Ailurus styani [...] Read more.
Rhabditis (Rhabditella) axei is a predominantly free-living nematode commonly found in sewage systems and decomposing organic matter. While primarily saprophytic, it has been documented as an opportunistic pathogen in human urinary and gastrointestinal tracts. The Chinese red panda (Ailurus styani), a rare and protected species in China, has not previously been reported as a host for Rhabditis (Rhabditella) spp. infections. This study reports the first documented occurrence of R. axei in red panda feces, unambiguously confirmed through integrative taxonomic approaches combining morphological and molecular analyses. The nematodes exhibited key morphological features consistent with R. axei, including a cylindrical rhabditiform esophagus, sexually dimorphic tail structures, and diagnostic spicule morphology. Molecular analysis based on 18S-ITS-28S rDNA sequencing confirmed their identity, showing >99% sequence similarity to R. axei reference strains (GenBank: PP135624.1, PP135622.1). Phylogenetic reconstruction using 18S rDNA and ITS rDNA sequences placed the isolate within a well-supported R. axei clade, clearly distinguishing it from related species such as R. blumi and R. brassicae. The findings demonstrate the ecological plasticity of R. axei as a facultative parasite capable of infecting non-traditional hosts and further highlight potential zoonotic risks associated with environmental exposure in captive wildlife populations. Our results emphasize the indispensable role of molecular diagnostics in accurately distinguishing morphologically similar nematodes within the Rhabditidae family, while providing essential baseline data for health monitoring in both in situ and ex situ conservation programs for this endangered species. Full article
Show Figures

Figure 1

15 pages, 750 KB  
Review
Using Biocontrol Fungi to Control Helminthosis in Wild Animals: An Innovative Proposal for the Health and Conservation of Species
by Júlia dos Santos Fonseca, Beatriz Bacelar Barbosa, Adolfo Paz Silva, María Sol Arias Vázquez, Cristiana Filipa Cazapal Monteiro, Huarrisson Azevedo Santos and Jackson Victor de Araújo
Pathogens 2025, 14(8), 775; https://doi.org/10.3390/pathogens14080775 - 5 Aug 2025
Viewed by 501
Abstract
Helminth parasites of wild animals represent a major threat to the health of these animals, leading to significant losses in performance, health, and zoonotic implications. In some zoos, anthelmintics have traditionally been used to control these parasites, many of which are also zoonotic. [...] Read more.
Helminth parasites of wild animals represent a major threat to the health of these animals, leading to significant losses in performance, health, and zoonotic implications. In some zoos, anthelmintics have traditionally been used to control these parasites, many of which are also zoonotic. Other actions, such as the removal of organic waste, have also been adopted. Few or no control measures are applied to free-ranging wild animals. Helminthophagous fungi are a promising biological alternative. When animals ingest fungal spores, they are excreted in their feces, where they trap and destroy helminth larvae and eggs, preventing and reducing the parasite load in the environment. Another alternative is to administer fungi by spraying them directly into the environment. This review aims to examine the use of helminthophagous fungi in the control of helminthiases in wild animals, highlighting their potential to minimize dependence on chemical treatments and promote sustainable animal breeding and production. There are many challenges to making this viable, such as environmental variability, stability of formulations, and acceptance of this new technology. These fungi have been shown to reduce parasite burdens in wild animals by up to 75% and can be administered through the animals’ feeding troughs. To date, evidence shows that helminthophagous fungi can reliably curb environmental parasite loads for extended periods, offering a sustainable alternative to repeated anthelmintic dosing. Their use has been linked to tangible gains in body condition, weight, and overall welfare in various captive and free-ranging wildlife species. Full article
(This article belongs to the Section Parasitic Pathogens)
Show Figures

Figure 1

18 pages, 1645 KB  
Article
Assessing Zoonotic Risks of Blastocystis Infection in Singapore
by Thet Tun Aung, Charlotte Kai Qi How, Jean-Marc Chavatte, Nazmi Bin Nazir, Edgar Macabe Pena, Bryan Ogden, Grace Rou’en Lim, Yasmina Arditi Paramastri, Lois Anne Zitzow, Hanrong Chen, Niranjan Nagarajan, Kevin Shyong Wei Tan and Benoit Malleret
Pathogens 2025, 14(8), 773; https://doi.org/10.3390/pathogens14080773 - 5 Aug 2025
Viewed by 495
Abstract
Blastocystis spp. is an enteric protist that is present worldwide. Despite being discovered a century ago, there is still much to be learned about its pathogenicity and transmission. Different subtypes (ST) of Blastocystis spp. have been identified in various hosts, including humans, birds, [...] Read more.
Blastocystis spp. is an enteric protist that is present worldwide. Despite being discovered a century ago, there is still much to be learned about its pathogenicity and transmission. Different subtypes (ST) of Blastocystis spp. have been identified in various hosts, including humans, birds, and insects, and there is potential for zoonotic transmission through contact between humans and animals. The prevalence of Blastocystis spp. in humans and macaques in Singapore was understudied, and the findings revealed a significant prevalence of the parasite, with rates of 90% and 100% observed in each respective Macaca fascicularis population 1 and 2, with main subtypes (ST1, ST2, ST3, and ST5). Using metagenomics, the different subtypes of Blastocystis spp. (comprising ST2, ST3, and ST17) were identified in a healthy Singaporean cohort. Additionally, seven incidental findings of Blastocystis spp. were discovered in human patients with other gut parasites, including two ST1, two ST2, two ST3, and one ST8. Several factors such as diet or reverse zoonotic transmission are suggested to play a role in Blastocystis sp. subtype distribution. Full article
(This article belongs to the Section Parasitic Pathogens)
Show Figures

Figure 1

12 pages, 579 KB  
Article
In Vivo Safety and Efficacy of Thiosemicarbazones in Experimental Mice Infected with Toxoplasma gondii Oocysts
by Manuela Semeraro, Ghalia Boubaker, Mirco Scaccaglia, Dennis Imhof, Maria Cristina Ferreira de Sousa, Kai Pascal Alexander Hänggeli, Anitha Löwe, Marco Genchi, Laura Helen Kramer, Alice Vismarra, Giorgio Pelosi, Franco Bisceglie, Luis Miguel Ortega-Mora, Joachim Müller and Andrew Hemphill
Biomedicines 2025, 13(8), 1879; https://doi.org/10.3390/biomedicines13081879 - 1 Aug 2025
Cited by 1 | Viewed by 361
Abstract
Background: Toxoplasma gondii is a globally widespread parasite responsible for toxoplasmosis, a zoonotic disease with significant impact on both human and animal health. The current lack of safe and effective treatments underscores the need for new drugs. Earlier, thiosemicarbazones (TSCs) and their [...] Read more.
Background: Toxoplasma gondii is a globally widespread parasite responsible for toxoplasmosis, a zoonotic disease with significant impact on both human and animal health. The current lack of safe and effective treatments underscores the need for new drugs. Earlier, thiosemicarbazones (TSCs) and their metal complexes have shown promising activities against T. gondii. This study evaluated a gold (III) complex C3 and its TSC ligand C4 for safety in host immune cells and zebrafish embryos, followed by efficacy assessment in a murine model for chronic toxoplasmosis. Methods: The effects on viability and proliferation of murine splenocytes were determined using Alamar Blue assay and BrdU ELISA, and potential effects of the drugs on zebrafish (Danio rerio) embryos were detected through daily light microscopical inspection within the first 96 h of embryo development. The parasite burden in treated versus non-treated mice was measured by quantitative real-time PCR in the brain, eyes and the heart. Results: Neither compound showed immunosuppressive effects on the host immune cells but displayed dose-dependent toxicity on early zebrafish embryo development, suggesting that these compounds should not be applied in pregnant animals. In the murine model of chronic toxoplasmosis, C4 treatment significantly reduced the parasite load in the heart but not in the brain or eyes, while C3 did not have any impact on the parasite load. Conclusions: These results highlight the potential of C4 for further exploration but also the limitations of current approaches in effectively reducing parasite burden in vivo. Full article
(This article belongs to the Section Microbiology in Human Health and Disease)
Show Figures

Figure 1

12 pages, 1678 KB  
Article
Molecular Surveillance of Plasmodium spp. Infection in Neotropical Primates from Bahia and Minas Gerais, Brazil
by Luana Karla N. S. S. Santos, Sandy M. Aquino-Teixeira, Sofía Bernal-Valle, Beatriz S. Daltro, Marina Noetzold, Aloma Roberta C. Silva, Denise Anete M. Alvarenga, Luisa B. Silva, Ramon S. Oliveira, Cirilo H. Oliveira, Iago A. Celestino, Maria E. Gonçalves-dos-Santos, Thaynara J. Teixeira, Anaiá P. Sevá, Fabrício S. Campos, Bergmann M. Ribeiro, Paulo M. Roehe, Danilo Simonini-Teixeira, Filipe V. S. Abreu, Cristiana F. A. Brito and George R. Albuquerqueadd Show full author list remove Hide full author list
Pathogens 2025, 14(8), 757; https://doi.org/10.3390/pathogens14080757 - 31 Jul 2025
Viewed by 589
Abstract
In Brazil, Plasmodium infections in non-human primates (NHPs) have been associated with P. simium and P. brasilianum, which are morphologically and genetically similar to the human-infecting species P. vivax and P. malariae, respectively. Surveillance and monitoring of wild NHPs are crucial [...] Read more.
In Brazil, Plasmodium infections in non-human primates (NHPs) have been associated with P. simium and P. brasilianum, which are morphologically and genetically similar to the human-infecting species P. vivax and P. malariae, respectively. Surveillance and monitoring of wild NHPs are crucial for understanding the distribution of these parasites and assessing the risk of zoonotic transmission. This study aimed to detect the presence of Plasmodium spp. genetic material in Platyrrhini primates from 47 municipalities in the states of Bahia and Minas Gerais. The animals were captured using Tomahawk-type live traps baited with fruit or immobilized with tranquilizer darts. Free-ranging individuals were chemically restrained via inhalation anesthesia using VetBag® or intramuscular anesthesia injection. Blood samples were collected from the femoral vein. A total of 298 blood and tissue samples were collected from 10 primate species across five genera: Alouatta caraya (25), Alouatta guariba clamitans (1), Callicebus melanochir (1), Callithrix geoffroyi (28), Callithrix jacchus (4), Callithrix kuhlii (31), Callithrix penicillata (175), Callithrix spp. hybrids (15), Leontopithecus chrysomelas (16), Sapajus robustus (1), and Sapajus xanthosthernos (1). Molecular diagnosis was performed using a nested PCR targeting the 18S small subunit ribosomal RNA (18S SSU rRNA) gene, followed by sequencing. Of the 298 samples analyzed, only one (0.3%) from Bahia tested positive for Plasmodium brasilianum/P. malariae. This represents the first detection of this parasite in a free-living C. geoffroyi in Brazil. These findings highlight the importance of continued surveillance of Plasmodium infections in NHPs to identify regions at risk for zoonotic transmission. Full article
(This article belongs to the Section Parasitic Pathogens)
Show Figures

Figure 1

11 pages, 1134 KB  
Communication
Molecular Detection and Genotyping of Enterocytozoon bieneusi in Environmental Sources near Cattle Farms in Korea
by Haeseung Lee, Myungji Jo, Hyeyeon Kim, Kaifa Nazim, Seung-Hun Lee, Min-Goo Seo, Sang-Joon Park, Man Hee Rhee and Dongmi Kwak
Int. J. Mol. Sci. 2025, 26(15), 7270; https://doi.org/10.3390/ijms26157270 - 27 Jul 2025
Viewed by 398
Abstract
Enterocytozoon bieneusi, a microsporidian protozoan parasite, infects diverse hosts, including humans and livestock. Transmission occurs primarily through the fecal–oral route or exposure to contaminated environmental sources, such as water and soil. While its prevalence in animals is well documented, data on environmental [...] Read more.
Enterocytozoon bieneusi, a microsporidian protozoan parasite, infects diverse hosts, including humans and livestock. Transmission occurs primarily through the fecal–oral route or exposure to contaminated environmental sources, such as water and soil. While its prevalence in animals is well documented, data on environmental contamination—particularly in areas surrounding livestock farms—remain limited. Therefore, this study aims to investigate the presence of E. bieneusi in environmental sources near cattle farms in Korea, evaluating potential risks for zoonotic transmission. Overall, 364 environmental samples (soil and water) were collected from areas surrounding cattle farms and analyzed using nested PCR targeting the internal transcribed spacer region of E. bieneusi. One positive sample (0.3%) was identified in surface water near a shed housing Korean native cattle during autumn. Genotyping and phylogenetic analysis identified the sequence as originating from genotype BEB1, a Group 2 genotype commonly associated with ruminants and recognized for its zoonotic potential. While the detection rate was low, this represents the first report of E. bieneusi contamination in water near cattle housing and the first identification of BEB1 in environmental water in Korea. These findings highlight the potential for environmental transmission, emphasizing the need for further research and monitoring to inform strategies for public health and livestock biosecurity. Full article
(This article belongs to the Special Issue Microorganisms in the Environment)
Show Figures

Figure 1

13 pages, 1388 KB  
Article
Indazole Derivatives Against Murine Cutaneous Leishmaniasis
by Niurka Mollineda-Diogo, Yunierkis Pérez-Castillo, Sergio Sifontes-Rodríguez, Osmani Marrero-Chang, Alfredo Meneses-Marcel, Alma Reyna Escalona-Montaño, María Magdalena Aguirre-García, Teresa Espinosa-Buitrago, Yeny Morales-Moreno and Vicente Arán-Redó
Pharmaceuticals 2025, 18(8), 1107; https://doi.org/10.3390/ph18081107 - 25 Jul 2025
Viewed by 428
Abstract
Background/Objectives: Leishmaniasis is a zoonotic and anthropozoonotic disease with significant public health impact worldwide and is classified as a neglected tropical disease. The search for new affordable treatments, particularly oral and/or topical ones that are easy to administer and have fewer side [...] Read more.
Background/Objectives: Leishmaniasis is a zoonotic and anthropozoonotic disease with significant public health impact worldwide and is classified as a neglected tropical disease. The search for new affordable treatments, particularly oral and/or topical ones that are easy to administer and have fewer side effects, remains a priority for the scientific community in this field of research. In previous investigations, 3-alkoxy-1-benzyl-5-nitroindazole derivatives showed remarkable in vitro results against Leishmania species, and predictions of absorption, distribution, metabolism, excretion, and toxicity properties, as well as pharmacological scores, of the compounds classified as active were superior to those of amphotericin B, indicating their potential as candidates for in vivo studies. Therefore, the aim of the present study was to evaluate the in vivo antileishmanial activity of the indazole derivatives NV6 and NV16. Methods: The compounds were administered intralesionally at concentrations of 10 and 5 mg/kg in a BALB/c mouse model of cutaneous leishmaniasis caused by Leishmania amazonensis. To evaluate the efficacy of the compounds, indicators such as lesion size, ulcer area, lesion weight, and parasitic load were determined. Amphotericin B was used as a positive control. Results: The compound NV6 showed leishmanicidal activity comparable to that observed with amphotericin B, with a significant reduction in lesion development and parasite load, while NV16 caused a reduction in ulcer area. Conclusions: These results provide strong evidence for the antileishmanial activity of NV6 and support future studies to improve its pharmacokinetic profile, as well as the investigation of combination therapies with other chemotherapeutic agents currently in use. Full article
Show Figures

Graphical abstract

Back to TopTop