An 18 Moments Model for Dense Gases: Entropy and Galilean Relativity Principles without Expansions
Abstract
:1. Introduction
- The entropy principle, which guarantees the existence of an entropy density h and an entropy flux hk, such that the equation:Thanks to Liu’s theorem [42], this is equivalent to assuming the existence of Lagrange multipliers μA, such that:An idea conceived by Ruggeri is to define the four-potentials h′, h′k as:We note that (7) is the only condition that we have for the production terms PA in the framework of a macroscopic approach, apart for the fact that they are zero at equilibrium. For example, we may write their expressions at the first order with respect to equilibrium; after that, (7) will give the sign of the coefficients.In the framework of kinetic theory, they can be obtained with integrations involving the distribution function; to this regard, we refer to [30–33], because we have nothing more to say than those results, in this regard.Other restrictions are given by
- The symmetry conditions, that is the second component of FN is equal to the first component of and the second component of is a symmetric tensor.More restrictive conditions may be to impose that the flux in an equation becomes a density in the next equation, but this will lead to less general results, so we prefer not to impose it, as also other authors have done so in the past. In any case, they can be imposed subsequently if requested by the particular physical application under consideration. Similarly, we may impose also the symmetry of the tensors and , but this has not been imposed in [30] in order to obtain more general results; so, we do the same thing.Thanks to Equations (9,10), the above-mentioned symmetry conditions, which we want to impose, assume the form:The next conditions come from
- The Galilean relativity principle.
2. The Galilean Relativity Principle
3. The General Solution of the Conditions Translating the Galilean Relativity Principle
4. The General Solution of the Symmetry Conditions
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Liu, I.-S.; Müller, I. Extended Thermodynamics of Classical and Degenerate Ideal Gases. Arch. Rat. Mech. Anal. 1983, 83, 285–332. [Google Scholar]
- Liu, I.-S.; Müller, I.; Ruggeri, T. Relativistic thermodynamics of gases. Ann. Phys. (N.Y.) 1986, 169, 191–219. [Google Scholar]
- Müller, I.; Ruggeri, T. Rational Extended Thermodynamics, 2nd edn; Springer Tracts in Natural Philosophy; Springer: New York, NY, USA, 1998. [Google Scholar]
- Trovato, M.; Reggiani, L. Quantum maximum entropy principle for a system of identical particles. Phys. Rev. E 2010, 81, 021119:1–021119:11. [Google Scholar]
- Trovato, M.; Reggiani, L. Quantum maximum-entropy principle for closed quantum hydrodynamic transport within a Wigner function formalism. Phys. Rev. E 2011, 84, 061147:1–061147:29. [Google Scholar]
- Trovato, M.; Reggiani, L. Maximum entropy principle and hydrodynamic models in statistical mechanics. Riv. Nuovo Cimento Soc. Ital. Fis. 2012, 35, 99–266. [Google Scholar]
- Trovato, M.; Reggiani, L. Quantum Maximum Entropy Principle for Fractional Exclusion Statistics. Phys. Rev. lett. 2013, 110, 020404:1–020404:5. [Google Scholar]
- Carrisi, M.C.; Pennisi, S.; Ruggeri, T. The Lagrangian view-point compared with the Eulerian one, in the framework of Extended Thermodynamics. Acta Appl. Math. 2014, 132, 199–212. [Google Scholar]
- Carrisi, M.C.; Pennisi, S. Waves speeds in the macroscopic relativistic extended model with many moments. Meccanica 2014, 49, 1493–1506. [Google Scholar]
- Carrisi, M.C.; Pennisi, S. Extended Thermodynamics of Charged Gases with Many Moments: An Alternative Closure. J. Math. Phys. 2013, 54, 09301:1–09301:15. [Google Scholar]
- Carrisi, M.C.; Montisci, S.; Pennisi, S. Entropy Principle and Galilean Relativity for Dense Gases, the General Solution without Approximations. Entropy 2013, 15, 1035–1056. [Google Scholar]
- Carrisi, M.C.; Pennisi, S. Extended Thermodynamics of charged gases with many moments. J. Math. Phys. 2013, 54, 023101:1–023101:18. [Google Scholar]
- Carrisi, M.C. A generalized kinetic approach for the study of relativistic electron beams. Acta Appl. Math. 2012, 122, 107–116. [Google Scholar]
- Carrisi, M.C.; Pennisi, S. Some open problems in non-linear extended thermodynamics and their possible solutions. Ricerche di Matematica 2012, 60, 45–56. [Google Scholar]
- Ruggeri, T.; Trovato, M. Hyperbolicity in extended thermodynamics of Fermi and Bose gases. Continuum Mech. Thermodyn. 2004, 16, 551–576. [Google Scholar]
- Lombardo, S.; Mulone, G.; Trovato, M. Nonlinear stability in reaction-diffusion systems via optimal Lyapunov functions. J. Math. Anal. Appl. 2008, 342, 461–476. [Google Scholar]
- Trovato, M.; Falsaperla, P.; Reggiani, L. Maximum entropy principle for nonparabolic hydrodynamic transport in semiconductor devices. J. Appl. Phys. 1999, 86, 5906–5908. [Google Scholar]
- Montisci, S.; Pennisi, S. Some Useful Tensorial Identies for Extended Thermodynamics. IEJPAM 2013, 6, 167–215. [Google Scholar]
- Kremer, G.M. Extended thermodynamics of non-ideal gases. Physica 1987, 144A, 156–178. [Google Scholar]
- Kremer, G. M. Extended thermodynamics of molecular ideal gases. Contin. Mech. Thermodyn. 1989, 1, 21–45. [Google Scholar]
- Kremer, G.M.; Beevers, C. Extended thermodynamics of dense gases. Recent developments in nonequilibrium thermodynamics. Lecture Notes in Phys. 1983, 199, 429–436. [Google Scholar]
- Kremer, G.M.; Rosa, E., Jr. On Enskog’s dense gas theory. I. The method of moments for monoatomic gases. J. Chem. Phys. 1988, 89, 3240–3260. [Google Scholar]
- Liu, I.-S.; Kremer, G.M. Hyperbolic system of field equations for viscous uids. Mat. Aplic. Comp. 1990, 9, 123–135. [Google Scholar]
- Liu, I.-S.; Salvador, J. A. Hyperbolic system for viscous fluids and simulation of shock tube flows. Continuum Mech. Thermodyn. 1990, 2, 179–197. [Google Scholar]
- Marques, W., Jr.; Kremer, G.M. On Enskog’s dense gas theory. II. The linearized Burnett Equations for Monatomic Gases. Rev. Bras. Fis. 1991, 21, 402–422. [Google Scholar]
- Kremer, G.M. On extended thermodynamics of ideal and real gases. In Extended Thermodynamics Systems; Sieniutycz, S., Salamon, P., Eds.; Taylor and Francis: New York, NY, USA, 1992; pp. 140–182. [Google Scholar]
- Carrisi, M.C.; Mele, M.A.; Pennisi, S. An Extended model for dense gases and macromolecular fluids, obtained without using Taylor’ s expansions. Int. J. Pure Appl. Math. (IJPAM) 2009, 57, 27–55. [Google Scholar]
- Carrisi, M.C.; Mele, M.A.; Pennisi, S. On Some Remarkable Properties of an Extended model for dense gases and macromolecular fluids. Proc. R. Soc. A 2010, 466, 1645–1666. [Google Scholar]
- Boillat, G.; Ruggeri, T. Hyperbolic principal subsystems: Entropy convexity and subcharacteristic conditions. Arch. Rat. Mech. Anal. 1997, 137, 305–320. [Google Scholar]
- Arima, T.; Taniguchi, S.; Ruggeri, T.; Sugiyama, M. Extended Thermodynamics of dense gases. Continuum Mech. Thermodyn. 2012, 24, 271–292. [Google Scholar]
- Arima, T.; Taniguchi, S.; Ruggeri, T.; Sugiyama, M. Extended Thermodynamics of real gases with dynamic pressure: An extension of Meixner’s theory. Phys. Lett. A. 2012, 376, 2799–2803. [Google Scholar]
- Pavić, M.; Ruggeri, T.; Simić, S. Maximum entropy principle for rarefied polyatomic gases. Physica A 2013, 392, 1302–1317. [Google Scholar]
- Arima, T.; Mentrelli, A.; Ruggeri, T. Molecular Extended Thermodynamics of Rarefied Polyatomic Gases and Wave Velocities for Increasing Number of Moments. Ann. Phys. 2014, 345, 111–132. [Google Scholar]
- Arima, T.; Barbera, E.; Brini, F.; Sugiyama, M. The role of the dynamic pressure in stationary heat conduction of a rarefied polyatomic gas. Phys. Lett. A 2014, 378, 2695–2700. [Google Scholar]
- Barbera, E.; Brini, F.; Sugiyama, M. Heat Transfer Problem in a Van Der Waals Gas. Acta Appl. Math. 2014, 132, 41–50. [Google Scholar]
- Barbera, E.; Brini, F. On stationary heat conduction in 3D symmetric domains: an application of extended thermodynamics. Acta Mech 2010, 215, 241–260. [Google Scholar]
- Barbera, E.; Brini, F.; Valenti, G. Some non-linear effects of stationary heat conduction in 3D domains through extended thermodynamics. Europhys. Lett. 2012, 98, 54004–540024. [Google Scholar]
- Barbera, E.; Brini, F. Heat transfer in gas mixtures: advantages of an extended thermodynamics approach. Phys. Lett. A 2011, 375, 827–831. [Google Scholar]
- Barbera, E.; Brini, F. Heat transfer in a binary gas mixture between two parallel plates: an application of linear extended thermodynamics. Acta Mech. 2011, 220, 87–105. [Google Scholar]
- Barbera, E.; Brini, F. Heat transfer in multi-component gas mixtures described by extended thermodynamics. Meccanica 2012, 47, 655–666. [Google Scholar]
- Barbera, E.; Brini, F. An extended thermodynamics description of stationary heat transfer in binary gas mixtures confined in radial symmetric bounded domains. Contin. Mech. Thermodyn. 2012, 24, 313–331. [Google Scholar]
- Liu, I-S. Method of Lagrange Multipliers for Exploitation of the Entropy Principle. Arch. Rat. Mech. Anal. 1972, 46, 131–148. [Google Scholar]
- Pennisi, S.; Ruggeri, T. A new method to exploit the entropy principle and galilean invariance in the macroscopic approach of extended thermodynamics. Ricerche di Matematica 2006, 55, 319–331. [Google Scholar]
- Carrisi, M.C.; Pennisi, S. The Galilean relativity principle for a new kind of systems of balance equations in Extended Thermodynamics. Int. J. Pure Appl. Math. 2008, 42, 451–461. [Google Scholar]
- Pennisi, S.; Scanu, A. Judicious interpretation of the conditions present in Extended Thermodynamics. In Proceedings of Wascom 2003; Monaco, R., Pennisi, S., Rionero, S., Ruggeri, T., Eds.; World Scientific: Singapore, 2003; pp. 393–399. [Google Scholar]
- Pennisi, S.; Carrisi, M.C. On the exact macroscopic approach to Extended Thermodynamics with 20 moments. In Proceedings of Wascom 2003; Monaco, R., Pennisi, S., Rionero, S., Ruggeri, T., Eds.; World Scientific: Singapore, 2003; pp. 386–392. [Google Scholar]
- Smith, G. F. On isotropic functions of symmetric tensor, skew symmetric tensor and vectors. Int. J. Engng Sci. 1971, 9, 899–916. [Google Scholar]
- Pennisi, S.; Trovato, M. On the Irreducibility of Professor G.F. Smith’ s Representations for isotropic functions. Int. J. Eng. Sci. 1987, 25, 1059–1065. [Google Scholar]
- Pennisi, S. On third order Tensor-valued Isotropic Functions. Int. J. Eng. Sci. 1992, 30, 679–692. [Google Scholar]
- Pennisi, S.; Trovato, M. Mathematical Characterization of functions underlying the principle of relativity. Le Matematiche 1989, XLIV, 173–204. [Google Scholar]
- Montisci, S.; Pennisi, S. Representations Theorems for Scalar Functions in a 4-dimensional Euclidean Space. Int. J. Pure Appl. Math. 2010, 60, 443–460. [Google Scholar]
- Carrisi, M. C.; Montisci, S.; Pennisi, S. Representations Theorems for Symmetric Tensorial Functions in a 4-dimensional Euclidean Space. IEJPAM 2010, 2, 129–154. [Google Scholar]
- Carrisi, M. C.; Montisci, S.; Pennisi, S. Representations Theorems for Skew-Symmetric Tensorial Functions in a 4-dimensional Euclidean Space. IEJPAM 2010, 2, 155–181. [Google Scholar]
- Montisci, S.; Pennisi, S. Representations Theorems in a 4-dimensional Euclidean Space. A new case. IEJPAM 2013, 1, 1–30. [Google Scholar]
- Carrisi, M. C.; Montisci, S.; Pennisi, S. Representation Theorems In A 4-Dimensional Euclidean Space. The Case With Only Skew-Symmetric Tensors. IJPAM 2014, 6, 929–979. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carrisi, M.C.; Pennisi, S. An 18 Moments Model for Dense Gases: Entropy and Galilean Relativity Principles without Expansions. Entropy 2015, 17, 214-230. https://doi.org/10.3390/e17010214
Carrisi MC, Pennisi S. An 18 Moments Model for Dense Gases: Entropy and Galilean Relativity Principles without Expansions. Entropy. 2015; 17(1):214-230. https://doi.org/10.3390/e17010214
Chicago/Turabian StyleCarrisi, M. Cristina, and Sebastiano Pennisi. 2015. "An 18 Moments Model for Dense Gases: Entropy and Galilean Relativity Principles without Expansions" Entropy 17, no. 1: 214-230. https://doi.org/10.3390/e17010214