Short-Time Propagators and the Born–Jordan Quantization Rule
Abstract
:1. Motivation and Background
1.1. Weyl versus Born and Jordan
1.2. The Kerner and Sutcliffe Approach to Quantization
1.3. What We Will Do
- In Section 2 we discuss the accuracy of Kerner and Sutcliffe’s propagator by comparing it with the more familiar Van Vleck propagator; we show that for small times both are approximations to order to the exact propagator of Schrödinger’s equation.
- In Section 3 we show that if one assume’s that short-time evolution of the wavefunction (for an arbitrary Hamiltonian H) is given by the Kerner and Sutcliffe propagator, then H must be quantized following the rule (12); we thereafter show that when H is a monomial then the corresponding operator is given by the Born–Jordan rule (1), not by the Weyl rule 2.
2. On Short-Time Propagators
2.1. The Van Vleck Propagator
2.2. The Kerner–Sutcliffe Propagator
2.3. Comparison of Short-Time Propagators
3. The Case of Arbitrary Hamiltonians
3.1. The Main Result
3.2. The Case of Monomials
3.3. Physical Hamiltonians
4. Discussion
Funding
Conflicts of Interest
References
- Dewey, T.G. Numerical mathematics of Feynman path integrals and the operator ordering problem. Phys. Rev. A 1990, 42, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Hall, M. Weyl’s rule and Wigner equivalents for phase space monomials. J. Phys. A Math. Gen. 1985, 18, 29–36. [Google Scholar] [CrossRef]
- Khandekar, D.C.; Lawande, S.V. Feynman Path Integrals: Some Exact Results and Applications. Phys. Reps. 1986, 137, 115–229. [Google Scholar] [CrossRef]
- Kumano-go, N.; Fujiwara, D. Phase space Feynman path integrals via piecewise bicharacteristic paths and their semiclassical approximations. Bull. Sci. Math. 2008, 132, 313–357. [Google Scholar]
- Mayes, I.W.; Dowker, J.S. Canonical functional integrals in general coordinates. Proc. R. Soc. Lond. A 1972, 327, 131–135. [Google Scholar] [CrossRef]
- Mayes, I.W.; Dowker, J.S. Hamiltonian orderings and functional integrals. J. Math. Phys. 1973, 14, 434–439. [Google Scholar] [CrossRef]
- Shewell, J.R. On the Formation of Quantum-Mechanical Operators. Am. J. Phys. 1959, 27, 16–21. [Google Scholar] [CrossRef]
- de Gosson, M. Born–Jordan Quantization and the Equivalence of the Schrödinger and Heisenberg Pictures. Found. Phys. 2014, 44, 1096–1106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCoy, N.H. On the function in quantum mechanics which corresponds to a given function in classical mechanics. Proc. Natl. Acad. Sci. USA 1932, 18, 674–676. [Google Scholar] [CrossRef] [PubMed]
- Dahl, J.P.; Springborg, M. Wigner’s phase space function and atomic structure: I. The hydrogen atom ground state. Mol. Phys. 1982, 47, 1001–1019. [Google Scholar] [CrossRef]
- de Gosson, M. The Angular Momentum Dilemma and Born–Jordan Quantization. Found. Phys. 2017, 47, 61–70. [Google Scholar] [CrossRef]
- de Gosson, M. Born–Jordan Quantization: Theory and Applications; Springer: New York, NY, USA, 2016. [Google Scholar]
- Heisenberg, W. Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen. Z. Physik 1925, 33, 879–893. [Google Scholar] [CrossRef]
- Born, M.; Jordan, P. Zur Quantenmechanik. Z. Physik 1925, 34, 858–888. [Google Scholar] [CrossRef]
- Born, M.; Heisenberg, W.; Jordan, P. Zur Quantenmechanik II. Z. Physik 1925, 35, 557–615. [Google Scholar] [CrossRef]
- Kerner, E.H.; Sutcliffe, W.G. Unique Hamiltonian Operators via Feynman Path Integrals. J. Math. Phys. 1970, 11, 391–393. [Google Scholar] [CrossRef]
- Garrod, C. Hamiltonian Path-Integral Methods. Rev. Mod. Phys. 1966, 38, 483–494. [Google Scholar] [CrossRef]
- Kauffmann, S.K. Unique Closed-Form Quantization Via Generalized Path Integrals or by Natural Extension of the Standard Canonical Recipe. arXiv, 1995; arXiv:hep-th/9505189v2. [Google Scholar]
- Kauffmann, S.K. Unambiguous Quantization from the Maximum Classical Correspondence that Is Self-consistent: The Slightly Stronger Canonical Commutation Rule Dirac Missed. Found. Phys. 2011, 41, 805–819. [Google Scholar] [CrossRef]
- de Gosson, M. Symplectic Covariance properties for Shubin and Born-Jordan pseudo-differential operators. Trans. Amer. Math. Soc. 2013, 365, 3287–3307. [Google Scholar] [CrossRef]
- de Gosson, M.; Luef, F. Preferred Quantization Rules: Born–Jordan vs. Weyl; Applications to Phase Space Quantization. J. Pseudo-Differ. Oper. Appl. 2011, 2, 115–139. [Google Scholar] [CrossRef]
- Cohen, L. Hamiltonian Operators via Feynman Path Integrals. J. Math. Phys. 1970, 11, 3296–3297. [Google Scholar] [CrossRef]
- Makri, N.; Miller, W.H. Correct short time propagator for Feynman path integration by power series expansion in Δt. Chem. Phys. Lett. 1988, 15, 1–8. [Google Scholar] [CrossRef]
- Makri, N.; Miller, W.H. Exponential power series expansion for the quantum time evolution operator. J. Chem. Phys. 1989, 90, 904–911. [Google Scholar] [CrossRef]
- de Gosson, M. The Principles of Newtonian and Quantum Mechanics, the Need for Planck’s Constant ℏ; Imperial College Press: London, UK, 2001. [Google Scholar]
- Gutzwiller, M.C. Chaos in Classical and Quantum Mechanics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Schulman, L.S. Techniques and Applications of Path Integration; Wiley: New York, NY, USA, 1981. [Google Scholar]
- Maslov, V.P.; Fedoriuk, M.V. Semi-Classical Approximation in Quantum Mechanics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2001; Volume 7. [Google Scholar]
- de Gosson, M. Symplectic Methods in Harmonic Analysis and in Mathematical Physics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- de Gosson, M.; Hiley, B.J. Short-time quantum propagator and Bohmian trajectories. Phys. Lett. A 2013, 377, 3005–3008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Gosson, M.; Hiley, B.J. Hamiltonian flows, short-time quantum propagators and the quantum Zeno effect. J. Phys. Conf. Ser. 2013, 504, 012027. [Google Scholar] [CrossRef]
- Park, D. Introduction to the Quantum Theory; McGraw-Hill Inc.: New York, NY, USA, 1992. [Google Scholar]
- Hörmander, L. The Analysis of Linear Partial Differential Operators I; Springer: New York, NY, USA, 1985; Volume 256. [Google Scholar]
- Stone, M.H. Linear Transformations in Hilbert Space: III. Operational Methods and Group Theory. Proc. Natl. Acad. Sci. USA 1930, 16, 172–175. [Google Scholar] [CrossRef] [PubMed]
- Jauch, J.M.; Morrow, R.A. Foundations of quantum mechanics. Am. J. Phys. 1968, 36, 771. [Google Scholar] [CrossRef]
- Arnold, V.I. Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics, 2nd ed.; Springer: New York, NY, USA, 1989. [Google Scholar]
- Goldstein, H. Classical Mechanics, 2nd ed.; Addison–Wesley: Boston, MA, USA, 1980. [Google Scholar]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Gosson, M.A. Short-Time Propagators and the Born–Jordan Quantization Rule. Entropy 2018, 20, 869. https://doi.org/10.3390/e20110869
De Gosson MA. Short-Time Propagators and the Born–Jordan Quantization Rule. Entropy. 2018; 20(11):869. https://doi.org/10.3390/e20110869
Chicago/Turabian StyleDe Gosson, Maurice A. 2018. "Short-Time Propagators and the Born–Jordan Quantization Rule" Entropy 20, no. 11: 869. https://doi.org/10.3390/e20110869
APA StyleDe Gosson, M. A. (2018). Short-Time Propagators and the Born–Jordan Quantization Rule. Entropy, 20(11), 869. https://doi.org/10.3390/e20110869