Conformal Flattening for Deformed Information Geometries on the Probability Simplex † †
Abstract
:1. Introduction
2. Preliminaries
2.1. Information Geometry of and
3. Characterization of Invariant Geometry by Representing Functions
4. Affine Immersion of the Probability Simplex
- The affine immersion is nondegenerate and equiaffine,
- The immersion f is given by the component-by-component and common representing function L, i.e.,
- The representing function is sign-definite, concave with and strictly increasing, i.e., . Hence, the inverse of L denoted by E exists, i.e., .
- Each component of satisfies on .
4.1. Conormal Vector and the Geometric Divergence
4.2. Conformal Flattening Transformation
4.3. Examples
5. An Application to Gradient Flows on
- (i)
- the solution to (35) is the gradient flow that maximizes a function satisfying
- (ii)
- the KL divergence is a local Lyapunov function for an equilibrium called the evolutionary stable state (ESS) for the case of with .
6. Conclusions
Acknowledgments
Conflicts of Interest
References
- Amari, S.I. Differential-Geometrical Methods in Statistics; Lecture Notes in Statistics Series 28; Springer: New York, NY, USA, 1985. [Google Scholar]
- Amari, S.I.; Nagaoka, H. Methods of Information Geometry; Translations of Mathematical Monographs Series 191; AMS & Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- Naudts, J. Continuity of a class of entropies and relative entropies. Rev. Math. Phys. 2004, 16, 809. [Google Scholar] [CrossRef]
- Eguchi, S. Information geometry and statistical pattern recognition. Sugaku Expos. 2006, 19, 197. [Google Scholar]
- Grünwald, P.D.; Dawid, A.P. Game theory, maximum entropy, minimum discrepancy, and robust Bayesian decision theory. Ann. Statist. 2004, 32, 1367. [Google Scholar]
- Fujisawa, H.; Eguchi, S. Robust parameter estimation with a small bias against heavy contamination. J. Multivar. Anal. 2008, 99, 2053. [Google Scholar] [CrossRef]
- Naudts, J. The q-exponential family in statistical Physics. Cent. Eur. J. Phys. 2009, 7, 405. [Google Scholar] [CrossRef]
- Naudts, J. Generalized thermostatics; Springer: Berlin, Germany, 2010. [Google Scholar]
- Ollila, E.; Tyler, D.; Koivunen, V.; Poor, V. Complex elliptically symmetric distributions : Survey, new results and applications. IEEE Trans. Sig. Proc. 2012, 60, 5597. [Google Scholar] [CrossRef]
- Tsallis, C. Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World; Springer: Berlin, Germany, 2009. [Google Scholar]
- Zhang, J. Divergence Function, Duality, and Convex Analysis. Neural Comput. 2004, 16, 159. [Google Scholar] [CrossRef] [PubMed]
- Wada, T.; Matsuzoe, H. Conjugate representations and characterizing escort expectations in information geometry. Entropy 2017, 19, 309. [Google Scholar] [CrossRef]
- Shima, H. The Geometry of Hessian Structures; World Scientific: Singapore, 2007. [Google Scholar]
- Chentsov, N.N. Statistical Decision Rules and Optimal Inference; AMS: Providence, RI, USA, 1982. [Google Scholar]
- Nomizu, K.; Sasaki, T. Affine Differential Geometry; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Kurose, T. On the divergences of 1-conformally flat statistical manifolds. Tohoku Math. J. 1994, 46, 427. [Google Scholar] [CrossRef]
- Ohara, A.; Matsuzoe, H.; Amari, S.I. A dually flat structure on the space of escort distributions. J. Phys. Conf. Ser. 2010, 201, 012012. [Google Scholar] [CrossRef]
- Ohara, A.; Matsuzoe, H.; Amari, S.I. Conformal geometry of escort probability and its applications. Mod. Phys. Lett. B 2012, 26, 1250063. [Google Scholar] [CrossRef]
- Tsallis, C.; Mendes, M.S.; Plastino, A.R. The role of constraints within generalized nonextensive statistics. Physica A 1998, 261, 534. [Google Scholar] [CrossRef]
- Hofbauer, J.; Sigmund, K. The Theory of Evolution and Dynamical Systems: Mathematical Aspects of Selection; Cambridge University Press: Cambridge, UK, 1988. [Google Scholar]
- Eguchi, S. Geometry of minimum contrast. Hiroshima Math. J. 1992, 22, 631. [Google Scholar]
- Fujiwara, A.; Amari, S.I. Gradient systems in view of information geometry. Physica D 1995, 80, 317. [Google Scholar] [CrossRef]
- Amari, S.I.; Ohara, A.; Matsuzoe, H. Geometry of deformed exponential families: Invariant, dually-flat and conformal geometries. Physica A 2012, 391, 4308. [Google Scholar] [CrossRef]
- Matsuzoe, H. Hessian structures on deformed exponential families and their conformal structures. Diff. Geo. Appl. 2014, 35, 323. [Google Scholar] [CrossRef]
- Ohara, A. On affine immersions of the probability simplex and their conformal flattening. In Geometric Science of Information; Nielsen, F., Barbaresco, F., Eds.; Springer: Berlin, Germany, 2017. [Google Scholar]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ohara, A. Conformal Flattening for Deformed Information Geometries on the Probability Simplex †. Entropy 2018, 20, 186. https://doi.org/10.3390/e20030186
Ohara A. Conformal Flattening for Deformed Information Geometries on the Probability Simplex †. Entropy. 2018; 20(3):186. https://doi.org/10.3390/e20030186
Chicago/Turabian StyleOhara, Atsumi. 2018. "Conformal Flattening for Deformed Information Geometries on the Probability Simplex †" Entropy 20, no. 3: 186. https://doi.org/10.3390/e20030186
APA StyleOhara, A. (2018). Conformal Flattening for Deformed Information Geometries on the Probability Simplex †. Entropy, 20(3), 186. https://doi.org/10.3390/e20030186