Exponential Entropy for Simplified Neutrosophic Sets and Its Application in Decision Making
Abstract
:1. Introduction
2. Preliminaries of Simplified Neutrosophic Sets
- N ⊆ S if and only if TN(xj) ≤ TS(xj), IN(xj) ≥ IS(xj), and FN(xj) ≥ FS(xj) for single-valued NSs, and , , , , , and for interval-valued NSs, and xj ∊ X;
- N = S if and only if N ⊆ S and S ⊆ N;
- Sc = {<xj, FS(xj), 1 − IS(xj), TS(xj)>| xj ∊ X} for the complement of the single-valued NS, S, and for the complement of the interval-valued NS, S;
- for single-valued NSs, and for interval-valued NSs;
- for single-valued NSs, and for interval-valued NSs;
- for single-valued NSs, and for interval-valued NSs;
- for single-valued NSs, and for interval-valued NSs;
- for the single-valued NS, S, and δ > 0, and for the interval-valued NS, S, and δ > 0;
- for the single-valued NS, S, and δ > 0, and for the interval-valued NS, S, and δ > 0.
3. Simplified Neutrosophic Exponential Entropy
- (P1)
- Yk(S) = 0 if S is a crisp set;
- (P2)
- Yk(S) = 1 if and only if S = A = {<xj, [0.5, 0.5], [0.5, 0.5], [0.5, 0.5]>|xj ∊ X} for interval-valued NSs, or S = A = {<xj, 0.5, 0.5, 0.5>|xj ∊ X} for single-valued NSs;
- (P3)
- If the closer a simplified NS, S, is to A than P, the fuzzier S is than P, then Yk(P) ≤ Yk(S) for P ∊ SNS(X);
- (P4)
- Yk(S) = Yk(Sc) if Sc is the complement of S.
4. Comparison with Other Entropy Measures for Interval-Valued NSs
5. Decision-Making Example Based on Entropy Measures of Interval-Valued NSs and Comparison
6. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Zadeh, L.A. Probability measure of fuzzy events. J. Math. Anal. Appl. 1968, 23, 421–427. [Google Scholar] [CrossRef]
- De Luca, A.S.; Termini, S. A definition of nonprobabilistic entropy in the setting of fuzzy set theory. Inf. Control 1972, 20, 301–312. [Google Scholar] [CrossRef]
- Pal, N.R.; Pal, S.K. Object background segmentation using new definitions of entropy. IEEE Proc. 1989, 366, 284–295. [Google Scholar] [CrossRef]
- Verma, R.; Sharma, B.D. On generalized exponential fuzzy entropy. Int. J. Math. Comput. Sci. 2011, 5, 1895–1898. [Google Scholar]
- Atanassov, K. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
- Atanassov, K.; Gargov, G. Interval-valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 1989, 31, 343–349. [Google Scholar] [CrossRef]
- Bustince, H.; Burillo, P. Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets. Fuzzy Sets Syst. 1996, 78, 305–316. [Google Scholar]
- Szmidt, E.; Kacprzyk, J. Entropy on intuitionistic fuzzy sets. Fuzzy Sets Syst. 2001, 118, 467–477. [Google Scholar] [CrossRef]
- Valchos, I.K.; Sergiadis, G.D. Intuitionistic fuzzy information—A pattern recognition. Pattern Recognit. Lett. 2007, 28, 197–206. [Google Scholar] [CrossRef]
- Zhang, Q.S.; Jiang, S.Y. A note on information entropy measure for vague sets. Inf. Sci. 2008, 178, 4184–4191. [Google Scholar] [CrossRef]
- Ye, J. Two effective measures of intuitionistic fuzzy entropy. Computing 2010, 87, 55–62. [Google Scholar] [CrossRef]
- Verma, R.; Sharma, B.D. Exponential entropy on intuitionistic fuzzy sets. Kybernetika 2013, 49, 114–127. [Google Scholar]
- Verma, R.; Sharma, B.D. On intuitionistic fuzzy entropy of order-alpha. Adv. Fuzzy Syst. 2014, 14, 1–8. [Google Scholar]
- Verma, R.; Sharma, B.D. R-norm entropy on intuitionistic fuzzy sets. J. Intell. Fuzzy Syst. 2015, 28, 327–335. [Google Scholar]
- Ye, J. Multicriteria fuzzy decision-making method using entropy weights-based correlation coefficients of interval-valued intuitionistic fuzzy sets. Appl. Math. Model. 2010, 34, 3864–3870. [Google Scholar] [CrossRef]
- Wei, C.P.; Wang, P.; Zhang, Y.Z. Entropy, similarity measure of interval valued intuitionistic sets and their applications. Inf. Sci. 2011, 181, 4273–4286. [Google Scholar] [CrossRef]
- Zhang, Q.S.; Xing, H.Y.; Liu, F.C.; Ye, J.; Tang, P. Some new entropy measures for interval-valued intuitionistic fuzzy sets based on distances and their relationships with similarity and inclusion measures. Inf. Sci. 2014, 283, 55–69. [Google Scholar] [CrossRef]
- Smarandache, F. Neutrosophy: Neutrosophic Probability, Set, and Logic; American Research Press: Rehoboth, DE, USA, 1998. [Google Scholar]
- Wang, H.; Smarandache, F.; Zhang, Y.Q.; Sunderraman, R. Interval Neutrosophic Sets and Logic: Theory and Applications in Computing; Hexis: Phoenix, AZ, USA, 2005. [Google Scholar]
- Wang, H.; Smarandache, F.; Zhang, Y.Q.; Sunderraman, R. Single valued neutrosophic sets. Multispace Multistruct. 2010, 4, 410–413. [Google Scholar]
- Ye, J. A multicriteria decision-making method using aggregation operators for simplified neutrosophic sets. J. Intell. Fuzzy Syst. 2014, 26, 2459–2466. [Google Scholar]
- Majumder, P.; Samanta, S.K. On similarity and entropy of neutrosophic sets. J. Intell. Fuzzy Syst. 2014, 26, 1245–1252. [Google Scholar]
- Aydoğdu, A. On entropy and similarity measure of interval valued neutrosophic sets. Neutrosophic Sets Syst. 2015, 9, 47–49. [Google Scholar]
- Ye, J.; Du, S.G. Some distances, similarity and entropy measures for interval-valued neutrosophic sets and their relationship. Int. J. Mach. Learn. Cybern. 2017, 1–9. [Google Scholar] [CrossRef]
- Peng, J.J.; Wang, J.Q.; Wang, J.; Zhang, H.Y.; Chen, X.H. Simplified neutrosophic sets and their applications in multi-criteria group decision-making problems. Int. J. Syst. Sci. 2016, 47, 2342–2358. [Google Scholar] [CrossRef]
Sn | x1 = 6 | x2 = 7 | x3 = 8 | x4 = 9 | x5 = 10 |
---|---|---|---|---|---|
S | <x1, [0.1, 0.2], [0.5, 0.5], [0.6, 0.7]> | {x2, [0.3, 0.5], [0.5, 0.5], [0.4, 0.5]> | <x3, [0.6, 0.7], [0.5, 0.5], [0.1, 0.2]> | <x4, [0.8, 0.9], [0.5, 0.5], [0, 0.1]> | <x5, [1, 1], [0.5, 0.5], [0, 0]> |
S2 | <6, [0.01, 0.04], [0.75, 0.75], [0.84, 0.91]> | <7, [0.09, 0.25], [0.75, 0.75], [0.64, 0.75]> | <8, [0.36, 0.49], [0.75, 0.75], [0.19, 0.36]> | <9, [0.64, 0.81], [0.75, 0.75], [0, 0.19]> | <10, [1, 1], [0.75, 0.75], [0, 0]> |
S3 | <6, [0.001, 0.008], [0.875, 0.875], [0.936, 0.973]> | <7, [0.027, 0.125], [0.875, 0.875], [0.784, 0.875]> | <8, [0.216, 0.343], [0.875, 0.875], [0.271, 0.488]> | <9, [0.512, 0.729], [0.875, 0.875], [0, 0.271]> | <10, [1, 1], [0.875, 0.875], [0, 0]> |
S4 | <6, [0.0001, 0.0016], [0.9375, 0.9375], [0.9744, 0.9919]> | <7, [0.0081, 0.0625], [0.9375, 0.9375], [0.8704, 0.9375]> | <8, [0.1296, 0.2401], [0.9375, 0.9375], [0.3439, 0.5904]> | <9, [0.4096, 0.6561], [0.9375, 0.9375], [0, 0.3439]> | <10, [1, 1], [0.9375, 0.9375], [0, 0]> |
Yk | S | S2 | S3 | S4 |
---|---|---|---|---|
Y2 | 0.6954 | 0.5704 | 0.4189 | 0.3139 |
Y3 [24] | 0.6067 | 0.3927 | 0.2794 | 0.2096 |
Y4 [24] | 0.4450 | 0.3397 | 0.2332 | 0.1685 |
Y5 [24] | 0.5467 | 0.3240 | 0.2084 | 0.1612 |
Y6 [24] | 0.3000 | 0.2160 | 0.1322 | 0.0645 |
Y7 [22,24] | 1.0000 | 0.5715 | 0.3581 | 0.2510 |
Y8 [23] | 0.3365 | 0.2717 | 0.2662 | 0.2217 |
B1 | B2 | B3 | B4 | Ranking Order | |
---|---|---|---|---|---|
Y2 | 0.8165 | 0.7406 | 0.8429 | 0.3818 | B4 ⥼ B2 ⥼ B1 ⥼ B3 |
Y3 [24] | 0.6333 | 0.5333 | 0.6556 | 0.4444 | B4 ⥼ B2 ⥼ B1 ⥼ B3 |
Y4 [24] | 0.5654 | 0.4836 | 0.5972 | 0.3963 | B4 ⥼ B2 ⥼ B1 ⥼ B3 |
Y5 [24] | 0.5111 | 0.4222 | 0.5333 | 0.3333 | B4 ⥼ B2 ⥼ B1 ⥼ B3 |
Y6 [24] | 0.4333 | 0.3000 | 0.4667 | 0.2333 | B4 ⥼ B2 ⥼ B1 ⥼ B3 |
Y7 [22,24] | 0.4983 | 0.4933 | 0.5500 | 0.3817 | B4 ⥼ B2 ⥼ B1 ⥼ B3 |
Y8 [23] | 0.5687 | 0.3640 | 0.5728 | 0.3818 | B4 ⥼ B2 ⥼ B1 ⥼ B3 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, J.; Cui, W. Exponential Entropy for Simplified Neutrosophic Sets and Its Application in Decision Making. Entropy 2018, 20, 357. https://doi.org/10.3390/e20050357
Ye J, Cui W. Exponential Entropy for Simplified Neutrosophic Sets and Its Application in Decision Making. Entropy. 2018; 20(5):357. https://doi.org/10.3390/e20050357
Chicago/Turabian StyleYe, Jun, and Wenhua Cui. 2018. "Exponential Entropy for Simplified Neutrosophic Sets and Its Application in Decision Making" Entropy 20, no. 5: 357. https://doi.org/10.3390/e20050357
APA StyleYe, J., & Cui, W. (2018). Exponential Entropy for Simplified Neutrosophic Sets and Its Application in Decision Making. Entropy, 20(5), 357. https://doi.org/10.3390/e20050357