Thermodynamics and Statistical Mechanics of Small Systems
The Contributions
- entropy production and stochastic thermodynamics (8);
- heat transport and entropy in nonlinear chains and long-range systems (4);
- granular and other dissipative systems (2);
- phase transitions and large deviations in probabilistic models (2);
- coarse-graining techniques (2);
- ferromagnetic models (2).
Topic (1): Entropy Production and Stochastic Thermodynamics
Topic (2): Heat Transport and Entropy in Nonlinear Chains and Long-Range Systems
Topic (3): Granular and Other Dissipative Systems
Topic (4): Phase Transitions and Large Deviations in Probabilistic Models
Topic (5): Coarse-Graining Techniques
Topic (6): Ferromagnetic Models
Acknowledgments
Conflicts of Interest
References
- Zakine, R.; Solon, A.; Gingrich, T.; van Wijland, F. Stochastic Stirling Engine Operating in Contact with Active Baths. Entropy 2017, 19, 193. [Google Scholar] [CrossRef]
- Horowitz, J.; England, J. Information-Theoretic Bound on the Entropy Production to Maintain a Classical Nonequilibrium Distribution Using Ancillary Control. Entropy 2017, 19, 333. [Google Scholar] [CrossRef]
- Puglisi, A.; Marini Bettolo Marconi, U. Clausius Relation for Active Particles: What Can We Learn from Fluctuations. Entropy 2017, 19, 356. [Google Scholar] [CrossRef]
- Muratore-Ginanneschi, P.; Schwieger, K. An Application of Pontryagin’s Principle to Brownian Particle Engineered Equilibration. Entropy 2017, 19, 379. [Google Scholar] [CrossRef]
- Aurell, E. On Work and Heat in Time-Dependent Strong Coupling. Entropy 2017, 19, 595. [Google Scholar] [CrossRef]
- Peña, F.; González, A.; Nunez, A.; Orellana, P.; Rojas, R.; Vargas, P. Magnetic Engine for the Single-Particle Landau Problem. Entropy 2017, 19, 639. [Google Scholar] [CrossRef]
- Zeng, Q.; Wang, J. Information Landscape and Flux, Mutual Information Rate Decomposition and Connections to Entropy Production. Entropy 2017, 19, 678. [Google Scholar] [CrossRef]
- Gilpin, C.; Darmon, D.; Siwy, Z.; Martens, C. Information Dynamics of a Nonlinear Stochastic Nanopore System. Entropy 2018, 20, 221. [Google Scholar] [CrossRef]
- Iubini, S.; Lepri, S.; Livi, R.; Oppo, G.; Politi, A. A Chain, a Bath, a Sink, and a Wall. Entropy 2017, 19, 445. [Google Scholar] [CrossRef]
- Caprini, L.; Cerino, L.; Sarracino, A.; Vulpiani, A. Fourier’s Law in a Generalized Piston Model. Entropy 2017, 19, 350. [Google Scholar] [CrossRef]
- Gupta, S.; Ruffo, S. Equilibration in the Nosé–Hoover Isokinetic Ensemble: Effect of Inter-Particle Interactions. Entropy 2017, 19, 544. [Google Scholar] [CrossRef]
- Kumar, P.; Miller, B. Lyapunov Spectra of Coulombic and Gravitational Periodic Systems. Entropy 2017, 19, 238. [Google Scholar] [CrossRef]
- Plata, C.; Prados, A. Kovacs-Like Memory Effect in Athermal Systems: Linear Response Analysis. Entropy 2017, 19, 539. [Google Scholar] [CrossRef]
- Vega Reyes, F.; Lasanta, A. Hydrodynamics of a Granular Gas in a Heterogeneous Environment. Entropy 2017, 19, 536. [Google Scholar] [CrossRef]
- Gradenigo, G.; Bertin, E. Participation Ratio for Constraint-Driven Condensation with Superextensive Mass. Entropy 2017, 19, 517. [Google Scholar] [CrossRef]
- Kim, E.; Tenkès, L.; Hollerbach, R.; Radulescu, O. Far-From-Equilibrium Time Evolution between Two Gamma Distributions. Entropy 2017, 19, 511. [Google Scholar] [CrossRef]
- Tsourtis, A.; Harmandaris, V.; Tsagkarogiannis, D. Parameterization of Coarse-Grained Molecular Interactions through Potential of Mean Force Calculations and Cluster Expansion Techniques. Entropy 2017, 19, 395. [Google Scholar] [CrossRef]
- Heidari, M.; Kremer, K.; Potestio, R.; Cortes-Huerto, R. Fluctuations, Finite-Size Effects and the Thermodynamic Limit in Computer Simulations: Revisiting the Spatial Block Analysis Method. Entropy 2018, 20, 222. [Google Scholar] [CrossRef]
- Vogel, E.; Vargas, P.; Saravia, G.; Valdes, J.; Ramirez-Pastor, A.; Centres, P. Thermodynamics of Small Magnetic Particles. Entropy 2017, 19, 499. [Google Scholar] [CrossRef]
- Mei, T. Exact Expressions of Spin-Spin Correlation Functions of the Two-Dimensional Rectangular Ising Model on a Finite Lattice. Entropy 2018, 20, 277. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puglisi, A.; Sarracino, A.; Vulpiani, A. Thermodynamics and Statistical Mechanics of Small Systems. Entropy 2018, 20, 392. https://doi.org/10.3390/e20060392
Puglisi A, Sarracino A, Vulpiani A. Thermodynamics and Statistical Mechanics of Small Systems. Entropy. 2018; 20(6):392. https://doi.org/10.3390/e20060392
Chicago/Turabian StylePuglisi, Andrea, Alessandro Sarracino, and Angelo Vulpiani. 2018. "Thermodynamics and Statistical Mechanics of Small Systems" Entropy 20, no. 6: 392. https://doi.org/10.3390/e20060392
APA StylePuglisi, A., Sarracino, A., & Vulpiani, A. (2018). Thermodynamics and Statistical Mechanics of Small Systems. Entropy, 20(6), 392. https://doi.org/10.3390/e20060392