Some Observations on the Concepts of Information-Theoretic Entropy and Randomness
Abstract
:1 Introduction
2 Randomness, probability, and entropy
3 Statistical mechanics: the canonical ensemble
4 Dependence on the apparatus
5 Continuous distributions
6 Conclusion
References
- Ash, R.B. Information Theory; Interscience: New York, NY, 1965. [Google Scholar]
- Feynman, R.P.; Leighton, R.B.; Sands, M. The Feynman Lectures on Physics; Addison-Wesley: Reading, MA, 1963; Vol. I. [Google Scholar]
- Garrett, A.J.M. Macroirreversibility and microreversibility reconciled. In Maximum Entropy in Action; Buck, B., Macaulay, V.A., Eds.; Clarendon Press: Oxford, 1991; Volume 139. [Google Scholar]
- Jaynes, E.T. Information theory and statistical mechanics. In Statistical Physics; 1962 Brandeis Lectures; Ford, K.W., Ed.; Benjamin, New York, NY, 1963; Volume 181. [Google Scholar]
- Kullback, S. Information Theory and Statistics; Wiley: New York, NY, 1959. [Google Scholar]
- Li, M.; Vitanyi, P. An Introduction to Kolmogorov Complexity and its Applications; Springer: New York, NY, 1997. [Google Scholar]
- Martin-Löof, P. The definition of random sequences. Information and Control 1966, 9, 602. [Google Scholar]
- O’Neill, E.L. Introduction to Statistical Optics; Addison-Wesley: Reading, MA, 1963. [Google Scholar]
- Pauli, W. Handbuch der Physik 1933, xxiv/1, 151.
- Prigogine, I.; George, C. The Second Law as a selection principle: the microscopic theory of dissipative processes in quantum systems. Proc. Nat. Acad. Sci. 1983, 80, 4590. [Google Scholar] [CrossRef] [PubMed]
- Rumer, Yu.B.; Ryvkin, M.Sh. Termodinamika, Statisticheskaya Fizika i Kinetika; 1977; English Translation (1980): Thermodynamics, Statistical Physics, and Kinetics, Mir, Moscow. [Google Scholar]
- Shannon, C.E. A mathematical theory of communication. Bell System Tech. J. 1948, 27, 379, Reprinted in Shannon, C.E. and W. Weaver (1949): The Mathematical Theory of Communication, University of Illinois Press, Urbana, IL. [Google Scholar] [CrossRef] [Green Version]
- Tolman, R.C. The Principles of Statistical Mechanics; Oxford University Press: Oxford, 1938. [Google Scholar]
- Uspenskiĭ, V. A.; Semenov, A.L.; Shen’, A.Kh. Can an (individual) sequence of zeros and ones be random? (Russian). Uspekhi Mat. Nauk 1990, 45, 105, English Translation: Russian Mathematical Surveys 45 : 121. [Google Scholar]
©2001 by the author. Reproduction for noncommercial purposes permitted.
Share and Cite
Smith, J.D.H. Some Observations on the Concepts of Information-Theoretic Entropy and Randomness. Entropy 2001, 3, 1-11. https://doi.org/10.3390/e3010001
Smith JDH. Some Observations on the Concepts of Information-Theoretic Entropy and Randomness. Entropy. 2001; 3(1):1-11. https://doi.org/10.3390/e3010001
Chicago/Turabian StyleSmith, Jonathan D.H. 2001. "Some Observations on the Concepts of Information-Theoretic Entropy and Randomness" Entropy 3, no. 1: 1-11. https://doi.org/10.3390/e3010001
APA StyleSmith, J. D. H. (2001). Some Observations on the Concepts of Information-Theoretic Entropy and Randomness. Entropy, 3(1), 1-11. https://doi.org/10.3390/e3010001