Bi(OTf)3 and SiO2-Bi(OTf)3 as Effective Catalysts for the Ferrier Rearrangement#
Abstract
:Introduction
Results and Discussion
S. No. | Alcohol | Bi(OTf)3 | Bi(OTf)3 – SiO2 | ||||
---|---|---|---|---|---|---|---|
Reaction time | Yield (%) a | Anomeric ratio(a:b) b | Reaction time | Yield (%) a | Anomeric ratio(a:b)b | ||
1. | CH3CH2OH | 1 h | 78 | 5.5 : 1 | 40 min | 72 | 12 : 1 |
2. | CH3(CH2)2OH | 45 min | 72 | 6 : 1 | 1 h | 70 | 10 : 1 |
3. | CH3OH | 6 h | 56 | 6.6 : 1 | 75 min | 81 | 6.9 : 1 |
4. | 20 min | 70 | 5.5 : 1 | 45 min | 60 | 5.3 : 1 | |
5. | CH3(CH2)7OH | 50 min | 84 | 4.5 : 1 | 1 h | 83 | 8.9 :1 |
6. | 3 min | 75 | α | 2 h | 51 | α | |
7. | 5 min | 73 | α | 2.5 h | 76 | 7.8 : 1 | |
8. | 30 min | 82 | α | 2 h | 80 | 3 : 1 | |
9. | 25 min | 53 | 6 : 1 | 40 min | 81 | 8.7 : 1 | |
10. | 3 min | 69 | 4 : 1 | 15 min | 90 | 2.2 : 1 | |
11. | Cholesterol | 2 h | 70 | α | 3 h | 74 | 15 : 1c |
12. | 10 min | 66 | 6 : 1 | 20 min | 58 | 3.2 : 1d | |
13. | 12 min | 73 | 16 : 1 | 5 min | 61 | 12 : 1 | |
14. | 5 min | 79 | 6 : 1 | 20 min | 83 | 6 : 1 |
- (a)
- Isolated yields
- (b)
- Anomeric ratio is determined by 1H-NMR (400MHz) spectroscopy.
- (c)
- 4 mol % of the catalyst was used and reaction warmed to 40oC.
- (d)
- Only C-Ferrier product is observed.
S.No. | Alcohol | Catalyst | Time | Yield (%) | (α :β) ratio | Amount of catalyst used |
---|---|---|---|---|---|---|
1. | CAN | 3 h | 90 | 7 : 1 | 10 mol % | |
Sc(OTf)3 | 3.5 h | 85 | 5 : 1 | 5 mol % | ||
Yb(OTf)3 | 3 h | 94 | 9 : 1 | 10 mol% | ||
BiCl3 | 1 h | 94 | 10 : 1 | 5 mol% | ||
InCl3 | 10 min | 86 | 6.3 : 1 | 20 mol % | ||
Bi(OTf)3-SiO2 | 15 min | 90 | 2.2 : 1 | 2 mol % | ||
Bi(OTf)3 | 3 min | 69 | 4 : 1 | 2 mol % | ||
2. | CAN | 2.5 h | 89 | 9 : 1 | 10 mol % | |
Sc(OTf)3 | 2.5 h | 92 | 9 : 1 | 5 mol % | ||
Bi(OTf)3-SiO2 | 40 min | 81 | 8.7 : 1 | 2 mol % | ||
Bi(OTf)3 | 25 min | 53 | 6 : 1 | 2 mol % | ||
3. | CAN | 6 h | 80 | 4 : 1 | 10 mol % | |
Sc(OTf)3 | 1.5 h | 93 | 10 : 1 | 5 mol % | ||
Yb(OTf)3 | 4 h | 91 | 10 : 1 | 10 mol % | ||
BiCl3 | 1.5 h | 95 | 10 : 1 | 5 mol % | ||
Bi(OTf)3-SiO2 | 2.5 h | 76 | 7.8 : 1 | 2 mol % | ||
Bi(OTf)3 | 5 min | 73 | α | 2 mol % | ||
4. | CANSc | 3 h | 90 | 4 : 1 | 10 mol % | |
(OTf)3 | 1.5 h | 95 | 7 : 1 | 5 mol % | ||
BiCl3 | 1.5 h | 95 | 11 : 1 | 5 mol % | ||
Bi(OTf)3-SiO2 | 2 h | 51 | α | 2 mol % | ||
Bi(OTf)3 | 3 min | 75 | α | 2 mol % | ||
I2 | 1 h | 88 | 7 : 1 | 20 mol % | ||
5. | CAN | 4.5 h | 80 | 14 : 1 | 10 mol% | |
Sc(OTf)3 | 3 h | 83 | 7 : 1 | 5 mol% | ||
Yb(OTf)3 | 18 h | 89 | 11 : 1 | 10 mol % | ||
InCl3 | 30 min | 90 | 9 : 1 | 20 mol % | ||
Bi(OTf)3 | 30 min | 82 | α | 2 mol % | ||
Bi(OTf)3-SiO2 | 2 h | 80 | 3 : 1 | 2 mol % | ||
6. | CAN | 4 h | 87 | 7 : 1 | 10 mol % | |
Sc(OTf)3 | 2 h | 92 | 9 : 1 | 5 mol % | ||
Bi(OTf)3 | 5 min | 79 | 6 : 1 | 2 mol % | ||
Bi(OTf)3-SiO2 | 20 min | 83 | 6 : 1 | 2 mol % | ||
7. | Cholesterol | CAN | 5 h | 78 | 10 : 1 | 10 mol % |
BiCl3 | 2 h | 90 | 4 : 1 | 5 mol % | ||
Bi(OTf)3 | 2 h | 70 | α | 2 mol % | ||
Bi(OTf)3-SiO2 | 3 h | 74 | 15:1 | 2 mol% |
Conclusions
Experimental:
General
Preparation of the silica gel supported catalyst
General synthetic procedure
Spectral data for the 1-C-glucoside corresponding to entry 12:
Acknowledgements
References
- Ferrier, R.J.; Prasad, N. Synthesis of 2,3-Dideoxy-α-D-erythro-hex-2-enopyranosides from Tri-O-acetyl-D-glucal. J. Chem. Soc. C 1969, 570. [Google Scholar] [CrossRef]
- Dorgan, B.J.; Jackson, R.F.W. Synthesis of C-Linked Glycosyl Amino Acid Derivatives using Organozinc Reagents. Synlett 1996, 859. [Google Scholar] Fraser-Reid, B. Some progeny of 2,3- unsaturated sugars - they little resemble grandfather glucose: ten years later. Acc. Chem. Res 1985, 18, 347. [Google Scholar] Ferrier, R.J. Unsaturated sugars. Adv. Carbohyd. Chem. Biochem 1969, 24, 199. [Google Scholar]
- Williams, N.R.; Wander, J.D. The Carbohydrates: Chemistry and Biochemistry; Academic Press: New York, 1980; p. 761. [Google Scholar]
- Descotes, G.; Martin, J.C. Sur1’ isomerisation du 1,5-anhydro-3,4,6-tri-O-benzyl-1,2-didesoxy-D-arabino-hex-1-enitol en presence d’acides de Lewis. Carbohydr. Res. 1977, 56, 168. [Google Scholar] Klaffke, W.; Pudlo, P.; Springer, D.; Thiem, J. Artificial deoxy glycosides of antracyclines. Liebigs Ann. Chem 1991, 509. [Google Scholar]
- Grynkiewicz, G.; Priebe, W.; Zamojski, A. Synthesis of alkyl 4,6-di-o-acetyl-2,3-dideoxy-α- D-threo-hex-2-enopyranosides from 3,4,6-tri-o-acetyl-1,5-anhydro-2-deoxy-D-lyxo-hex-1-enitol (3,4,6-tri-O-acetyl- -galactal). Carbohydrate Res. 1979, 68, 33. [Google Scholar] Bhate, P.; Horton, D.; Priebe, W. Allylic rearrangement of 6-deoxyglycals having practical utility. Carbohydr. Res. 1985, 144, 331. [Google Scholar]
- Masson, C.; Soto, J.; Bessodes, M. Ferric Chloride: A new and very efficient catalyst for the Ferrier glycosylation reaction. Synlett 2000, 1281. [Google Scholar]
- Toshima, K.; Ishizuka, T.; Matsuo, G.; Nakata, M.; Konoshita, M. Glycosidation of Glycals by 2,3-Dichloro-5,6-dicyano-p-benzoquinone (DDQ) as a catalytic promoter. J. Chem. Soc., Chem. Commun. 1993, 704. [Google Scholar] [CrossRef]
- Fraser-Reid, B.; Madsen, R. Ferrier rearrangement under nonacidic conditions based on iodonium-induced rearrangements of allylic n-pentenyl esters, n-pentenyl glycosides, and phenyl thioglycosides. J. Org. Chem. 1995, 60, 3851. [Google Scholar]
- Koreeda, M.; Houston, T.A.; Shull, B.K.; Klemke, E.; Tuinman, R.J. Iodine catalyzed Ferrier reaction. A mild and highly versatile glycosylation of hydroxyl and phenolic groups. Synlett 1995, 90. [Google Scholar] [CrossRef]
- Toshima, K.; Ishizuka, T.; Matsuo, G.; Nakata, M. Practical glycosidation method of glycols using Montmorillonite K-10 as an environmentally acceptable and inexpensive industrial catalyst. Synlett 1995, 306. [Google Scholar] [CrossRef]
- Swamy, N.R.; Venkateswarulu, Y. An efficient method for the synthesis of 2,3-unsaturated glycopyranosides catalyzed by bismuth trichloride in Ferrier rearrangement. Synthesis 2002, 598. [Google Scholar] [CrossRef]
- Babu, B.S.; Balasubramanian, K.K. Indium trichloride catalyzed glycosidation. An expeditious synthesis of 2,3-unsaturated glycopyranosides. Tetrahedron Lett 2000, 41, 1271. [Google Scholar] [CrossRef]
- Yadav, J.S.; Subba Reddy, B.V.; Murthy, C.V.S.R.; Mahesh Kumar, G. Scandium Triflate catalyzed Ferrier rearrangement: An efficient synthesis of 2,3- unsaturated glycopyranosides. Synlett 2000, 1450. [Google Scholar] [CrossRef]
- Takhi, M.; Adel, A-H.; Rehman, A.; Schimdt, R.R. Highly stereoselective synthesis of pseudoglycals via Yb(OTf)3 catalyzed Ferrier glycosylation. Synlett 2001, 427. [Google Scholar] [CrossRef]
- Repichet, S.; Zwick., A.; Vendier, L.; LeRoux, C.; Dubac, J. A practical, cheap and environmentally friendly preparation of bismuth(III)trifluoromethanesulfonate. Tetrahedron Lett. 2002, 43, 993. [Google Scholar] Labrouillere, M.; LeRoux, C.; Gaspard, H.; Laporteric, A.; Dubac, J. An efficient method for the preparation of Bismuthe (III) trifluoromethanesulfonate. Tetrahedron Lett. 1999, 40, 285. [Google Scholar]
- Labrouillere, M.; LeRoux, C.; Gaspard, H.; Laporteric, A.; Dubac, J.R. Surprising catalytic activity of bismuth (III) triflate in the Friedel-Craft’s acylation reaction. Tetrahedron Lett. 1997, 38, 8871. [Google Scholar] Repichet, S.; Le Roux, C.; Dubac, J.; Desmure, J.R. Bismuth (III) Trifluoromethanesulfonate: A chameleon catalyst for the Friedel-Crafts acylation. Eur. J. Org. Chem. 1998, 2743. [Google Scholar]
- Repichet, S.; Le Roux, C.; Hernandez, P.; Dubac, J. Bismuth (III) trifluromethanesulfonate: An efficient catalyst for sulfonylation of arenes. J. Org. Chem. 1999, 64, 6479. [Google Scholar] [CrossRef]
- Garrigues, B.; Gonjanga, F.; Robert, H.; Garrigues, B.; Dubac, J. Bismuth (III) chloride or triflate catalyzed dienophilic activity of α-ethylenic aldehydes and ketones. J. Org. Chem 1997, 62, 4880. [Google Scholar] Robert, H.; Garrigues, B.; Dubac, J. The carbonyl-Diels-Alder reaction catalyzed by bismuth (III) chloride. Tetrahedron Lett. 1998, 39, 1161. [Google Scholar] [CrossRef]
- Laurent-Robert, H.; Garrigues, B.; Dubac, J. Bismuth (III) chloride and triflate: New efficient catalyst for the aza-Diels-Alder reaction. Synlett 2000, 1160. [Google Scholar]
- Orita, A.; Tanahashi, C.; Kakuda, A.; Otera, J. Highly efficient and versatile acylation of alcohols with Bi(OTf)3 as a catalyst. Angew. Chem. Int. Ed. 2000, 39, 2877. [Google Scholar] [CrossRef]
- Bhatia, K.A.; Leonard, N.M.; Oswald, M.C.; Eash, K.J.; Mohan, R.S. A facile and efficient method for the rearrangement of aryl substituted epoxides to aldehydes and ketones using bismuth triflate. Tetrahedron Lett. 2001, 42, 8129. [Google Scholar] [CrossRef]
- Carrigan, M.D.; Eash, K.J.; Oswald, M.C.; Mohan, R.S. An efficient method for chemoselective synthesis of acylals from aromatic adehydes using bismuth triflate. Tetrahedron Lett. 2001, 42, 8133. [Google Scholar] [CrossRef]
- Westly, J.W. Polyether Antibiotics Naturally Occuring Acid Ionophores; Marcel Dekker: NewYork, 1982; vol. 1 and 2. [Google Scholar] Hanessian, S. Approaches to the total Synthesis of natural products using “Chiral Templates” derived from carbohydrates. Acc. Chem. Res. 1979, 12, 159. [Google Scholar]
- Bosshard, P.; Eugster, C.H. Advances in Heterocyclic Chemistry; Katritzky, A.R., Boulton, A.J., Eds.; Academic Press: New York, 1966; Vol.7, p. 377. [Google Scholar] Harris, J.M.; O’Doherty, G.A. Enantioselective synthesis of 5-substituted-α,β-unsaturated-δ-lactones: Application to the synthesis of styryllactones. Tetrahedron Lett. 2000, 41, 183. [Google Scholar]
- Babu, R.S.; Zhou, M.; O’Doherty, G.A. De Novo synthesis of oligosaccharides using palladium-catalyzed glycosylation reaction. J. Am. Chem. Soc. 2004, 126, 3428. [Google Scholar] Saeed, M.; Ilg, T.; Schick, M.; Abbas, M.; Voelter, W. Total synthesis and anti-leishmanial activity of R-(-)- argentilactone. Tetrahedron Lett. 2001, 47, 7401. [Google Scholar] Harris, J.M.; Keranen, M.D.; Nguyen, H.; Young, V.G.; O’Doherty, G.A. Syntheses of four D- and L-hexoses via diastereoselective and enantioselective dihydroxylation reactions. Carbohydr. Res. 2000, 328, 17. [Google Scholar]
- Gonzalez, F.; Lesage, S.; Perlin, A.S. Catalysis by mercuric ion of reactions of glycals with water. Carbohydr. Res. 1975, 42, 267. [Google Scholar] [CrossRef]
- Hayashi, M.; Kawabata, H.; Yamada, K. Metal catalyzed transformation of D-glucal to optically active furandiol. Chem. Commun. 1999, 965. [Google Scholar] [CrossRef]
- Babu, B.S.; Balasubramanian, K.K. A facile synthesis of chiral furan diol from glycals catalyzed by indium trichloride. J. Org. Chem. 2000, 65, 4198. [Google Scholar] [CrossRef]
- Agarwal, A.; Rani, S.; Vankar, Y.D. Protic acid (HClO4 supported silica gel) mediated synthesis of 2,3-unsaturated-O-glycosides and chiral furan diol from 2,3-glycals. J. Org. Chem. 2004, 69, 6137. [Google Scholar] [CrossRef] [PubMed]
- Sample availability: Contact the authors.
© 2005 by MDPI (http://www.mdpi.org). Reproduction is permitted for non commercial purposes.
Share and Cite
Babu, J.; Khare, A.; Vankar, Y. Bi(OTf)3 and SiO2-Bi(OTf)3 as Effective Catalysts for the Ferrier Rearrangement#. Molecules 2005, 10, 884-892. https://doi.org/10.3390/10080884
Babu J, Khare A, Vankar Y. Bi(OTf)3 and SiO2-Bi(OTf)3 as Effective Catalysts for the Ferrier Rearrangement#. Molecules. 2005; 10(8):884-892. https://doi.org/10.3390/10080884
Chicago/Turabian StyleBabu, J., A. Khare, and Y. Vankar. 2005. "Bi(OTf)3 and SiO2-Bi(OTf)3 as Effective Catalysts for the Ferrier Rearrangement#" Molecules 10, no. 8: 884-892. https://doi.org/10.3390/10080884
APA StyleBabu, J., Khare, A., & Vankar, Y. (2005). Bi(OTf)3 and SiO2-Bi(OTf)3 as Effective Catalysts for the Ferrier Rearrangement#. Molecules, 10(8), 884-892. https://doi.org/10.3390/10080884